summaryrefslogtreecommitdiffstats
path: root/freebsd
diff options
context:
space:
mode:
authorSebastian Huber <sebastian.huber@embedded-brains.de>2018-09-18 06:56:53 +0200
committerSebastian Huber <sebastian.huber@embedded-brains.de>2018-09-25 10:01:39 +0200
commit6721f56bca1888a755bab35a891bc70e1c9c0176 (patch)
tree19a8b3809f0c05503c01a6e9670e6af2c518631c /freebsd
parentimx/imx_gpio.c: Port to RTEMS (diff)
downloadrtems-libbsd-6721f56bca1888a755bab35a891bc70e1c9c0176.tar.bz2
fsl_sdhci.c: Import from FreeBSD
Update #3525.
Diffstat (limited to 'freebsd')
-rw-r--r--freebsd/sys/dev/sdhci/fsl_sdhci.c1015
1 files changed, 1015 insertions, 0 deletions
diff --git a/freebsd/sys/dev/sdhci/fsl_sdhci.c b/freebsd/sys/dev/sdhci/fsl_sdhci.c
new file mode 100644
index 00000000..7d334c1a
--- /dev/null
+++ b/freebsd/sys/dev/sdhci/fsl_sdhci.c
@@ -0,0 +1,1015 @@
+#include <machine/rtems-bsd-kernel-space.h>
+
+/*-
+ * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ */
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+/*
+ * SDHCI driver glue for Freescale i.MX SoC and QorIQ families.
+ *
+ * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
+ */
+
+#include <rtems/bsd/local/opt_mmccam.h>
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/types.h>
+#include <sys/bus.h>
+#include <sys/callout.h>
+#include <sys/kernel.h>
+#include <sys/libkern.h>
+#include <sys/lock.h>
+#include <sys/malloc.h>
+#include <sys/module.h>
+#include <sys/mutex.h>
+#include <rtems/bsd/sys/resource.h>
+#include <sys/rman.h>
+#include <sys/sysctl.h>
+#include <sys/taskqueue.h>
+#include <sys/time.h>
+
+#include <machine/bus.h>
+#include <machine/resource.h>
+#ifdef __arm__
+#include <machine/intr.h>
+
+#include <arm/freescale/imx/imx_ccmvar.h>
+#endif
+
+#ifdef __powerpc__
+#include <powerpc/mpc85xx/mpc85xx.h>
+#endif
+
+#include <dev/gpio/gpiobusvar.h>
+
+#include <dev/ofw/ofw_bus.h>
+#include <dev/ofw/ofw_bus_subr.h>
+
+#include <dev/mmc/bridge.h>
+
+#include <dev/sdhci/sdhci.h>
+#include <dev/sdhci/sdhci_fdt_gpio.h>
+
+#include <rtems/bsd/local/mmcbr_if.h>
+#include <rtems/bsd/local/sdhci_if.h>
+
+struct fsl_sdhci_softc {
+ device_t dev;
+ struct resource * mem_res;
+ struct resource * irq_res;
+ void * intr_cookie;
+ struct sdhci_slot slot;
+ struct callout r1bfix_callout;
+ sbintime_t r1bfix_timeout_at;
+ struct sdhci_fdt_gpio * gpio;
+ uint32_t baseclk_hz;
+ uint32_t cmd_and_mode;
+ uint32_t r1bfix_intmask;
+ uint16_t sdclockreg_freq_bits;
+ uint8_t r1bfix_type;
+ uint8_t hwtype;
+ bool slot_init_done;
+};
+
+#define R1BFIX_NONE 0 /* No fix needed at next interrupt. */
+#define R1BFIX_NODATA 1 /* Synthesize DATA_END for R1B w/o data. */
+#define R1BFIX_AC12 2 /* Wait for busy after auto command 12. */
+
+#define HWTYPE_NONE 0 /* Hardware not recognized/supported. */
+#define HWTYPE_ESDHC 1 /* fsl5x and earlier. */
+#define HWTYPE_USDHC 2 /* fsl6. */
+
+/*
+ * Freescale-specific registers, or in some cases the layout of bits within the
+ * sdhci-defined register is different on Freescale. These names all begin with
+ * SDHC_ (not SDHCI_).
