summaryrefslogblamecommitdiffstats
path: root/freebsd/crypto/openssl/crypto/bn/bn_exp.c
blob: 50374334e88fbbb0b4853eded71b654a57e4e576 (plain) (tree)
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232



























































                                                                                
                                                                     























































































                                                                            

                                                        

                                                                  
                 































































































                                                                              


                                                          






























                                                                


                                                        

                                                                       
                 

































































































































                                                                             


                                                        



















































































































































































































































































































                                                                                                                              




                                                                               















































































































































































































































































































































































































































































































                                                                                          

                                                        

                                                                            
                 






























































































































                                                                        


                                                        

                                                                         
                 







































































































                                                                             
#include <machine/rtems-bsd-user-space.h>

/* crypto/bn/bn_exp.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright (c) 1998-2018 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

#include "cryptlib.h"
#include "constant_time_locl.h"
#include "bn_lcl.h"

#include <stdlib.h>
#ifdef _WIN32
# include <malloc.h>
# ifndef alloca
#  define alloca _alloca
# endif
#elif defined(__GNUC__)
# ifndef alloca
#  define alloca(s) __builtin_alloca((s))
# endif
#elif defined(__sun)
# include <alloca.h>
#endif

#include "rsaz_exp.h"

#undef SPARC_T4_MONT
#if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc))
# include "sparc_arch.h"
extern unsigned int OPENSSL_sparcv9cap_P[];
# define SPARC_T4_MONT
#endif

/* maximum precomputation table size for *variable* sliding windows */
#define TABLE_SIZE      32

/* this one works - simple but works */
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
{
    int i, bits, ret = 0;
    BIGNUM *v, *rr;

    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) {
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
        BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
        return 0;
    }

    BN_CTX_start(ctx);
    if ((r == a) || (r == p))
        rr = BN_CTX_get(ctx);
    else
        rr = r;
    v = BN_CTX_get(ctx);
    if (rr == NULL || v == NULL)
        goto err;

    if (BN_copy(v, a) == NULL)
        goto err;
    bits = BN_num_bits(p);

    if (BN_is_odd(p)) {
        if (BN_copy(rr, a) == NULL)
            goto err;
    } else {
        if (!BN_one(rr))
            goto err;
    }

    for (i = 1; i < bits; i++) {
        if (!BN_sqr(v, v, ctx))
            goto err;
        if (BN_is_bit_set(p, i)) {
            if (!BN_mul(rr, rr, v, ctx))
                goto err;
        }
    }
    if (r != rr && BN_copy(r, rr) == NULL)
        goto err;

    ret = 1;
 err:
    BN_CTX_end(ctx);
    bn_check_top(r);
    return (ret);
}

int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
               BN_CTX *ctx)
{
    int ret;

    bn_check_top(a);
    bn_check_top(p);
    bn_check_top(m);

    /*-
     * For even modulus  m = 2^k*m_odd,  it might make sense to compute
     * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
     * exponentiation for the odd part), using appropriate exponent
     * reductions, and combine the results using the CRT.
     *
     * For now, we use Montgomery only if the modulus is odd; otherwise,
     * exponentiation using the reciprocal-based quick remaindering
     * algorithm is used.
     *
     * (Timing obtained with expspeed.c [computations  a^p mod m
     * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
     * 4096, 8192 bits], compared to the running time of the
     * standard algorithm:
     *
     *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
     *                     55 .. 77 %  [UltraSparc processor, but
     *                                  debug-solaris-sparcv8-gcc conf.]
     *
     *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
     *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
     *
     * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
     * at 2048 and more bits, but at 512 and 1024 bits, it was
     * slower even than the standard algorithm!
     *
     * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
     * should be obtained when the new Montgomery reduction code
     * has been integrated into OpenSSL.)
     */

#define MONT_MUL_MOD
#define MONT_EXP_WORD
#define RECP_MUL_MOD

#ifdef MONT_MUL_MOD
    /*
     * I have finally been able to take out this pre-condition of the top bit
     * being set.  It was caused by an error in BN_div with negatives.  There
     * was also another problem when for a^b%m a >= m.  eay 07-May-97
     */
    /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */

    if (BN_is_odd(m)) {
# ifdef MONT_EXP_WORD
        if (a->top == 1 && !a->neg
            && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)
            && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0)
            && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) {
            BN_ULONG A = a->d[0];
            ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
        } else
# endif
            ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
    } else
#endif
#ifdef RECP_MUL_MOD
    {
        ret = BN_mod_exp_recp(r, a, p, m, ctx);
    }
#else
    {
        ret = BN_mod_exp_simple(r, a, p, m, ctx);
    }
#endif

    bn_check_top(r);
    return (ret);
}

int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
                    const BIGNUM *m, BN_CTX *ctx)
{
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
    int start = 1;
    BIGNUM *aa;
    /* Table of variables obtained from 'ctx' */
    BIGNUM *val[TABLE_SIZE];
    BN_RECP_CTX recp;

