summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/legendre_con.c
blob: 6d60550911f125df02c6f9356e20c6252591f560 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
/* specfunc/legendre_con.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman */

#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_poly.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_trig.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_ellint.h>
#include <gsl/gsl_sf_pow_int.h>
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_sf_hyperg.h>
#include <gsl/gsl_sf_legendre.h>

#include "error.h"
#include "legendre.h"

#define Root_2OverPi_  0.797884560802865355879892
#define locEPS         (1000.0*GSL_DBL_EPSILON)


/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/


#define RECURSE_LARGE  (1.0e-5*GSL_DBL_MAX)
#define RECURSE_SMALL  (1.0e+5*GSL_DBL_MIN)


/* Continued fraction for f_{ell+1}/f_ell
 * f_ell := P^{-mu-ell}_{-1/2 + I tau}(x),  x < 1.0
 *
 * Uses standard CF method from Temme's book.
 */
static
int
conicalP_negmu_xlt1_CF1(const double mu, const int ell, const double tau,
                        const double x, gsl_sf_result * result)
{
  const double RECUR_BIG = GSL_SQRT_DBL_MAX;
  const int maxiter = 5000;
  int n = 1;
  double xi = x/(sqrt(1.0-x)*sqrt(1.0+x));
  double Anm2 = 1.0;
  double Bnm2 = 0.0;
  double Anm1 = 0.0;
  double Bnm1 = 1.0;
  double a1 = 1.0;
  double b1 = 2.0*(mu + ell + 1.0) * xi;
  double An = b1*Anm1 + a1*Anm2;
  double Bn = b1*Bnm1 + a1*Bnm2;
  double an, bn;
  double fn = An/Bn;

  while(n < maxiter) {
    double old_fn;
    double del;
    n++;
    Anm2 = Anm1;
    Bnm2 = Bnm1;
    Anm1 = An;
    Bnm1 = Bn;
    an = tau*tau + (mu - 0.5 + ell + n)*(mu - 0.5 + ell + n);
    bn = 2.0*(ell + mu + n) * xi;
    An = bn*Anm1 + an*Anm2;
    Bn = bn*Bnm1 + an*Bnm2;

    if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
      An /= RECUR_BIG;
      Bn /= RECUR_BIG;
      Anm1 /= RECUR_BIG;
      Bnm1 /= RECUR_BIG;
      Anm2 /= RECUR_BIG;
      Bnm2 /= RECUR_BIG;
    }

    old_fn = fn;
    fn = An/Bn;
    del = old_fn/fn;
    
    if(fabs(del - 1.0) < 2.0*GSL_DBL_EPSILON) break;
  }

  result->val = fn;
  result->err = 4.0 * GSL_DBL_EPSILON * (sqrt(n) + 1.0) * fabs(fn);

  if(n >= maxiter)
    GSL_ERROR ("error", GSL_EMAXITER);
  else
    return GSL_SUCCESS;
}


/* Continued fraction for f_{ell+1}/f_ell
 * f_ell := P^{-mu-ell}_{-1/2 + I tau}(x),  x >= 1.0
 *
 * Uses Gautschi (Euler) equivalent series.
 */
static
int
conicalP_negmu_xgt1_CF1(const double mu, const int ell, const double tau,
                        const double x, gsl_sf_result * result)
{ 
  const int maxk = 20000;
  const double gamma = 1.0-1.0/(x*x);
  const double pre = sqrt(x-1.0)*sqrt(x+1.0) / (x*(2.0*(ell+mu+1.0)));
  double tk   = 1.0;
  double sum  = 1.0;
  double rhok = 0.0;
  int k;
 
  for(k=1; k<maxk; k++) {
    double tlk = 2.0*(ell + mu + k);
    double l1k = (ell + mu - 0.5 + 1.0 + k);
    double ak = -(tau*tau + l1k*l1k)/(tlk*(tlk+2.0)) * gamma;
    rhok = -ak*(1.0 + rhok)/(1.0 + ak*(1.0 + rhok));
    tk  *= rhok;
    sum += tk;
    if(fabs(tk/sum) < GSL_DBL_EPSILON) break;
  }

  result->val  = pre * sum;
  result->err  = fabs(pre * tk);
  result->err += 2.0 * GSL_DBL_EPSILON * (sqrt(k) + 1.0) * fabs(pre*sum);

  if(k >= maxk)
    GSL_ERROR ("error", GSL_EMAXITER);
  else
    return GSL_SUCCESS;
}