+ */
+
+#define SDHC_WTMK_LVL 0x44 /* Watermark Level register. */
+#define USDHC_MIX_CONTROL 0x48 /* Mix(ed) Control register. */
+#define SDHC_VEND_SPEC 0xC0 /* Vendor-specific register. */
+#define SDHC_VEND_FRC_SDCLK_ON (1 << 8)
+#define SDHC_VEND_IPGEN (1 << 11)
+#define SDHC_VEND_HCKEN (1 << 12)
+#define SDHC_VEND_PEREN (1 << 13)
+
+#define SDHC_PRES_STATE 0x24
+#define SDHC_PRES_CIHB (1 << 0)
+#define SDHC_PRES_CDIHB (1 << 1)
+#define SDHC_PRES_DLA (1 << 2)
+#define SDHC_PRES_SDSTB (1 << 3)
+#define SDHC_PRES_IPGOFF (1 << 4)
+#define SDHC_PRES_HCKOFF (1 << 5)
+#define SDHC_PRES_PEROFF (1 << 6)
+#define SDHC_PRES_SDOFF (1 << 7)
+#define SDHC_PRES_WTA (1 << 8)
+#define SDHC_PRES_RTA (1 << 9)
+#define SDHC_PRES_BWEN (1 << 10)
+#define SDHC_PRES_BREN (1 << 11)
+#define SDHC_PRES_RTR (1 << 12)
+#define SDHC_PRES_CINST (1 << 16)
+#define SDHC_PRES_CDPL (1 << 18)
+#define SDHC_PRES_WPSPL (1 << 19)
+#define SDHC_PRES_CLSL (1 << 23)
+#define SDHC_PRES_DLSL_SHIFT 24
+#define SDHC_PRES_DLSL_MASK (0xffU << SDHC_PRES_DLSL_SHIFT)
+
+#define SDHC_PROT_CTRL 0x28
+#define SDHC_PROT_LED (1 << 0)
+#define SDHC_PROT_WIDTH_1BIT (0 << 1)
+#define SDHC_PROT_WIDTH_4BIT (1 << 1)
+#define SDHC_PROT_WIDTH_8BIT (2 << 1)
+#define SDHC_PROT_WIDTH_MASK (3 << 1)
+#define SDHC_PROT_D3CD (1 << 3)
+#define SDHC_PROT_EMODE_BIG (0 << 4)
+#define SDHC_PROT_EMODE_HALF (1 << 4)
+#define SDHC_PROT_EMODE_LITTLE (2 << 4)
+#define SDHC_PROT_EMODE_MASK (3 << 4)
+#define SDHC_PROT_SDMA (0 << 8)
+#define SDHC_PROT_ADMA1 (1 << 8)
+#define SDHC_PROT_ADMA2 (2 << 8)
+#define SDHC_PROT_ADMA264 (3 << 8)
+#define SDHC_PROT_DMA_MASK (3 << 8)
+#define SDHC_PROT_CDTL (1 << 6)
+#define SDHC_PROT_CDSS (1 << 7)
+
+#define SDHC_SYS_CTRL 0x2c
+
+/*
+ * The clock enable bits exist in different registers for ESDHC vs USDHC, but
+ * they are the same bits in both cases. The divisor values go into the
+ * standard sdhci clock register, but in different bit positions and meanings
+ than the sdhci spec values.
+ */
+#define SDHC_CLK_IPGEN (1 << 0)
+#define SDHC_CLK_HCKEN (1 << 1)
+#define SDHC_CLK_PEREN (1 << 2)
+#define SDHC_CLK_SDCLKEN (1 << 3)
+#define SDHC_CLK_ENABLE_MASK 0x0000000f
+#define SDHC_CLK_DIVISOR_MASK 0x000000f0
+#define SDHC_CLK_DIVISOR_SHIFT 4
+#define SDHC_CLK_PRESCALE_MASK 0x0000ff00
+#define SDHC_CLK_PRESCALE_SHIFT 8
+
+static struct ofw_compat_data compat_data[] = {
+ {"fsl,imx6q-usdhc", HWTYPE_USDHC},
+ {"fsl,imx6sl-usdhc", HWTYPE_USDHC},
+ {"fsl,imx6sx-usdhc", HWTYPE_USDHC},
+ {"fsl,imx53-esdhc", HWTYPE_ESDHC},
+ {"fsl,imx51-esdhc", HWTYPE_ESDHC},
+ {"fsl,esdhc", HWTYPE_ESDHC},
+ {NULL, HWTYPE_NONE},
+};
+
+static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc);
+static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val);
+static void fsl_sdhci_r1bfix_func(void *arg);
+
+static inline uint32_t
+RD4(struct fsl_sdhci_softc *sc, bus_size_t off)
+{
+
+ return (bus_read_4(sc->mem_res, off));
+}
+
+static inline void
+WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val)
+{
+
+ bus_write_4(sc->mem_res, off, val);
+}
+
+static uint8_t
+fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(dev);
+ uint32_t val32, wrk32;
+
+ /*
+ * Most of the things in the standard host control register are in the
+ * hardware's wider protocol control register, but some of the bits are
+ * moved around.