    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
        BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
        return 0;
    }

    bits = BN_num_bits(p);
    if (bits == 0) {
        /* x**0 mod 1 is still zero. */
        if (BN_is_one(m)) {
            ret = 1;
            BN_zero(r);
        } else {
            ret = BN_one(r);
        }
        return ret;
    }

    BN_CTX_start(ctx);
    aa = BN_CTX_get(ctx);
    val[0] = BN_CTX_get(ctx);
    if (!aa || !val[0])
        goto err;

    BN_RECP_CTX_init(&recp);
    if (m->neg) {
        /* ignore sign of 'm' */
        if (!BN_copy(aa, m))
            goto err;
        aa->neg = 0;
        if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
            goto err;
    } else {
        if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
            goto err;
    }

    if (!BN_nnmod(val[0], a, m, ctx))
        goto err;               /* 1 */
    if (BN_is_zero(val[0])) {
        BN_zero(r);
        ret = 1;
        goto err;
    }

    window = BN_window_bits_for_exponent_size(bits);
    if (window > 1) {
        if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
            goto err;           /* 2 */
        j = 1 << (window - 1);
        for (i = 1; i < j; i++) {
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
                !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
                goto err;
        }
    }

    start = 1;                  /* This is used to avoid multiplication etc
                                 * when there is only the value '1' in the
                                 * buffer. */
    wvalue = 0;                 /* The 'value' of the window */
    wstart = bits - 1;          /* The top bit of the window */
    wend = 0;                   /* The bottom bit of the window */

    if (!BN_one(r))
        goto err;

    for (;;) {
        if (BN_is_bit_set(p, wstart) == 0) {
            if (!start)
                if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
                    goto err;
            if (wstart == 0)
                break;
            wstart--;
            continue;
        }
        /*
         * We now have wstart on a 'set' bit, we now need to work out how bit
         * a window to do.  To do this we need to scan forward until the last
         * set bit before the end of the window
         */
        j = wstart;
        wvalue = 1;
        wend = 0;
        for (i = 1; i < window; i++) {
            if (wstart - i < 0)
                break;
            if (BN_is_bit_set(p, wstart - i)) {
                wvalue <<= (i - wend);
                wvalue |= 1;
                wend = i;
            }
        }

        /* wend is the size of the current window */
        j = wend + 1;
        /* add the 'bytes above' */
        if (!start)
            for (i = 0; i < j; i++) {
                if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
                    goto err;
            }

        /* wvalue will be an odd number < 2^window */
        if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
            goto err;

        /* move the 'window' down further */
        wstart -= wend + 1;
        wvalue = 0;
        start = 0;
        if (wstart < 0)
            break;
    }
    ret = 1;
 err:
    BN_CTX_end(ctx);
    BN_RECP_CTX_free(&recp);
    bn_check_top(r);
    return (ret);
}

int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
                    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
{
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
    int start = 1;
    BIGNUM *d, *r;
    const BIGNUM *aa;
    /* Table of variables obtained from 'ctx' */
    BIGNUM *val[TABLE_SIZE];
    BN_MONT_CTX *mont = NULL;

    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
        return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
    }

    bn_check_top(a);
    bn_check_top(p);
    bn_check_top(m);

    if (!BN_is_odd(m)) {
        BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS);
        return (0);
    }
    bits = BN_num_bits(p);
    if (bits == 0) {
        /* x**0 mod 1 is still zero. */
        if (BN_is_one(m)) {
            ret = 1;
            BN_zero(rr);
        } else {
            ret = BN_one(rr);
        }
        return ret;
    }

    BN_CTX_start(ctx);
    d = BN_CTX_get(ctx);
    r = BN_CTX_get(ctx);
    val[0] = BN_CTX_get(ctx);
    if (!d || !r || !val[0])
        goto err;