/* Implementation of large negative mu asymptotic
 * [Dunster, Proc. Roy. Soc. Edinburgh 119A, 311 (1991), p. 326]
 */

inline
static double olver_U1(double beta2, double p)
{
  return (p-1.0)/(24.0*(1.0+beta2)) * (3.0 + beta2*(2.0 + 5.0*p*(1.0+p)));
}

inline
static double olver_U2(double beta2, double p)
{
  double beta4 = beta2*beta2;
  double p2    = p*p;
  double poly1 =  4.0*beta4 + 84.0*beta2 - 63.0;
  double poly2 = 16.0*beta4 + 90.0*beta2 - 81.0;
  double poly3 = beta2*p2*(97.0*beta2 - 432.0 + 77.0*p*(beta2-6.0) - 385.0*beta2*p2*(1.0 + p));
  return (1.0-p)/(1152.0*(1.0+beta2)) * (poly1 + poly2 + poly3);
}

static const double U3c1[] = {   -1307.0,   -1647.0,    3375.0,    3675.0 };
static const double U3c2[] = {   29366.0,   35835.0, -252360.0, -272630.0,
                                276810.0,  290499.0 };
static const double U3c3[] = {  -29748.0,   -8840.0, 1725295.0, 1767025.0,
                              -7313470.0, -754778.0, 6309875.0, 6480045.0 };
static const double U3c4[] = {    2696.0,    -16740.0,   -524250.0,  -183975.0,
                              14670540.0,  14172939.0, -48206730.0, -48461985.0,
                              36756720.0,  37182145.0 };
static const double U3c5[] = {       9136.0,      22480.0,     12760.0,
                                  -252480.0,   -4662165.0,   -1705341.0,
                                 92370135.0,   86244015.0, -263678415.0,
                               -260275015.0, 185910725.0,  185910725.0 };

#if 0
static double olver_U3(double beta2, double p)
{
  double beta4 = beta2*beta2;
  double beta6 = beta4*beta2;
  double opb2s = (1.0+beta2)*(1.0+beta2);
  double den   = 39813120.0 * opb2s*opb2s;
  double poly1 = gsl_poly_eval(U3c1, 4, p);
  double poly2 = gsl_poly_eval(U3c2, 6, p);
  double poly3 = gsl_poly_eval(U3c3, 8, p);
  double poly4 = gsl_poly_eval(U3c4, 10, p);
  double poly5 = gsl_poly_eval(U3c5, 12, p);
  
  return (p-1.0)*(     1215.0*poly1 + 324.0*beta2*poly2
                 + 54.0*beta4*poly3 +  12.0*beta6*poly4
                 + beta4*beta4*poly5
                 ) / den;
}
#endif /* 0 */