+ */
+ if (off == SDHCI_HOST_CONTROL) {
+ wrk32 = RD4(sc, SDHC_PROT_CTRL);
+ val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
+ SDHCI_CTRL_FORCE_CARD);
+ switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
+ case SDHC_PROT_WIDTH_1BIT:
+ /* Value is already 0. */
+ break;
+ case SDHC_PROT_WIDTH_4BIT:
+ val32 |= SDHCI_CTRL_4BITBUS;
+ break;
+ case SDHC_PROT_WIDTH_8BIT:
+ val32 |= SDHCI_CTRL_8BITBUS;
+ break;
+ }
+ switch (wrk32 & SDHC_PROT_DMA_MASK) {
+ case SDHC_PROT_SDMA:
+ /* Value is already 0. */
+ break;
+ case SDHC_PROT_ADMA1:
+ /* This value is deprecated, should never appear. */
+ break;
+ case SDHC_PROT_ADMA2:
+ val32 |= SDHCI_CTRL_ADMA2;
+ break;
+ case SDHC_PROT_ADMA264:
+ val32 |= SDHCI_CTRL_ADMA264;
+ break;
+ }
+ return val32;
+ }
+
+ /*
+ * XXX can't find the bus power on/off knob. For now we have to say the
+ * power is always on and always set to the same voltage.
+ */
+ if (off == SDHCI_POWER_CONTROL) {
+ return (SDHCI_POWER_ON | SDHCI_POWER_300);
+ }
+
+
+ return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
+}
+
+static uint16_t
+fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(dev);
+ uint32_t val32;
+
+ if (sc->hwtype == HWTYPE_USDHC) {
+ /*
+ * The USDHC hardware has nothing in the version register, but
+ * it's v3 compatible with all our translation code.
+ */
+ if (off == SDHCI_HOST_VERSION) {
+ return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
+ }
+ /*
+ * The USDHC hardware moved the transfer mode bits to the mixed
+ * control register, fetch them from there.
+ */
+ if (off == SDHCI_TRANSFER_MODE)
+ return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
+
+ } else if (sc->hwtype == HWTYPE_ESDHC) {
+
+ /*
+ * The ESDHC hardware has the typical 32-bit combined "command
+ * and mode" register that we have to cache so that command
+ * isn't written until after mode. On a read, just retrieve the
+ * cached values last written.
+ */
+ if (off == SDHCI_TRANSFER_MODE) {
+ return (sc->cmd_and_mode & 0x0000ffff);
+ } else if (off == SDHCI_COMMAND_FLAGS) {
+ return (sc->cmd_and_mode >> 16);
+ }
+ }
+
+ /*
+ * This hardware only manages one slot. Synthesize a slot interrupt
+ * status register... if there are any enabled interrupts active they
+ * must be coming from our one and only slot.
+ */
+ if (off == SDHCI_SLOT_INT_STATUS) {
+ val32 = RD4(sc, SDHCI_INT_STATUS);
+ val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
+ return (val32 ? 1 : 0);
+ }
+
+ /*
+ * Clock bits are scattered into various registers which differ by
+ * hardware type, complex enough to have their own function.
+ */
+ if (off == SDHCI_CLOCK_CONTROL) {
+ return (fsl_sdhc_get_clock(sc));
+ }
+
+ return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
+}
+
+static uint32_t
+fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(dev);
+ uint32_t val32, wrk32;
+
+ val32 = RD4(sc, off);
+
+ /*
+ * The hardware leaves the base clock frequency out of the capabilities
+ * register, but we filled it in by setting slot->max_clk at attach time
+ * rather than here, because we can't represent frequencies above 63MHz
+ * in an sdhci 2.0 capabliities register. The timeout clock is the same
+ * as the active output sdclock; we indicate that with a quirk setting
+ * so don't populate the timeout frequency bits.
+ *
+ * XXX Turn off (for now) features the hardware can do but this driver
+ * doesn't yet handle (1.8v, suspend/resume, etc).
