summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/poch.c
blob: 782900e30923e5d915699f66532bf91afcce3279 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/* specfunc/poch.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman */

#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_log.h>
#include <gsl/gsl_sf_pow_int.h>
#include <gsl/gsl_sf_psi.h>
#include <gsl/gsl_sf_gamma.h>

#include "error.h"

static const double bern[21] = {
   0.0   /* no element 0 */,  
  +0.833333333333333333333333333333333e-01,
  -0.138888888888888888888888888888888e-02,
  +0.330687830687830687830687830687830e-04,
  -0.826719576719576719576719576719576e-06,
  +0.208767569878680989792100903212014e-07,
  -0.528419013868749318484768220217955e-09,
  +0.133825365306846788328269809751291e-10,
  -0.338968029632258286683019539124944e-12,
  +0.858606205627784456413590545042562e-14,
  -0.217486869855806187304151642386591e-15,
  +0.550900282836022951520265260890225e-17,
  -0.139544646858125233407076862640635e-18,
  +0.353470703962946747169322997780379e-20,
  -0.895351742703754685040261131811274e-22,
  +0.226795245233768306031095073886816e-23,
  -0.574472439520264523834847971943400e-24,
  +0.145517247561486490186626486727132e-26,
  -0.368599494066531017818178247990866e-28,
  +0.933673425709504467203255515278562e-30,
  -0.236502241570062993455963519636983e-31
};


/* ((a)_x - 1)/x in the "small x" region where
 * cancellation must be controlled.
 *
 * Based on SLATEC DPOCH1().
 */
/*
C When ABS(X) is so small that substantial cancellation will occur if
C the straightforward formula is used, we use an expansion due
C to Fields and discussed by Y. L. Luke, The Special Functions and Their
C Approximations, Vol. 1, Academic Press, 1969, page 34.
C
C The ratio POCH(A,X) = GAMMA(A+X)/GAMMA(A) is written by Luke as
C        (A+(X-1)/2)**X * polynomial in (A+(X-1)/2)**(-2) .
C In order to maintain significance in POCH1, we write for positive a
C        (A+(X-1)/2)**X = EXP(X*LOG(A+(X-1)/2)) = EXP(Q)
C                       = 1.0 + Q*EXPREL(Q) .
C Likewise the polynomial is written
C        POLY = 1.0 + X*POLY1(A,X) .
C Thus,
C        POCH1(A,X) = (POCH(A,X) - 1) / X
C                   = EXPREL(Q)*(Q/X + Q*POLY1(A,X)) + POLY1(A,X)
C
*/
static
int
pochrel_smallx(const double a, const double x, gsl_sf_result * result)
{
  /*
   SQTBIG = 1.0D0/SQRT(24.0D0*D1MACH(1))
   ALNEPS = LOG(D1MACH(3))
   */
  const double SQTBIG = 1.0/(2.0*M_SQRT2*M_SQRT3*GSL_SQRT_DBL_MIN);
  const double ALNEPS = GSL_LOG_DBL_EPSILON - M_LN2;

  if(x == 0.0) {
    return gsl_sf_psi_e(a, result);
  }
  else {
    const double bp   = (  (a < -0.5) ? 1.0-a-x : a );
    const int    incr = ( (bp < 10.0) ? 11.0-bp : 0 );
    const double b    = bp + incr;
    double dpoch1;
    gsl_sf_result dexprl;
    int stat_dexprl;
    int i;

    double var    = b + 0.5*(x-1.0);
    double alnvar = log(var);
    double q = x*alnvar;

    double poly1 = 0.0;

    if(var < SQTBIG) {
      const int nterms = (int)(-0.5*ALNEPS/alnvar + 1.0);
      const double var2 = (1.0/var)/var;
      const double rho  = 0.5 * (x + 1.0);
      double term = var2;
      double gbern[24];
      int k, j;

      gbern[1] = 1.0;
      gbern[2] = -rho/12.0;
      poly1 = gbern[2] * term;