/* Large negative mu asymptotic
 * P^{-mu}_{-1/2 + I tau}, mu -> Inf
 * |x| < 1
 *
 * [Dunster, Proc. Roy. Soc. Edinburgh 119A, 311 (1991), p. 326]
 */
int
gsl_sf_conicalP_xlt1_large_neg_mu_e(double mu, double tau, double x,
                                       gsl_sf_result * result, double * ln_multiplier)
{
  double beta  = tau/mu;
  double beta2 = beta*beta;
  double S     = beta * acos((1.0-beta2)/(1.0+beta2));
  double p     = x/sqrt(beta2*(1.0-x*x) + 1.0);
  gsl_sf_result lg_mup1;
  int lg_stat = gsl_sf_lngamma_e(mu+1.0, &lg_mup1);
  double ln_pre_1 =  0.5*mu*(S - log(1.0+beta2) + log((1.0-p)/(1.0+p))) - lg_mup1.val;
  double ln_pre_2 = -0.25 * log(1.0 + beta2*(1.0-x));
  double ln_pre_3 = -tau * atan(p*beta);
  double ln_pre = ln_pre_1 + ln_pre_2 + ln_pre_3;
  double sum   = 1.0 - olver_U1(beta2, p)/mu + olver_U2(beta2, p)/(mu*mu);

  if(sum == 0.0) {
    result->val = 0.0;
    result->err = 0.0;
    *ln_multiplier = 0.0;
    return GSL_SUCCESS;
  }
  else {
    int stat_e = gsl_sf_exp_mult_e(ln_pre, sum, result);
    if(stat_e != GSL_SUCCESS) {
      result->val = sum;
      result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum);
      *ln_multiplier = ln_pre;
    }
    else {
      *ln_multiplier = 0.0;
    }
    return lg_stat;
  }
}


/* Implementation of large tau asymptotic
 *
 * A_n^{-mu}, B_n^{-mu}  [Olver, p.465, 469]
 */

inline
static double olver_B0_xi(double mu, double xi)
{
  return (1.0 - 4.0*mu*mu)/(8.0*xi) * (1.0/tanh(xi) - 1.0/xi);
}

static double olver_A1_xi(double mu, double xi, double x)
{
  double B = olver_B0_xi(mu, xi);
  double psi;
  if(fabs(x - 1.0) < GSL_ROOT4_DBL_EPSILON) {
    double y = x - 1.0;
    double s = -1.0/3.0 + y*(2.0/15.0 - y *(61.0/945.0 - 452.0/14175.0*y));
    psi = (4.0*mu*mu - 1.0)/16.0 * s;
  }
  else {
    psi = (4.0*mu*mu - 1.0)/16.0 * (1.0/(x*x-1.0) - 1.0/(xi*xi));
  }
  return 0.5*xi*xi*B*B + (mu+0.5)*B - psi + mu/6.0*(0.25 - mu*mu);
}

inline
static double olver_B0_th(double mu, double theta)
{
  return -(1.0 - 4.0*mu*mu)/(8.0*theta) * (1.0/tan(theta) - 1.0/theta);
}

static double olver_A1_th(double mu, double theta, double x)
{
  double B = olver_B0_th(mu, theta);
  double psi;
  if(fabs(x - 1.0) < GSL_ROOT4_DBL_EPSILON) {
    double y = 1.0 - x;
    double s = -1.0/3.0 + y*(2.0/15.0 - y *(61.0/945.0 - 452.0/14175.0*y));
    psi = (4.0*mu*mu - 1.0)/16.0 * s;
  }
  else {
    psi = (4.0*mu*mu - 1.0)/16.0 * (1.0/(x*x-1.0) + 1.0/(theta*theta));
  }
  return -0.5*theta*theta*B*B + (mu+0.5)*B - psi + mu/6.0*(0.25 - mu*mu);
}


/* Large tau uniform asymptotics
 * P^{-mu}_{-1/2 + I tau}
 * 1 < x
 * tau -> Inf 
 * [Olver, p. 469]
 */
int
gsl_sf_conicalP_xgt1_neg_mu_largetau_e(const double mu, const double tau,
                                          const double x, double acosh_x,
                                          gsl_sf_result * result, double * ln_multiplier)
{
  double xi = acosh_x;
  double ln_xi_pre;
  double ln_pre;
  double sumA, sumB, sum;
  double arg;
  gsl_sf_result J_mup1;
  gsl_sf_result J_mu;
  double J_mum1;