+ */
+ if (off == SDHCI_CAPABILITIES) {
+ val32 &= ~SDHCI_CAN_VDD_180;
+ val32 &= ~SDHCI_CAN_DO_SUSPEND;
+ val32 |= SDHCI_CAN_DO_8BITBUS;
+ return (val32);
+ }
+
+ /*
+ * The hardware moves bits around in the present state register to make
+ * room for all 8 data line state bits. To translate, mask out all the
+ * bits which are not in the same position in both registers (this also
+ * masks out some Freescale-specific bits in locations defined as
+ * reserved by sdhci), then shift the data line and retune request bits
+ * down to their standard locations.
+ */
+ if (off == SDHCI_PRESENT_STATE) {
+ wrk32 = val32;
+ val32 &= 0x000F0F07;
+ val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
+ val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
+ return (val32);
+ }
+
+ /*
+ * fsl_sdhci_intr() can synthesize a DATA_END interrupt following a
+ * command with an R1B response, mix it into the hardware status.
+ */
+ if (off == SDHCI_INT_STATUS) {
+ return (val32 | sc->r1bfix_intmask);
+ }
+
+ return val32;
+}
+
+static void
+fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
+ uint32_t *data, bus_size_t count)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(dev);
+
+ bus_read_multi_4(sc->mem_res, off, data, count);
+}
+
+static void
+fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(dev);
+ uint32_t val32;
+
+ /*
+ * Most of the things in the standard host control register are in the
+ * hardware's wider protocol control register, but some of the bits are
+ * moved around.
+ */
+ if (off == SDHCI_HOST_CONTROL) {
+ val32 = RD4(sc, SDHC_PROT_CTRL);
+ val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
+ SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
+ val32 |= (val & SDHCI_CTRL_LED);
+ if (val & SDHCI_CTRL_8BITBUS)
+ val32 |= SDHC_PROT_WIDTH_8BIT;
+ else
+ val32 |= (val & SDHCI_CTRL_4BITBUS);
+ val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
+ val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
+ WR4(sc, SDHC_PROT_CTRL, val32);
+ return;
+ }
+
+ /* XXX I can't find the bus power on/off knob; do nothing. */
+ if (off == SDHCI_POWER_CONTROL) {
+ return;
+ }
+#ifdef __powerpc__
+ /* XXX Reset doesn't seem to work as expected. Do nothing for now. */
+ if (off == SDHCI_SOFTWARE_RESET)
+ return;
+#endif
+
+ val32 = RD4(sc, off & ~3);
+ val32 &= ~(0xff << (off & 3) * 8);
+ val32 |= (val << (off & 3) * 8);
+
+ WR4(sc, off & ~3, val32);
+}
+
+static void
+fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(dev);
+ uint32_t val32;
+
+ /*
+ * The clock control stuff is complex enough to have its own function
+ * that can handle the ESDHC versus USDHC differences.
+ */
+ if (off == SDHCI_CLOCK_CONTROL) {
+ fsl_sdhc_set_clock(sc, val);
+ return;
+ }
+
+ /*
+ * Figure out whether we need to check the DAT0 line for busy status at
+ * interrupt time. The controller should be doing this, but for some
+ * reason it doesn't. There are two cases:
+ * - R1B response with no data transfer should generate a DATA_END (aka
+ * TRANSFER_COMPLETE) interrupt after waiting for busy, but if
+ * there's no data transfer there's no DATA_END interrupt. This is
+ * documented; they seem to think it's a feature.
+ * - R1B response after Auto-CMD12 appears to not work, even though
+ * there's a control bit for it (bit 3) in the vendor register.
+ * When we're starting a command that needs a manual DAT0 line check at
+ * interrupt time, we leave ourselves a note in r1bfix_type so that we
+ * can do the extra work in fsl_sdhci_intr().
+ */
+ if (off == SDHCI_COMMAND_FLAGS) {
+ if (val & SDHCI_CMD_DATA) {
+ const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
+ val32 = RD4(sc, USDHC_MIX_CONTROL);
+ if ((val32 & MBAUTOCMD) == MBAUTOCMD)
+ sc->r1bfix_type = R1BFIX_AC12;
+ } else {
+ if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
+ WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
+ WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
+ sc->r1bfix_type = R1BFIX_NODATA;
+ }
+ }
+ }
+
+ /*
+ * The USDHC hardware moved the transfer mode bits to mixed control; we
+ * just write them there and we're done. The ESDHC hardware has the
+ * typical combined cmd-and-mode register that allows only 32-bit
+ * access, so when writing the mode bits just save them, then later when
+ * writing the command bits, add in the saved mode bits.