      if(nterms > 20) {
        /* NTERMS IS TOO BIG, MAYBE D1MACH(3) IS BAD */
        /* nterms = 20; */
        result->val = 0.0;
        result->err = 0.0;
        GSL_ERROR ("error", GSL_ESANITY);
      }

      for(k=2; k<=nterms; k++) {
        double gbk = 0.0;
        for(j=1; j<=k; j++) {
          gbk += bern[k-j+1]*gbern[j];
        }
        gbern[k+1] = -rho*gbk/k;

        term  *= (2*k-2-x)*(2*k-1-x)*var2;
        poly1 += gbern[k+1]*term;
      }
    }

    stat_dexprl = gsl_sf_expm1_e(q, &dexprl);
    if(stat_dexprl != GSL_SUCCESS) {
      result->val = 0.0;
      result->err = 0.0;
      return stat_dexprl;
    }
    dexprl.val = dexprl.val/q;
    poly1 *= (x - 1.0);
    dpoch1 = dexprl.val * (alnvar + q * poly1) + poly1;

    for(i=incr-1; i >= 0; i--) {
      /*
       C WE HAVE DPOCH1(B,X), BUT BP IS SMALL, SO WE USE BACKWARDS RECURSION
       C TO OBTAIN DPOCH1(BP,X).
       */
      double binv = 1.0/(bp+i);
      dpoch1 = (dpoch1 - binv) / (1.0 + x*binv);
    }

    if(bp == a) {
      result->val = dpoch1;
      result->err = 2.0 * GSL_DBL_EPSILON * (fabs(incr) + 1.0) * fabs(result->val);
      return GSL_SUCCESS;
    }
    else {
      /*
       C WE HAVE DPOCH1(BP,X), BUT A IS LT -0.5.  WE THEREFORE USE A
       C REFLECTION FORMULA TO OBTAIN DPOCH1(A,X).
       */
      double sinpxx = sin(M_PI*x)/x;
      double sinpx2 = sin(0.5*M_PI*x);
      double t1 = sinpxx/tan(M_PI*b);
      double t2 = 2.0*sinpx2*(sinpx2/x);
      double trig  = t1 - t2;
      result->val  = dpoch1 * (1.0 + x*trig) + trig;
      result->err  = (fabs(dpoch1*x) + 1.0) * GSL_DBL_EPSILON * (fabs(t1) + fabs(t2));
      result->err += 2.0 * GSL_DBL_EPSILON * (fabs(incr) + 1.0) * fabs(result->val);
      return GSL_SUCCESS;
    }    
  }
}


/* Assumes a>0 and a+x>0.
 */
static
int
lnpoch_pos(const double a, const double x, gsl_sf_result * result)
{
  double absx = fabs(x);