  if(xi < GSL_ROOT4_DBL_EPSILON) {
    ln_xi_pre = -xi*xi/6.0;           /* log(1.0 - xi*xi/6.0) */
  }
  else {
    gsl_sf_result lnshxi;
    gsl_sf_lnsinh_e(xi, &lnshxi);
    ln_xi_pre = log(xi) - lnshxi.val;     /* log(xi/sinh(xi) */
  }

  ln_pre = 0.5*ln_xi_pre - mu*log(tau);

  arg = tau*xi;

  gsl_sf_bessel_Jnu_e(mu + 1.0,   arg, &J_mup1);
  gsl_sf_bessel_Jnu_e(mu,         arg, &J_mu);
  J_mum1 = -J_mup1.val + 2.0*mu/arg*J_mu.val;      /* careful of mu < 1 */

  sumA = 1.0 - olver_A1_xi(-mu, xi, x)/(tau*tau);
  sumB = olver_B0_xi(-mu, xi);
  sum  = J_mu.val * sumA - xi/tau * J_mum1 * sumB;

  if(sum == 0.0) {
    result->val = 0.0;
    result->err = 0.0;
    *ln_multiplier = 0.0;
    return GSL_SUCCESS;
  }
  else {
    int stat_e = gsl_sf_exp_mult_e(ln_pre, sum, result);
    if(stat_e != GSL_SUCCESS) {
      result->val = sum;
      result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum);
      *ln_multiplier = ln_pre;
    }
    else {
      *ln_multiplier = 0.0;
    }
    return GSL_SUCCESS;
  }
}


/* Large tau uniform asymptotics
 * P^{-mu}_{-1/2 + I tau}
 * -1 < x < 1
 * tau -> Inf 
 * [Olver, p. 473]
 */
int
gsl_sf_conicalP_xlt1_neg_mu_largetau_e(const double mu, const double tau,
                                          const double x, const double acos_x,
                                          gsl_sf_result * result, double * ln_multiplier)
{
  double theta = acos_x;
  double ln_th_pre;
  double ln_pre;
  double sumA, sumB, sum, sumerr;
  double arg;
  gsl_sf_result I_mup1, I_mu;
  double I_mum1;

  if(theta < GSL_ROOT4_DBL_EPSILON) {
    ln_th_pre = theta*theta/6.0;   /* log(1.0 + theta*theta/6.0) */
  }
  else {
    ln_th_pre = log(theta/sin(theta));
  }

  ln_pre = 0.5 * ln_th_pre - mu * log(tau);

  arg = tau*theta;
  gsl_sf_bessel_Inu_e(mu + 1.0,   arg, &I_mup1);
  gsl_sf_bessel_Inu_e(mu,         arg, &I_mu);
  I_mum1 = I_mup1.val + 2.0*mu/arg * I_mu.val; /* careful of mu < 1 */

  sumA = 1.0 - olver_A1_th(-mu, theta, x)/(tau*tau);
  sumB = olver_B0_th(-mu, theta);
  sum  = I_mu.val * sumA - theta/tau * I_mum1 * sumB;
  sumerr  = fabs(I_mu.err * sumA);
  sumerr += fabs(I_mup1.err * theta/tau * sumB);
  sumerr += fabs(I_mu.err   * theta/tau * sumB * 2.0 * mu/arg);

  if(sum == 0.0) {
    result->val = 0.0;
    result->err = 0.0;
    *ln_multiplier = 0.0;
    return GSL_SUCCESS;
  }
  else {
    int stat_e = gsl_sf_exp_mult_e(ln_pre, sum, result);
    if(stat_e != GSL_SUCCESS) {
      result->val  = sum;
      result->err  = sumerr;
      result->err += GSL_DBL_EPSILON * fabs(sum);
      *ln_multiplier = ln_pre;
    }
    else {
      *ln_multiplier = 0.0;
    }
    return GSL_SUCCESS;
  }
}