+ */
+ if (sc->hwtype == HWTYPE_USDHC) {
+ if (off == SDHCI_TRANSFER_MODE) {
+ val32 = RD4(sc, USDHC_MIX_CONTROL);
+ val32 &= ~0x3f;
+ val32 |= val & 0x37;
+ // XXX acmd23 not supported here (or by sdhci driver)
+ WR4(sc, USDHC_MIX_CONTROL, val32);
+ return;
+ }
+ } else if (sc->hwtype == HWTYPE_ESDHC) {
+ if (off == SDHCI_TRANSFER_MODE) {
+ sc->cmd_and_mode =
+ (sc->cmd_and_mode & 0xffff0000) | val;
+ return;
+ } else if (off == SDHCI_COMMAND_FLAGS) {
+ sc->cmd_and_mode =
+ (sc->cmd_and_mode & 0xffff) | (val << 16);
+ WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
+ return;
+ }
+ }
+
+ val32 = RD4(sc, off & ~3);
+ val32 &= ~(0xffff << (off & 3) * 8);
+ val32 |= ((val & 0xffff) << (off & 3) * 8);
+ WR4(sc, off & ~3, val32);
+}
+
+static void
+fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(dev);
+
+ /* Clear synthesized interrupts, then pass the value to the hardware. */
+ if (off == SDHCI_INT_STATUS) {
+ sc->r1bfix_intmask &= ~val;
+ }
+
+ WR4(sc, off, val);
+}
+
+static void
+fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
+ uint32_t *data, bus_size_t count)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(dev);
+
+ bus_write_multi_4(sc->mem_res, off, data, count);
+}
+
+static uint16_t
+fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc)
+{
+ uint16_t val;
+
+ /*
+ * Whenever the sdhci driver writes the clock register we save a
+ * snapshot of just the frequency bits, so that we can play them back
+ * here on a register read without recalculating the frequency from the
+ * prescalar and divisor bits in the real register. We'll start with
+ * those bits, and mix in the clock status and enable bits that come
+ * from different places depending on which hardware we've got.
+ */
+ val = sc->sdclockreg_freq_bits;
+
+ /*
+ * The internal clock is always enabled (actually, the hardware manages
+ * it). Whether the internal clock is stable yet after a frequency
+ * change comes from the present-state register on both hardware types.
+ */
+ val |= SDHCI_CLOCK_INT_EN;
+ if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB)
+ val |= SDHCI_CLOCK_INT_STABLE;
+
+ /*
+ * On i.MX ESDHC hardware the card bus clock enable is in the usual
+ * sdhci register but it's a different bit, so transcribe it (note the
+ * difference between standard SDHCI_ and Freescale SDHC_ prefixes
+ * here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but
+ * no force-off for the card bus clock (the hardware runs the clock when
+ * transfers are active no matter what), so we always say the clock is
+ * on.
+ * XXX Maybe we should say it's in whatever state the sdhci driver last
+ * set it to.
+ */
+ if (sc->hwtype == HWTYPE_ESDHC) {
+#ifdef __arm__
+ if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN)
+#endif
+ val |= SDHCI_CLOCK_CARD_EN;
+ } else {
+ val |= SDHCI_CLOCK_CARD_EN;
+ }
+
+ return (val);
+}
+
+static void
+fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val)
+{
+ uint32_t divisor, freq, prescale, val32;
+
+ val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
+
+ /*
+ * Save the frequency-setting bits in SDHCI format so that we can play
+ * them back in get_clock without complex decoding of hardware regs,
+ * then deal with the freqency part of the value based on hardware type.
+ */
+ sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK;
+ if (sc->hwtype == HWTYPE_ESDHC) {
+ /*
+ * The i.MX5 ESDHC hardware requires the driver to manually
+ * start and stop the sd bus clock. If the enable bit is not
+ * set, turn off the clock in hardware and we're done, otherwise
+ * decode the requested frequency. ESDHC hardware is sdhci 2.0;
+ * the sdhci driver will use the original 8-bit divisor field
+ * and the "base / 2^N" divisor scheme.