    /*
     * If this is not done, things will break in the montgomery part
     */

    if (in_mont != NULL)
        mont = in_mont;
    else {
        if ((mont = BN_MONT_CTX_new()) == NULL)
            goto err;
        if (!BN_MONT_CTX_set(mont, m, ctx))
            goto err;
    }

    if (a->neg || BN_ucmp(a, m) >= 0) {
        if (!BN_nnmod(val[0], a, m, ctx))
            goto err;
        aa = val[0];
    } else
        aa = a;
    if (BN_is_zero(aa)) {
        BN_zero(rr);
        ret = 1;
        goto err;
    }
    if (!BN_to_montgomery(val[0], aa, mont, ctx))
        goto err;               /* 1 */

    window = BN_window_bits_for_exponent_size(bits);
    if (window > 1) {
        if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx))
            goto err;           /* 2 */
        j = 1 << (window - 1);
        for (i = 1; i < j; i++) {
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
                !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx))
                goto err;
        }
    }

    start = 1;                  /* This is used to avoid multiplication etc
                                 * when there is only the value '1' in the
                                 * buffer. */
    wvalue = 0;                 /* The 'value' of the window */
    wstart = bits - 1;          /* The top bit of the window */
    wend = 0;                   /* The bottom bit of the window */

#if 1                           /* by Shay Gueron's suggestion */
    j = m->top;                 /* borrow j */
    if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
        if (bn_wexpand(r, j) == NULL)
            goto err;
        /* 2^(top*BN_BITS2) - m */
        r->d[0] = (0 - m->d[0]) & BN_MASK2;
        for (i = 1; i < j; i++)
            r->d[i] = (~m->d[i]) & BN_MASK2;
        r->top = j;
        /*
         * Upper words will be zero if the corresponding words of 'm' were
         * 0xfff[...], so decrement r->top accordingly.
         */
        bn_correct_top(r);
    } else
#endif
    if (!BN_to_montgomery(r, BN_value_one(), mont, ctx))
        goto err;
    for (;;) {
        if (BN_is_bit_set(p, wstart) == 0) {
            if (!start) {
                if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
                    goto err;
            }
            if (wstart == 0)
                break;
            wstart--;
            continue;
        }
        /*
         * We now have wstart on a 'set' bit, we now need to work out how bit
         * a window to do.  To do this we need to scan forward until the last
         * set bit before the end of the window
         */
        j = wstart;
        wvalue = 1;
        wend = 0;
        for (i = 1; i < window; i++) {
            if (wstart - i < 0)
                break;
            if (BN_is_bit_set(p, wstart - i)) {
                wvalue <<= (i - wend);
                wvalue |= 1;
                wend = i;
            }
        }

        /* wend is the size of the current window */
        j = wend + 1;
        /* add the 'bytes above' */
        if (!start)
            for (i = 0; i < j; i++) {
                if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
                    goto err;
            }

        /* wvalue will be an odd number < 2^window */
        if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx))
            goto err;

        /* move the 'window' down further */
        wstart -= wend + 1;
        wvalue = 0;
        start = 0;
        if (wstart < 0)
            break;
    }
#if defined(SPARC_T4_MONT)
    if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
        j = mont->N.top;        /* borrow j */
        val[0]->d[0] = 1;       /* borrow val[0] */
        for (i = 1; i < j; i++)
            val[0]->d[i] = 0;
        val[0]->top = j;
        if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx))
            goto err;
    } else
#endif
    if (!BN_from_montgomery(rr, r, mont, ctx))
        goto err;
    ret = 1;
 err:
    if ((in_mont == NULL) && (mont != NULL))
        BN_MONT_CTX_free(mont);
    BN_CTX_end(ctx);
    bn_check_top(rr);
    return (ret);
}

#if defined(SPARC_T4_MONT)
static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos)
{
    BN_ULONG ret = 0;
    int wordpos;

    wordpos = bitpos / BN_BITS2;
    bitpos %= BN_BITS2;
    if (wordpos >= 0 && wordpos < a->top) {
        ret = a->d[wordpos] & BN_MASK2;
        if (bitpos) {
            ret >>= bitpos;
            if (++wordpos < a->top)
                ret |= a->d[wordpos] << (BN_BITS2 - bitpos);
        }
    }

    return ret & BN_MASK2;
}
#endif

/*
 * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
 * layout so that accessing any of these table values shows the same access
 * pattern as far as cache lines are concerned.  The following functions are
 * used to transfer a BIGNUM from/to that table.
 */

static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top,
                                        unsigned char *buf, int idx,
                                        int window)
{
    int i, j;
    int width = 1 << window;
    BN_ULONG *table = (BN_ULONG *)buf;