/* Hypergeometric function which appears in the
 * large x expansion below:
 *
 *   2F1(1/4 - mu/2 - I tau/2, 3/4 - mu/2 - I tau/2, 1 - I tau, y)
 *
 * Note that for the usage below y = 1/x^2;
 */
static
int
conicalP_hyperg_large_x(const double mu, const double tau, const double y,
                        double * reF, double * imF)
{
  const int kmax = 1000;
  const double re_a = 0.25 - 0.5*mu;
  const double re_b = 0.75 - 0.5*mu;
  const double re_c = 1.0;
  const double im_a = -0.5*tau;
  const double im_b = -0.5*tau;
  const double im_c = -tau;

  double re_sum = 1.0;
  double im_sum = 0.0;
  double re_term = 1.0;
  double im_term = 0.0;
  int k;

  for(k=1; k<=kmax; k++) {
    double re_ak = re_a + k - 1.0;
    double re_bk = re_b + k - 1.0;
    double re_ck = re_c + k - 1.0;
    double im_ak = im_a;
    double im_bk = im_b;
    double im_ck = im_c;
    double den = re_ck*re_ck + im_ck*im_ck;
    double re_multiplier = ((re_ak*re_bk - im_ak*im_bk)*re_ck + im_ck*(im_ak*re_bk + re_ak*im_bk)) / den;
    double im_multiplier = ((im_ak*re_bk + re_ak*im_bk)*re_ck - im_ck*(re_ak*re_bk - im_ak*im_bk)) / den;
    double re_tmp = re_multiplier*re_term - im_multiplier*im_term;
    double im_tmp = im_multiplier*re_term + re_multiplier*im_term;
    double asum = fabs(re_sum) + fabs(im_sum);
    re_term = y/k * re_tmp;
    im_term = y/k * im_tmp;
    if(fabs(re_term/asum) < GSL_DBL_EPSILON && fabs(im_term/asum) < GSL_DBL_EPSILON) break;
    re_sum += re_term;
    im_sum += im_term;
  }

  *reF = re_sum;
  *imF = im_sum;

  if(k == kmax)
    GSL_ERROR ("error", GSL_EMAXITER);
  else  
    return GSL_SUCCESS;
}


/* P^{mu}_{-1/2 + I tau}
 * x->Inf
 */
int
gsl_sf_conicalP_large_x_e(const double mu, const double tau, const double x,
                             gsl_sf_result * result, double * ln_multiplier)
{
  /* 2F1 term
   */
  double y = ( x < 0.5*GSL_SQRT_DBL_MAX ? 1.0/(x*x) : 0.0 );
  double reF, imF;
  int stat_F = conicalP_hyperg_large_x(mu, tau, y, &reF, &imF);

  /* f = Gamma(+i tau)/Gamma(1/2 - mu + i tau)
   * FIXME: shift so it's better for tau-> 0
   */
  gsl_sf_result lgr_num, lgth_num;
  gsl_sf_result lgr_den, lgth_den;
  int stat_gn = gsl_sf_lngamma_complex_e(0.0,tau,&lgr_num,&lgth_num);
  int stat_gd = gsl_sf_lngamma_complex_e(0.5-mu,tau,&lgr_den,&lgth_den);

  double angle = lgth_num.val - lgth_den.val + atan2(imF,reF);

  double lnx   = log(x);
  double lnxp1 = log(x+1.0);
  double lnxm1 = log(x-1.0);
  double lnpre_const = 0.5*M_LN2 - 0.5*M_LNPI;
  double lnpre_comm = (mu-0.5)*lnx - 0.5*mu*(lnxp1 + lnxm1);
  double lnpre_err  =   GSL_DBL_EPSILON * (0.5*M_LN2 + 0.5*M_LNPI)
                      + GSL_DBL_EPSILON * fabs((mu-0.5)*lnx)
                      + GSL_DBL_EPSILON * fabs(0.5*mu)*(fabs(lnxp1)+fabs(lnxm1));