+ */
+ if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
+#ifdef __arm__
+ /* On QorIQ, this is a reserved bit. */
+ WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN);
+#endif
+ return;
+
+ }
+ divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
+ freq = sc->baseclk_hz >> ffs(divisor);
+ } else {
+ /*
+ * The USDHC hardware provides only "force always on" control
+ * over the sd bus clock, but no way to turn it off. (If a cmd
+ * or data transfer is in progress the clock is on, otherwise it
+ * is off.) If the clock is being disabled, we can just return
+ * now, otherwise we decode the requested frequency. USDHC
+ * hardware is sdhci 3.0; the sdhci driver will use a 10-bit
+ * divisor using the "base / 2*N" divisor scheme.
+ */
+ if ((val & SDHCI_CLOCK_CARD_EN) == 0)
+ return;
+ divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
+ ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
+ SDHCI_DIVIDER_MASK_LEN;
+ if (divisor == 0)
+ freq = sc->baseclk_hz;
+ else
+ freq = sc->baseclk_hz / (2 * divisor);
+ }
+
+ /*
+ * Get a prescaler and final divisor to achieve the desired frequency.
+ */
+ for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
+ prescale <<= 1;
+
+ for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
+ ++divisor;
+
+#ifdef DEBUG
+ device_printf(sc->dev,
+ "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
+ freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
+ prescale, divisor);
+#endif
+
+ /*
+ * Adjust to zero-based values, and store them to the hardware.
+ */
+ prescale >>= 1;
+ divisor -= 1;
+
+ val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK);
+ val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
+ val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
+ val32 |= SDHC_CLK_IPGEN;
+ WR4(sc, SDHCI_CLOCK_CONTROL, val32);
+}
+
+static boolean_t
+fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc)
+{
+ uint32_t inhibit;
+
+ mtx_assert(&sc->slot.mtx, MA_OWNED);
+
+ /*
+ * Check the DAT0 line status using both the DLA (data line active) and
+ * CDIHB (data inhibit) bits in the present state register. In theory
+ * just DLA should do the trick, but in practice it takes both. If the
+ * DAT0 line is still being held and we're not yet beyond the timeout
+ * point, just schedule another callout to check again later.
+ */
+ inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
+
+ if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
+ callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
+ fsl_sdhci_r1bfix_func, sc, 0);
+ return (false);
+ }
+
+ /*
+ * If we reach this point with the inhibit bits still set, we've got a
+ * timeout, synthesize a DATA_TIMEOUT interrupt. Otherwise the DAT0
+ * line has been released, and we synthesize a DATA_END, and if the type
+ * of fix needed was on a command-without-data we also now add in the
+ * original INT_RESPONSE that we suppressed earlier.
+ */
+ if (inhibit)
+ sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
+ else {
+ sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
+ if (sc->r1bfix_type == R1BFIX_NODATA)
+ sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
+ }
+
+ sc->r1bfix_type = R1BFIX_NONE;
+ return (true);
+}
+
+static void
+fsl_sdhci_r1bfix_func(void * arg)
+{
+ struct fsl_sdhci_softc *sc = arg;
+ boolean_t r1bwait_done;
+
+ mtx_lock(&sc->slot.mtx);
+ r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc);
+ mtx_unlock(&sc->slot.mtx);
+ if (r1bwait_done)
+ sdhci_generic_intr(&sc->slot);
+}
+
+static void
+fsl_sdhci_intr(void *arg)
+{
+ struct fsl_sdhci_softc *sc = arg;
+ uint32_t intmask;
+
+ mtx_lock(&sc->slot.mtx);
+
+ /*
+ * Manually check the DAT0 line for R1B response types that the
+ * controller fails to handle properly. The controller asserts the done
+ * interrupt while the card is still asserting busy with the DAT0 line.
+ *
+ * We check DAT0 immediately because most of the time, especially on a
+ * read, the card will actually be done by time we get here. If it's
+ * not, then the wait_done routine will schedule a callout to re-check
+ * periodically until it is done. In that case we clear the interrupt
+ * out of the hardware now so that we can present it later when the DAT0
+ * line is released.
+ *
+ * If we need to wait for the DAT0 line to be released, we set up a
+ * timeout point 250ms in the future. This number comes from the SD
+ * spec, which allows a command to take that long. In the real world,
+ * cards tend to take 10-20ms for a long-running command such as a write
+ * or erase that spans two pages.