  if(absx > 0.1*a || absx*log(GSL_MAX_DBL(a,2.0)) > 0.1) {
    if(a < GSL_SF_GAMMA_XMAX && a+x < GSL_SF_GAMMA_XMAX) {
      /* If we can do it by calculating the gamma functions
       * directly, then that will be more accurate than
       * doing the subtraction of the logs.
       */
      gsl_sf_result g1;
      gsl_sf_result g2;
      gsl_sf_gammainv_e(a,   &g1);
      gsl_sf_gammainv_e(a+x, &g2);
      result->val  = -log(g2.val/g1.val);
      result->err  = g1.err/fabs(g1.val) + g2.err/fabs(g2.val);
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      return GSL_SUCCESS;
    }
    else {
      /* Otherwise we must do the subtraction.
       */
      gsl_sf_result lg1;
      gsl_sf_result lg2;
      int stat_1 = gsl_sf_lngamma_e(a,   &lg1);
      int stat_2 = gsl_sf_lngamma_e(a+x, &lg2);
      result->val  = lg2.val - lg1.val;
      result->err  = lg2.err + lg1.err;
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      return GSL_ERROR_SELECT_2(stat_1, stat_2);
    }
  }
  else if(absx < 0.1*a && a > 15.0) {
    /* Be careful about the implied subtraction.
     * Note that both a+x and and a must be
     * large here since a is not small
     * and x is not relatively large.
     * So we calculate using Stirling for Log[Gamma(z)].
     *
     *   Log[Gamma(a+x)/Gamma(a)] = x(Log[a]-1) + (x+a-1/2)Log[1+x/a]
     *                              + (1/(1+eps)   - 1) / (12 a)
     *                              - (1/(1+eps)^3 - 1) / (360 a^3)
     *                              + (1/(1+eps)^5 - 1) / (1260 a^5)
     *                              - (1/(1+eps)^7 - 1) / (1680 a^7)
     *                              + ...
     */
    const double eps = x/a;
    const double den = 1.0 + eps;
    const double d3 = den*den*den;
    const double d5 = d3*den*den;
    const double d7 = d5*den*den;
    const double c1 = -eps/den;
    const double c3 = -eps*(3.0+eps*(3.0+eps))/d3;
    const double c5 = -eps*(5.0+eps*(10.0+eps*(10.0+eps*(5.0+eps))))/d5;
    const double c7 = -eps*(7.0+eps*(21.0+eps*(35.0+eps*(35.0+eps*(21.0+eps*(7.0+eps))))))/d7;
    const double p8 = gsl_sf_pow_int(1.0+eps,8);
    const double c8 = 1.0/p8             - 1.0;  /* these need not   */
    const double c9 = 1.0/(p8*(1.0+eps)) - 1.0;  /* be very accurate */
    const double a4 = a*a*a*a;
    const double a6 = a4*a*a;
    const double ser_1 = c1 + c3/(30.0*a*a) + c5/(105.0*a4) + c7/(140.0*a6);
    const double ser_2 = c8/(99.0*a6*a*a) - 691.0/360360.0 * c9/(a6*a4);
    const double ser = (ser_1 + ser_2)/ (12.0*a);

    double term1 = x * log(a/M_E);
    double term2;
    gsl_sf_result ln_1peps;
    gsl_sf_log_1plusx_e(eps, &ln_1peps);  /* log(1 + x/a) */
    term2 = (x + a - 0.5) * ln_1peps.val;

    result->val  = term1 + term2 + ser;
    result->err  = GSL_DBL_EPSILON*fabs(term1);
    result->err += fabs((x + a - 0.5)*ln_1peps.err);
    result->err += fabs(ln_1peps.val) * GSL_DBL_EPSILON * (fabs(x) + fabs(a) + 0.5);
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  else {
    gsl_sf_result poch_rel;
    int stat_p = pochrel_smallx(a, x, &poch_rel);
    double eps = x*poch_rel.val;
    int stat_e = gsl_sf_log_1plusx_e(eps, result);
    result->err  = 2.0 * fabs(x * poch_rel.err / (1.0 + eps));
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_ERROR_SELECT_2(stat_e, stat_p);
  }
}


/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/

int
gsl_sf_lnpoch_e(const double a, const double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  if(a <= 0.0 || a+x <= 0.0) {
    DOMAIN_ERROR(result);
  }
  else if(x == 0.0) {
    result->val = 0.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else {
    return lnpoch_pos(a, x, result);
  }
}