    if (top > b->top)
        top = b->top;           /* this works because 'buf' is explicitly
                                 * zeroed */
    for (i = 0, j = idx; i < top; i++, j += width) {
        table[j] = b->d[i];
    }

    return 1;
}

static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
                                          unsigned char *buf, int idx,
                                          int window)
{
    int i, j;
    int width = 1 << window;
    volatile BN_ULONG *table = (volatile BN_ULONG *)buf;

    if (bn_wexpand(b, top) == NULL)
        return 0;

    if (window <= 3) {
        for (i = 0; i < top; i++, table += width) {
            BN_ULONG acc = 0;

            for (j = 0; j < width; j++) {
                acc |= table[j] &
                       ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
            }

            b->d[i] = acc;
        }
    } else {
        int xstride = 1 << (window - 2);
        BN_ULONG y0, y1, y2, y3;

        i = idx >> (window - 2);        /* equivalent of idx / xstride */
        idx &= xstride - 1;             /* equivalent of idx % xstride */

        y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
        y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
        y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
        y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);

        for (i = 0; i < top; i++, table += width) {
            BN_ULONG acc = 0;

            for (j = 0; j < xstride; j++) {
                acc |= ( (table[j + 0 * xstride] & y0) |
                         (table[j + 1 * xstride] & y1) |
                         (table[j + 2 * xstride] & y2) |
                         (table[j + 3 * xstride] & y3) )
                       & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
            }

            b->d[i] = acc;
        }
    }

    b->top = top;
    bn_correct_top(b);
    return 1;
}

/*
 * Given a pointer value, compute the next address that is a cache line
 * multiple.
 */
#define MOD_EXP_CTIME_ALIGN(x_) \
        ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))

/*
 * This variant of BN_mod_exp_mont() uses fixed windows and the special
 * precomputation memory layout to limit data-dependency to a minimum to
 * protect secret exponents (cf. the hyper-threading timing attacks pointed
 * out by Colin Percival,
 * http://www.daemonology.net/hyperthreading-considered-harmful/)
 */
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
                              const BIGNUM *m, BN_CTX *ctx,
                              BN_MONT_CTX *in_mont)
{
    int i, bits, ret = 0, window, wvalue;
    int top;
    BN_MONT_CTX *mont = NULL;

    int numPowers;
    unsigned char *powerbufFree = NULL;
    int powerbufLen = 0;
    unsigned char *powerbuf = NULL;
    BIGNUM tmp, am;
#if defined(SPARC_T4_MONT)
    unsigned int t4 = 0;
#endif

    bn_check_top(a);
    bn_check_top(p);
    bn_check_top(m);

    if (!BN_is_odd(m)) {
        BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, BN_R_CALLED_WITH_EVEN_MODULUS);
        return (0);
    }

    top = m->top;

    /*
     * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
     * whether the top bits are zero.
     */
    bits = p->top * BN_BITS2;
    if (bits == 0) {
        /* x**0 mod 1 is still zero. */
        if (BN_is_one(m)) {
            ret = 1;
            BN_zero(rr);
        } else {
            ret = BN_one(rr);
        }
        return ret;
    }

    BN_CTX_start(ctx);

    /*
     * Allocate a montgomery context if it was not supplied by the caller. If
     * this is not done, things will break in the montgomery part.
     */
    if (in_mont != NULL)
        mont = in_mont;
    else {
        if ((mont = BN_MONT_CTX_new()) == NULL)
            goto err;
        if (!BN_MONT_CTX_set(mont, m, ctx))
            goto err;
    }

#ifdef RSAZ_ENABLED
    /*
     * If the size of the operands allow it, perform the optimized
     * RSAZ exponentiation. For further information see
     * crypto/bn/rsaz_exp.c and accompanying assembly modules.
     */
    if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024)
        && rsaz_avx2_eligible()) {
        if (NULL == bn_wexpand(rr, 16))
            goto err;
        RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d,
                               mont->n0[0]);
        rr->top = 16;
        rr->neg = 0;
        bn_correct_top(rr);
        ret = 1;
        goto err;
    } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
        if (NULL == bn_wexpand(rr, 8))
            goto err;
        RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
        rr->top = 8;
        rr->neg = 0;
        bn_correct_top(rr);
        ret = 1;
        goto err;
    }
#endif