+ */
+ switch (sc->r1bfix_type) {
+ case R1BFIX_NODATA:
+ intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE;
+ break;
+ case R1BFIX_AC12:
+ intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END;
+ break;
+ default:
+ intmask = 0;
+ break;
+ }
+ if (intmask) {
+ sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
+ if (!fsl_sdhci_r1bfix_is_wait_done(sc)) {
+ WR4(sc, SDHCI_INT_STATUS, intmask);
+ bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4,
+ BUS_SPACE_BARRIER_WRITE);
+ }
+ }
+
+ mtx_unlock(&sc->slot.mtx);
+ sdhci_generic_intr(&sc->slot);
+}
+
+static int
+fsl_sdhci_get_ro(device_t bus, device_t child)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(bus);
+
+ return (sdhci_fdt_gpio_get_readonly(sc->gpio));
+}
+
+static bool
+fsl_sdhci_get_card_present(device_t dev, struct sdhci_slot *slot)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(dev);
+
+ return (sdhci_fdt_gpio_get_present(sc->gpio));
+}
+
+#ifdef __powerpc__
+static uint32_t
+fsl_sdhci_get_platform_clock(device_t dev)
+{
+ phandle_t node;
+ uint32_t clock;
+
+ node = ofw_bus_get_node(dev);
+
+ /* Get sdhci node properties */
+ if((OF_getprop(node, "clock-frequency", (void *)&clock,
+ sizeof(clock)) <= 0) || (clock == 0)) {
+
+ clock = mpc85xx_get_system_clock();
+
+ if (clock == 0) {
+ device_printf(dev,"Cannot acquire correct sdhci "
+ "frequency from DTS.\n");
+
+ return (0);
+ }
+ }
+
+ if (bootverbose)
+ device_printf(dev, "Acquired clock: %d from DTS\n", clock);
+
+ return (clock);
+}
+#endif
+
+
+static int
+fsl_sdhci_detach(device_t dev)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(dev);
+
+ if (sc->gpio != NULL)
+ sdhci_fdt_gpio_teardown(sc->gpio);
+
+ callout_drain(&sc->r1bfix_callout);
+
+ if (sc->slot_init_done)
+ sdhci_cleanup_slot(&sc->slot);
+
+ if (sc->intr_cookie != NULL)
+ bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
+ if (sc->irq_res != NULL)
+ bus_release_resource(dev, SYS_RES_IRQ,
+ rman_get_rid(sc->irq_res), sc->irq_res);
+
+ if (sc->mem_res != NULL) {
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ rman_get_rid(sc->mem_res), sc->mem_res);
+ }
+
+ return (0);
+}
+
+static int
+fsl_sdhci_attach(device_t dev)
+{
+ struct fsl_sdhci_softc *sc = device_get_softc(dev);
+ int rid, err;
+#ifdef __powerpc__
+ phandle_t node;
+ uint32_t protctl;
+#endif
+
+ sc->dev = dev;
+
+ callout_init(&sc->r1bfix_callout, 1);
+
+ sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
+ if (sc->hwtype == HWTYPE_NONE)
+ panic("Impossible: not compatible in fsl_sdhci_attach()");
+
+ rid = 0;
+ sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
+ RF_ACTIVE);
+ if (!sc->mem_res) {
+ device_printf(dev, "cannot allocate memory window\n");
+ err = ENXIO;
+ goto fail;
+ }
+
+ rid = 0;
+ sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
+ RF_ACTIVE);
+ if (!sc->irq_res) {
+ device_printf(dev, "cannot allocate interrupt\n");
+ err = ENXIO;
+ goto fail;
+ }
+
+ if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
+ NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) {
+ device_printf(dev, "cannot setup interrupt handler\n");
+ err = ENXIO;
+ goto fail;
+ }
+
+ sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
+
+ /*
+ * DMA is not really broken, I just haven't implemented it yet.
+ */
+ sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
+
+ /*
+ * Set the buffer watermark level to 128 words (512 bytes) for both read
+ * and write. The hardware has a restriction that when the read or
+ * write ready status is asserted, that means you can read exactly the
+ * number of words set in the watermark register before you have to
+ * re-check the status and potentially wait for more data. The main
+ * sdhci driver provides no hook for doing status checking on less than
+ * a full block boundary, so we set the watermark level to be a full
+ * block. Reads and writes where the block size is less than the
+ * watermark size will work correctly too, no need to change the
+ * watermark for different size blocks. However, 128 is the maximum
+ * allowed for the watermark, so PIO is limitted to 512 byte blocks
+ * (which works fine for SD cards, may be a problem for SDIO some day).