int
gsl_sf_lnpoch_sgn_e(const double a, const double x,
                       gsl_sf_result * result, double * sgn)
{
  if(a == 0.0 || a+x == 0.0) {
    *sgn = 0.0;
    DOMAIN_ERROR(result);
  }
  else if(x == 0.0) {
    *sgn = 1.0;
    result->val = 0.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else if(a > 0.0 && a+x > 0.0) {
    *sgn = 1.0;
    return lnpoch_pos(a, x, result);
  }
  else if(a < 0.0 && a+x < 0.0) {
    /* Reduce to positive case using reflection.
     */
    double sin_1 = sin(M_PI * (1.0 - a));
    double sin_2 = sin(M_PI * (1.0 - a - x));
    if(sin_1 == 0.0 || sin_2 == 0.0) {
      *sgn = 0.0;
      DOMAIN_ERROR(result);
    }
    else {
      gsl_sf_result lnp_pos;
      int stat_pp   = lnpoch_pos(1.0-a, -x, &lnp_pos);
      double lnterm = log(fabs(sin_1/sin_2));
      result->val  = lnterm - lnp_pos.val;
      result->err  = lnp_pos.err;
      result->err += 2.0 * GSL_DBL_EPSILON * (fabs(1.0-a) + fabs(1.0-a-x)) * fabs(lnterm);
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      *sgn = GSL_SIGN(sin_1*sin_2);
      return stat_pp;
    }
  }
  else {
    /* Evaluate gamma ratio directly.
     */
    gsl_sf_result lg_apn;
    gsl_sf_result lg_a;
    double s_apn, s_a;
    int stat_apn = gsl_sf_lngamma_sgn_e(a+x, &lg_apn, &s_apn);
    int stat_a   = gsl_sf_lngamma_sgn_e(a,   &lg_a,   &s_a);
    if(stat_apn == GSL_SUCCESS && stat_a == GSL_SUCCESS) {
      result->val  = lg_apn.val - lg_a.val;
      result->err  = lg_apn.err + lg_a.err;
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      *sgn = s_a * s_apn;
      return GSL_SUCCESS;
    }
    else if(stat_apn == GSL_EDOM || stat_a == GSL_EDOM){
      *sgn = 0.0;
      DOMAIN_ERROR(result);
    }
    else {
      result->val = 0.0;
      result->err = 0.0;
      *sgn = 0.0;
      return GSL_FAILURE;
    }
  }
}


int
gsl_sf_poch_e(const double a, const double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  if(x == 0.0) {
    result->val = 1.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else {
    gsl_sf_result lnpoch;
    double sgn;
    int stat_lnpoch = gsl_sf_lnpoch_sgn_e(a, x, &lnpoch, &sgn);
    int stat_exp    = gsl_sf_exp_err_e(lnpoch.val, lnpoch.err, result);
    result->val *= sgn;
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_ERROR_SELECT_2(stat_exp, stat_lnpoch);
  }
}


int
gsl_sf_pochrel_e(const double a, const double x, gsl_sf_result * result)
{
  const double absx = fabs(x);
  const double absa = fabs(a);

  /* CHECK_POINTER(result) */

  if(absx > 0.1*absa || absx*log(GSL_MAX(absa,2.0)) > 0.1) {
    gsl_sf_result lnpoch;
    double sgn;
    int stat_poch = gsl_sf_lnpoch_sgn_e(a, x, &lnpoch, &sgn);
    if(lnpoch.val > GSL_LOG_DBL_MAX) {
      OVERFLOW_ERROR(result);
    }
    else {
      const double el = exp(lnpoch.val);
      result->val  = (sgn*el - 1.0)/x;
      result->err  = fabs(result->val) * (lnpoch.err + 2.0 * GSL_DBL_EPSILON);
      result->err += 2.0 * GSL_DBL_EPSILON * (fabs(sgn*el) + 1.0) / fabs(x);
      return stat_poch;
    }
  }
  else {
    return pochrel_smallx(a, x, result);
  }
}


/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/

#include "eval.h"

double gsl_sf_lnpoch(const double a, const double x)
{
  EVAL_RESULT(gsl_sf_lnpoch_e(a, x, &result));
}

double gsl_sf_poch(const double a, const double x)
{
  EVAL_RESULT(gsl_sf_poch_e(a, x, &result));
}

double gsl_sf_pochrel(const double a, const double x)
{
  EVAL_RESULT(gsl_sf_pochrel_e(a, x, &result));
}