    /* Get the window size to use with size of p. */
    window = BN_window_bits_for_ctime_exponent_size(bits);
#if defined(SPARC_T4_MONT)
    if (window >= 5 && (top & 15) == 0 && top <= 64 &&
        (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
        (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0]))
        window = 5;
    else
#endif
#if defined(OPENSSL_BN_ASM_MONT5)
    if (window >= 5) {
        window = 5;             /* ~5% improvement for RSA2048 sign, and even
                                 * for RSA4096 */
        /* reserve space for mont->N.d[] copy */
        powerbufLen += top * sizeof(mont->N.d[0]);
    }
#endif
    (void)0;

    /*
     * Allocate a buffer large enough to hold all of the pre-computed powers
     * of am, am itself and tmp.
     */
    numPowers = 1 << window;
    powerbufLen += sizeof(m->d[0]) * (top * numPowers +
                                      ((2 * top) >
                                       numPowers ? (2 * top) : numPowers));
#ifdef alloca
    if (powerbufLen < 3072)
        powerbufFree =
            alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
    else
#endif
        if ((powerbufFree =
             (unsigned char *)OPENSSL_malloc(powerbufLen +
                                             MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
            == NULL)
        goto err;

    powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
    memset(powerbuf, 0, powerbufLen);

#ifdef alloca
    if (powerbufLen < 3072)
        powerbufFree = NULL;
#endif

    /* lay down tmp and am right after powers table */
    tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
    am.d = tmp.d + top;
    tmp.top = am.top = 0;
    tmp.dmax = am.dmax = top;
    tmp.neg = am.neg = 0;
    tmp.flags = am.flags = BN_FLG_STATIC_DATA;

    /* prepare a^0 in Montgomery domain */
#if 1                           /* by Shay Gueron's suggestion */
    if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
        /* 2^(top*BN_BITS2) - m */
        tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
        for (i = 1; i < top; i++)
            tmp.d[i] = (~m->d[i]) & BN_MASK2;
        tmp.top = top;
    } else
#endif
    if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx))
        goto err;

    /* prepare a^1 in Montgomery domain */
    if (a->neg || BN_ucmp(a, m) >= 0) {
        if (!BN_mod(&am, a, m, ctx))
            goto err;
        if (!BN_to_montgomery(&am, &am, mont, ctx))
            goto err;
    } else if (!BN_to_montgomery(&am, a, mont, ctx))
        goto err;

#if defined(SPARC_T4_MONT)
    if (t4) {
        typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np,
                                       const BN_ULONG *n0, const void *table,
                                       int power, int bits);
        int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np,
                              const BN_ULONG *n0, const void *table,
                              int power, int bits);
        int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np,
                               const BN_ULONG *n0, const void *table,
                               int power, int bits);
        int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np,
                               const BN_ULONG *n0, const void *table,
                               int power, int bits);
        int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np,
                               const BN_ULONG *n0, const void *table,
                               int power, int bits);
        static const bn_pwr5_mont_f pwr5_funcs[4] = {
            bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16,
            bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32
        };
        bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1];

        typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
                                      const void *bp, const BN_ULONG *np,
                                      const BN_ULONG *n0);
        int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp,
                             const BN_ULONG *np, const BN_ULONG *n0);
        int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
                              const void *bp, const BN_ULONG *np,
                              const BN_ULONG *n0);
        int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
                              const void *bp, const BN_ULONG *np,
                              const BN_ULONG *n0);
        int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
                              const void *bp, const BN_ULONG *np,
                              const BN_ULONG *n0);
        static const bn_mul_mont_f mul_funcs[4] = {
            bn_mul_mont_t4_8, bn_mul_mont_t4_16,
            bn_mul_mont_t4_24, bn_mul_mont_t4_32
        };
        bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1];

        void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap,
                              const void *bp, const BN_ULONG *np,
                              const BN_ULONG *n0, int num);
        void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap,
                            const void *bp, const BN_ULONG *np,
                            const BN_ULONG *n0, int num);
        void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap,
                                    const void *table, const BN_ULONG *np,
                                    const BN_ULONG *n0, int num, int power);
        void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num,
                                   void *table, size_t power);
        void bn_gather5_t4(BN_ULONG *out, size_t num,
                           void *table, size_t power);
        void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num);

        BN_ULONG *np = mont->N.d, *n0 = mont->n0;
        int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less
                                                * than 32 */

        /*
         * BN_to_montgomery can contaminate words above .top [in
         * BN_DEBUG[_DEBUG] build]...
         */
        for (i = am.top; i < top; i++)
            am.d[i] = 0;
        for (i = tmp.top; i < top; i++)
            tmp.d[i] = 0;

        bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0);
        bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1);
        if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) &&
            !(*mul_worker) (tmp.d, am.d, am.d, np, n0))
            bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top);
        bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2);

        for (i = 3; i < 32; i++) {
            /* Calculate a^i = a^(i-1) * a */
            if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) &&
                !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0))
                bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top);
            bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i);
        }