+ *
+ * XXX need named constants for this stuff.
+ */
+ /* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */
+ if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc"))
+ WR4(sc, SDHC_WTMK_LVL, 0x10801080);
+ else
+ WR4(sc, SDHC_WTMK_LVL, 0x08800880);
+
+ /*
+ * We read in native byte order in the main driver, but the register
+ * defaults to little endian.
+ */
+#ifdef __powerpc__
+ sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev);
+#else
+ sc->baseclk_hz = imx_ccm_sdhci_hz();
+#endif
+ sc->slot.max_clk = sc->baseclk_hz;
+
+ /*
+ * Set up any gpio pin handling described in the FDT data. This cannot
+ * fail; see comments in sdhci_fdt_gpio.h for details.
+ */
+ sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);
+
+#ifdef __powerpc__
+ node = ofw_bus_get_node(dev);
+ /* Default to big-endian on powerpc */
+ protctl = RD4(sc, SDHC_PROT_CTRL);
+ protctl &= ~SDHC_PROT_EMODE_MASK;
+ if (OF_hasprop(node, "little-endian"))
+ protctl |= SDHC_PROT_EMODE_LITTLE;
+ else
+ protctl |= SDHC_PROT_EMODE_BIG;
+ WR4(sc, SDHC_PROT_CTRL, protctl);
+#endif
+
+ sdhci_init_slot(dev, &sc->slot, 0);
+ sc->slot_init_done = true;
+
+ bus_generic_probe(dev);
+ bus_generic_attach(dev);
+
+ sdhci_start_slot(&sc->slot);
+
+ return (0);
+
+fail:
+ fsl_sdhci_detach(dev);
+ return (err);
+}
+
+static int
+fsl_sdhci_probe(device_t dev)
+{
+
+ if (!ofw_bus_status_okay(dev))
+ return (ENXIO);
+
+ switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
+ case HWTYPE_ESDHC:
+ device_set_desc(dev, "Freescale eSDHC controller");
+ return (BUS_PROBE_DEFAULT);
+ case HWTYPE_USDHC:
+ device_set_desc(dev, "Freescale uSDHC controller");
+ return (BUS_PROBE_DEFAULT);
+ default:
+ break;
+ }
+ return (ENXIO);
+}
+
+static device_method_t fsl_sdhci_methods[] = {
+ /* Device interface */
+ DEVMETHOD(device_probe, fsl_sdhci_probe),
+ DEVMETHOD(device_attach, fsl_sdhci_attach),
+ DEVMETHOD(device_detach, fsl_sdhci_detach),
+
+ /* Bus interface */
+ DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar),
+ DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar),
+
+ /* MMC bridge interface */
+ DEVMETHOD(mmcbr_update_ios, sdhci_generic_update_ios),
+ DEVMETHOD(mmcbr_request, sdhci_generic_request),
+ DEVMETHOD(mmcbr_get_ro, fsl_sdhci_get_ro),
+ DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host),
+ DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host),
+
+ /* SDHCI accessors */
+ DEVMETHOD(sdhci_read_1, fsl_sdhci_read_1),
+ DEVMETHOD(sdhci_read_2, fsl_sdhci_read_2),
+ DEVMETHOD(sdhci_read_4, fsl_sdhci_read_4),
+ DEVMETHOD(sdhci_read_multi_4, fsl_sdhci_read_multi_4),
+ DEVMETHOD(sdhci_write_1, fsl_sdhci_write_1),
+ DEVMETHOD(sdhci_write_2, fsl_sdhci_write_2),
+ DEVMETHOD(sdhci_write_4, fsl_sdhci_write_4),
+ DEVMETHOD(sdhci_write_multi_4, fsl_sdhci_write_multi_4),
+ DEVMETHOD(sdhci_get_card_present,fsl_sdhci_get_card_present),
+
+ DEVMETHOD_END
+};
+
+static devclass_t fsl_sdhci_devclass;
+
+static driver_t fsl_sdhci_driver = {
+ "sdhci_fsl",
+ fsl_sdhci_methods,
+ sizeof(struct fsl_sdhci_softc),
+};
+
+DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, fsl_sdhci_devclass,
+ NULL, NULL);
+MODULE_DEPEND(sdhci_fsl, sdhci, 1, 1, 1);
+
+#ifndef MMCCAM
+MMC_DECLARE_BRIDGE(sdhci_fsl);
+#endif