  /*  result = pre*|F|*|f| * cos(angle - tau * (log(x)+M_LN2))
   */
  gsl_sf_result cos_result;
  int stat_cos = gsl_sf_cos_e(angle + tau*(log(x) + M_LN2), &cos_result);
  int status = GSL_ERROR_SELECT_4(stat_cos, stat_gd, stat_gn, stat_F);
  if(cos_result.val == 0.0) {
    result->val = 0.0;
    result->err = 0.0;
    return status;
  }
  else {
    double lnFf_val = 0.5*log(reF*reF+imF*imF) + lgr_num.val - lgr_den.val;
    double lnFf_err = lgr_num.err + lgr_den.err + GSL_DBL_EPSILON * fabs(lnFf_val);
    double lnnoc_val = lnpre_const + lnpre_comm + lnFf_val;
    double lnnoc_err = lnpre_err + lnFf_err + GSL_DBL_EPSILON * fabs(lnnoc_val);
    int stat_e = gsl_sf_exp_mult_err_e(lnnoc_val, lnnoc_err,
                                          cos_result.val, cos_result.err,
                                          result);
    if(stat_e == GSL_SUCCESS) {
      *ln_multiplier = 0.0;
    }
    else {
      result->val  = cos_result.val;
      result->err  = cos_result.err;
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      *ln_multiplier = lnnoc_val;
    }
    return status;
  }
}


/* P^{mu}_{-1/2 + I tau}  first hypergeometric representation
 * -1 < x < 1
 * This is more effective for |x| small, however it will work w/o
 * reservation for any x < 0 because everything is positive
 * definite in that case.
 *
 * [Kolbig,   (3)] (note typo in args of gamma functions)
 * [Bateman, (22)] (correct form)
 */
static
int
conicalP_xlt1_hyperg_A(double mu, double tau, double x, gsl_sf_result * result)
{
  double x2 = x*x;
  double err_amp = 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-fabs(x)));
  double pre_val = M_SQRTPI / pow(0.5*sqrt(1-x2), mu);
  double pre_err = err_amp * GSL_DBL_EPSILON * (fabs(mu)+1.0) * fabs(pre_val) ;
  gsl_sf_result ln_g1, ln_g2, arg_g1, arg_g2;
  gsl_sf_result F1, F2;
  gsl_sf_result pre1, pre2;
  double t1_val, t1_err;
  double t2_val, t2_err;

  int stat_F1 = gsl_sf_hyperg_2F1_conj_e(0.25 - 0.5*mu, 0.5*tau, 0.5, x2, &F1);
  int stat_F2 = gsl_sf_hyperg_2F1_conj_e(0.75 - 0.5*mu, 0.5*tau, 1.5, x2, &F2);
  int status = GSL_ERROR_SELECT_2(stat_F1, stat_F2);

  gsl_sf_lngamma_complex_e(0.75 - 0.5*mu, -0.5*tau, &ln_g1, &arg_g1);
  gsl_sf_lngamma_complex_e(0.25 - 0.5*mu, -0.5*tau, &ln_g2, &arg_g2);

  gsl_sf_exp_err_e(-2.0*ln_g1.val, 2.0*ln_g1.err, &pre1);
  gsl_sf_exp_err_e(-2.0*ln_g2.val, 2.0*ln_g2.err, &pre2);
  pre2.val *= -2.0*x;
  pre2.err *=  2.0*fabs(x);
  pre2.err +=  GSL_DBL_EPSILON * fabs(pre2.val);

  t1_val = pre1.val * F1.val;
  t1_err = fabs(pre1.val) * F1.err + pre1.err * fabs(F1.val);
  t2_val = pre2.val * F2.val;
  t2_err = fabs(pre2.val) * F2.err + pre2.err * fabs(F2.val);