        /* switch to 64-bit domain */
        np = alloca(top * sizeof(BN_ULONG));
        top /= 2;
        bn_flip_t4(np, mont->N.d, top);

        bits--;
        for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--)
            wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
        bn_gather5_t4(tmp.d, top, powerbuf, wvalue);

        /*
         * Scan the exponent one window at a time starting from the most
         * significant bits.
         */
        while (bits >= 0) {
            if (bits < stride)
                stride = bits + 1;
            bits -= stride;
            wvalue = bn_get_bits(p, bits + 1);

            if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
                continue;
            /* retry once and fall back */
            if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
                continue;

            bits += stride - 5;
            wvalue >>= stride - 5;
            wvalue &= 31;
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
            bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top,
                                   wvalue);
        }

        bn_flip_t4(tmp.d, tmp.d, top);
        top *= 2;
        /* back to 32-bit domain */
        tmp.top = top;
        bn_correct_top(&tmp);
        OPENSSL_cleanse(np, top * sizeof(BN_ULONG));
    } else
#endif
#if defined(OPENSSL_BN_ASM_MONT5)
    if (window == 5 && top > 1) {
        /*
         * This optimization uses ideas from http://eprint.iacr.org/2011/239,
         * specifically optimization of cache-timing attack countermeasures
         * and pre-computation optimization.
         */

        /*
         * Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
         * 512-bit RSA is hardly relevant, we omit it to spare size...
         */
        void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
                                 const void *table, const BN_ULONG *np,
                                 const BN_ULONG *n0, int num, int power);
        void bn_scatter5(const BN_ULONG *inp, size_t num,
                         void *table, size_t power);
        void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
        void bn_power5(BN_ULONG *rp, const BN_ULONG *ap,
                       const void *table, const BN_ULONG *np,
                       const BN_ULONG *n0, int num, int power);
        int bn_get_bits5(const BN_ULONG *ap, int off);
        int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
                               const BN_ULONG *not_used, const BN_ULONG *np,
                               const BN_ULONG *n0, int num);

        BN_ULONG *n0 = mont->n0, *np;

        /*
         * BN_to_montgomery can contaminate words above .top [in
         * BN_DEBUG[_DEBUG] build]...
         */
        for (i = am.top; i < top; i++)
            am.d[i] = 0;
        for (i = tmp.top; i < top; i++)
            tmp.d[i] = 0;

        /*
         * copy mont->N.d[] to improve cache locality
         */
        for (np = am.d + top, i = 0; i < top; i++)
            np[i] = mont->N.d[i];

        bn_scatter5(tmp.d, top, powerbuf, 0);
        bn_scatter5(am.d, am.top, powerbuf, 1);
        bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
        bn_scatter5(tmp.d, top, powerbuf, 2);

# if 0
        for (i = 3; i < 32; i++) {
            /* Calculate a^i = a^(i-1) * a */
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
            bn_scatter5(tmp.d, top, powerbuf, i);
        }
# else
        /* same as above, but uses squaring for 1/2 of operations */
        for (i = 4; i < 32; i *= 2) {
            bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
            bn_scatter5(tmp.d, top, powerbuf, i);
        }
        for (i = 3; i < 8; i += 2) {
            int j;
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
            bn_scatter5(tmp.d, top, powerbuf, i);
            for (j = 2 * i; j < 32; j *= 2) {
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
                bn_scatter5(tmp.d, top, powerbuf, j);
            }
        }
        for (; i < 16; i += 2) {
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
            bn_scatter5(tmp.d, top, powerbuf, i);
            bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
            bn_scatter5(tmp.d, top, powerbuf, 2 * i);
        }
        for (; i < 32; i += 2) {
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
            bn_scatter5(tmp.d, top, powerbuf, i);
        }
# endif
        bits--;
        for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--)
            wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
        bn_gather5(tmp.d, top, powerbuf, wvalue);

        /*
         * Scan the exponent one window at a time starting from the most
         * significant bits.
         */
        if (top & 7)
            while (bits >= 0) {
                for (wvalue = 0, i = 0; i < 5; i++, bits--)
                    wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);

                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
                bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top,
                                    wvalue);
        } else {
            while (bits >= 0) {
                wvalue = bn_get_bits5(p->d, bits - 4);
                bits -= 5;
                bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
            }
        }

        ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
        tmp.top = top;
        bn_correct_top(&tmp);
        if (ret) {
            if (!BN_copy(rr, &tmp))
                ret = 0;
            goto err;           /* non-zero ret means it's not error */
        }
    } else
#endif
    {
        if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window))
            goto err;
        if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window))
            goto err;

        /*
         * If the window size is greater than 1, then calculate
         * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even
         * powers could instead be computed as (a^(i/2))^2 to use the slight
         * performance advantage of sqr over mul).
         */
        if (window > 1) {
            if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx))
                goto err;
            if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2,
                                              window))
                goto err;
            for (i = 3; i < numPowers; i++) {
                /* Calculate a^i = a^(i-1) * a */
                if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx))
                    goto err;
                if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i,
                                                  window))
                    goto err;
            }
        }

        bits--;
        for (wvalue = 0, i = bits % window; i >= 0; i--, bits--)
            wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
        if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue,
                                            window))
            goto err;

        /*
         * Scan the exponent one window at a time starting from the most
         * significant bits.
         */
        while (bits >= 0) {
            wvalue = 0;         /* The 'value' of the window */

            /* Scan the window, squaring the result as we go */
            for (i = 0; i < window; i++, bits--) {
                if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx))
                    goto err;
                wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
            }

            /*
             * Fetch the appropriate pre-computed value from the pre-buf
             */
            if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,
                                                window))
                goto err;

            /* Multiply the result into the intermediate result */
            if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx))
                goto err;
        }
    }

    /* Convert the final result from montgomery to standard format */
#if defined(SPARC_T4_MONT)
    if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
        am.d[0] = 1;            /* borrow am */
        for (i = 1; i < top; i++)
            am.d[i] = 0;
        if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx))
            goto err;
    } else
#endif
    if (!BN_from_montgomery(rr, &tmp, mont, ctx))
        goto err;
    ret = 1;
 err:
    if ((in_mont == NULL) && (mont != NULL))
        BN_MONT_CTX_free(mont);
    if (powerbuf != NULL) {
        OPENSSL_cleanse(powerbuf, powerbufLen);
        if (powerbufFree)
            OPENSSL_free(powerbufFree);
    }
    BN_CTX_end(ctx);
    return (ret);
}

int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
                         const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
{
    BN_MONT_CTX *mont = NULL;
    int b, bits, ret = 0;
    int r_is_one;
    BN_ULONG w, next_w;
    BIGNUM *d, *r, *t;
    BIGNUM *swap_tmp;
#define BN_MOD_MUL_WORD(r, w, m) \
                (BN_mul_word(r, (w)) && \
                (/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
                        (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
    /*
     * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
     * probably more overhead than always using BN_mod (which uses BN_copy if
     * a similar test returns true).
     */
    /*
     * We can use BN_mod and do not need BN_nnmod because our accumulator is
     * never negative (the result of BN_mod does not depend on the sign of
     * the modulus).
     */
#define BN_TO_MONTGOMERY_WORD(r, w, mont) \
                (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))

    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
        BNerr(BN_F_BN_MOD_EXP_MONT_WORD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
        return 0;
    }

    bn_check_top(p);
    bn_check_top(m);

    if (!BN_is_odd(m)) {
        BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS);
        return (0);
    }
    if (m->top == 1)
        a %= m->d[0];           /* make sure that 'a' is reduced */

    bits = BN_num_bits(p);
    if (bits == 0) {
        /* x**0 mod 1 is still zero. */
        if (BN_is_one(m)) {
            ret = 1;
            BN_zero(rr);
        } else {
            ret = BN_one(rr);
        }
        return ret;
    }
    if (a == 0) {
        BN_zero(rr);
        ret = 1;
        return ret;
    }

    BN_CTX_start(ctx);
    d = BN_CTX_get(ctx);
    r = BN_CTX_get(ctx);
    t = BN_CTX_get(ctx);
    if (d == NULL || r == NULL || t == NULL)
        goto err;

    if (in_mont != NULL)
        mont = in_mont;
    else {
        if ((mont = BN_MONT_CTX_new()) == NULL)
            goto err;
        if (!BN_MONT_CTX_set(mont, m, ctx))
            goto err;
    }

    r_is_one = 1;               /* except for Montgomery factor */

    /* bits-1 >= 0 */

    /* The result is accumulated in the product r*w. */
    w = a;                      /* bit 'bits-1' of 'p' is always set */
    for (b = bits - 2; b >= 0; b--) {
        /* First, square r*w. */
        next_w = w * w;
        if ((next_w / w) != w) { /* overflow */
            if (r_is_one) {
                if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
                    goto err;
                r_is_one = 0;
            } else {
                if (!BN_MOD_MUL_WORD(r, w, m))
                    goto err;
            }
            next_w = 1;
        }
        w = next_w;
        if (!r_is_one) {
            if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
                goto err;
        }