  result->val  = pre_val * (t1_val + t2_val);
  result->err  = pre_val * (t1_err + t2_err);
  result->err += pre_err * fabs(t1_val + t2_val);
  result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);

  return status;
}


/* P^{mu}_{-1/2 + I tau}
 * defining hypergeometric representation
 * [Abramowitz+Stegun, 8.1.2]
 * 1 < x < 3
 * effective for x near 1
 *
 */
#if 0
static
int
conicalP_def_hyperg(double mu, double tau, double x, double * result)
{
  double F;
  int stat_F = gsl_sf_hyperg_2F1_conj_renorm_e(0.5, tau, 1.0-mu, 0.5*(1.0-x), &F);
  *result = pow((x+1.0)/(x-1.0), 0.5*mu) * F;
  return stat_F;
}
#endif /* 0 */


/* P^{mu}_{-1/2 + I tau}  second hypergeometric representation
 * [Zhurina+Karmazina, (3.1)] 
 * -1 < x < 3
 * effective for x near 1
 *
 */
#if 0
static
int
conicalP_xnear1_hyperg_C(double mu, double tau, double x, double * result)
{
  double ln_pre, arg_pre;
  double ln_g1, arg_g1;
  double ln_g2, arg_g2;
  double F;

  int stat_F = gsl_sf_hyperg_2F1_conj_renorm_e(0.5+mu, tau, 1.0+mu, 0.5*(1.0-x), &F);

  gsl_sf_lngamma_complex_e(0.5+mu, tau, &ln_g1, &arg_g1);
  gsl_sf_lngamma_complex_e(0.5-mu, tau, &ln_g2, &arg_g2);

  ln_pre  = mu*M_LN2 - 0.5*mu*log(fabs(x*x-1.0)) + ln_g1 - ln_g2;
  arg_pre = arg_g1 - arg_g2;

  *result = exp(ln_pre) * F;
  return stat_F;
}
#endif /* 0 */


/* V0, V1 from Kolbig, m = 0
 */
static
int
conicalP_0_V(const double t, const double f, const double tau, const double sgn,
             double * V0, double * V1)
{
  double C[8];
  double T[8];
  double H[8];
  double V[12];
  int i;
  T[0] = 1.0;
  H[0] = 1.0;
  V[0] = 1.0;
  for(i=1; i<=7; i++) {
    T[i] = T[i-1] * t;
    H[i] = H[i-1] * (t*f);
  }
  for(i=1; i<=11; i++) {
    V[i] = V[i-1] * tau;
  }

  C[0] = 1.0;
  C[1] = (H[1]-1.0)/(8.0*T[1]);
  C[2] = (9.0*H[2] + 6.0*H[1] - 15.0 - sgn*8.0*T[2])/(128.0*T[2]);
  C[3] = 5.0*(15.0*H[3] + 27.0*H[2] + 21.0*H[1] - 63.0 - sgn*T[2]*(16.0*H[1]+24.0))/(1024.0*T[3]);
  C[4] = 7.0*(525.0*H[4] + 1500.0*H[3] + 2430.0*H[2] + 1980.0*H[1] - 6435.0
              + 192.0*T[4] - sgn*T[2]*(720.0*H[2]+1600.0*H[1]+2160.0)
              ) / (32768.0*T[4]);
  C[5] = 21.0*(2835.0*H[5] + 11025.0*H[4] + 24750.0*H[3] + 38610.0*H[2]
               + 32175.0*H[1] - 109395.0 + T[4]*(1984.0*H[1]+4032.0)
               - sgn*T[2]*(4800.0*H[3]+15120.0*H[2]+26400.0*H[1]+34320.0)
               ) / (262144.0*T[5]);
  C[6] = 11.0*(218295.0*H[6] + 1071630.0*H[5] + 3009825.0*H[4] + 6142500.0*H[3]
               + 9398025.0*H[2] + 7936110.0*H[1] - 27776385.0
               + T[4]*(254016.0*H[2]+749952.0*H[1]+1100736.0)
               - sgn*T[2]*(441000.0*H[4] + 1814400.0*H[3] + 4127760.0*H[2]
                         + 6552000.0*H[1] + 8353800.0 + 31232.0*T[4]
                         )
               ) / (4194304.0*T[6]);