        /* Second, multiply r*w by 'a' if exponent bit is set. */
        if (BN_is_bit_set(p, b)) {
            next_w = w * a;
            if ((next_w / a) != w) { /* overflow */
                if (r_is_one) {
                    if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
                        goto err;
                    r_is_one = 0;
                } else {
                    if (!BN_MOD_MUL_WORD(r, w, m))
                        goto err;
                }
                next_w = a;
            }
            w = next_w;
        }
    }

    /* Finally, set r:=r*w. */
    if (w != 1) {
        if (r_is_one) {
            if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
                goto err;
            r_is_one = 0;
        } else {
            if (!BN_MOD_MUL_WORD(r, w, m))
                goto err;
        }
    }

    if (r_is_one) {             /* can happen only if a == 1 */
        if (!BN_one(rr))
            goto err;
    } else {
        if (!BN_from_montgomery(rr, r, mont, ctx))
            goto err;
    }
    ret = 1;
 err:
    if ((in_mont == NULL) && (mont != NULL))
        BN_MONT_CTX_free(mont);
    BN_CTX_end(ctx);
    bn_check_top(rr);
    return (ret);
}

/* The old fallback, simple version :-) */
int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
                      const BIGNUM *m, BN_CTX *ctx)
{
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
    int start = 1;
    BIGNUM *d;
    /* Table of variables obtained from 'ctx' */
    BIGNUM *val[TABLE_SIZE];

    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
        BNerr(BN_F_BN_MOD_EXP_SIMPLE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
        return 0;
    }

    bits = BN_num_bits(p);
   if (bits == 0) {
        /* x**0 mod 1 is still zero. */
        if (BN_is_one(m)) {
            ret = 1;
            BN_zero(r);
        } else {
            ret = BN_one(r);
        }
        return ret;
    }

    BN_CTX_start(ctx);
    d = BN_CTX_get(ctx);
    val[0] = BN_CTX_get(ctx);
    if (!d || !val[0])
        goto err;

    if (!BN_nnmod(val[0], a, m, ctx))
        goto err;               /* 1 */
    if (BN_is_zero(val[0])) {
        BN_zero(r);
        ret = 1;
        goto err;
    }

    window = BN_window_bits_for_exponent_size(bits);
    if (window > 1) {
        if (!BN_mod_mul(d, val[0], val[0], m, ctx))
            goto err;           /* 2 */
        j = 1 << (window - 1);
        for (i = 1; i < j; i++) {
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
                !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
                goto err;
        }
    }

    start = 1;                  /* This is used to avoid multiplication etc
                                 * when there is only the value '1' in the
                                 * buffer. */
    wvalue = 0;                 /* The 'value' of the window */
    wstart = bits - 1;          /* The top bit of the window */
    wend = 0;                   /* The bottom bit of the window */

    if (!BN_one(r))
        goto err;

    for (;;) {
        if (BN_is_bit_set(p, wstart) == 0) {
            if (!start)
                if (!BN_mod_mul(r, r, r, m, ctx))
                    goto err;
            if (wstart == 0)
                break;
            wstart--;
            continue;
        }
        /*
         * We now have wstart on a 'set' bit, we now need to work out how bit
         * a window to do.  To do this we need to scan forward until the last
         * set bit before the end of the window
         */
        j = wstart;
        wvalue = 1;
        wend = 0;
        for (i = 1; i < window; i++) {
            if (wstart - i < 0)
                break;
            if (BN_is_bit_set(p, wstart - i)) {
                wvalue <<= (i - wend);
                wvalue |= 1;
                wend = i;
            }
        }

        /* wend is the size of the current window */
        j = wend + 1;
        /* add the 'bytes above' */
        if (!start)
            for (i = 0; i < j; i++) {
                if (!BN_mod_mul(r, r, r, m, ctx))
                    goto err;
            }

        /* wvalue will be an odd number < 2^window */
        if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
            goto err;

        /* move the 'window' down further */
        wstart -= wend + 1;
        wvalue = 0;
        start = 0;
        if (wstart < 0)
            break;
    }
    ret = 1;
 err:
    BN_CTX_end(ctx);
    bn_check_top(r);
    return (ret);
}