  *V0 = C[0] + (-4.0*C[3]/T[1]+C[4])/V[4]
             + (-192.0*C[5]/T[3]+144.0*C[6]/T[2])/V[8]
             + sgn * (-C[2]/V[2]
                      + (-24.0*C[4]/T[2]+12.0*C[5]/T[1]-C[6])/V[6] 
                      + (-1920.0*C[6]/T[4])/V[10]
                      );
  *V1 = C[1]/V[1] + (8.0*(C[3]/T[2]-C[4]/T[1])+C[5])/V[5]
                  + (384.0*C[5]/T[4] - 768.0*C[6]/T[3])/V[9]
                  + sgn * ((2.0*C[2]/T[1]-C[3])/V[3]
                           + (48.0*C[4]/T[3]-72.0*C[5]/T[2] + 18.0*C[6]/T[1])/V[7]
                           + (3840.0*C[6]/T[5])/V[11]
                           );

  return GSL_SUCCESS;
}


/* V0, V1 from Kolbig, m = 1
 */
static
int
conicalP_1_V(const double t, const double f, const double tau, const double sgn,
             double * V0, double * V1)
{
  double Cm1;
  double C[8];
  double T[8];
  double H[8];
  double V[12];
  int i;
  T[0] = 1.0;
  H[0] = 1.0;
  V[0] = 1.0;
  for(i=1; i<=7; i++) {
    T[i] = T[i-1] * t;
    H[i] = H[i-1] * (t*f);
  }
  for(i=1; i<=11; i++) {
    V[i] = V[i-1] * tau;
  }

  Cm1  = -1.0;
  C[0] = 3.0*(1.0-H[1])/(8.0*T[1]);
  C[1] = (-15.0*H[2]+6.0*H[1]+9.0+sgn*8.0*T[2])/(128.0*T[2]);
  C[2] = 3.0*(-35.0*H[3] - 15.0*H[2] + 15.0*H[1] + 35.0 + sgn*T[2]*(32.0*H[1]+8.0))/(1024.0*T[3]);
  C[3] = (-4725.0*H[4] - 6300.0*H[3] - 3150.0*H[2] + 3780.0*H[1] + 10395.0
          -1216.0*T[4] + sgn*T[2]*(6000.0*H[2]+5760.0*H[1]+1680.0)) / (32768.0*T[4]);
  C[4] = 7.0*(-10395.0*H[5] - 23625.0*H[4] - 28350.0*H[3] - 14850.0*H[2]
              +19305.0*H[1] + 57915.0 - T[4]*(6336.0*H[1]+6080.0)
              + sgn*T[2]*(16800.0*H[3] + 30000.0*H[2] + 25920.0*H[1] + 7920.0)
              ) / (262144.0*T[5]);
  C[5] = (-2837835.0*H[6] - 9168390.0*H[5] - 16372125.0*H[4] - 18918900*H[3]
          -10135125.0*H[2] + 13783770.0*H[1] + 43648605.0
          -T[4]*(3044160.0*H[2] + 5588352.0*H[1] + 4213440.0)
          +sgn*T[2]*(5556600.0*H[4] + 14817600.0*H[3] + 20790000.0*H[2]
                     + 17297280.0*H[1] + 5405400.0 + 323072.0*T[4]
                     )
          ) / (4194304.0*T[6]);
  C[6] = 0.0;

  *V0 = C[0] + (-4.0*C[3]/T[1]+C[4])/V[4]
             + (-192.0*C[5]/T[3]+144.0*C[6]/T[2])/V[8]
             + sgn * (-C[2]/V[2]
                      + (-24.0*C[4]/T[2]+12.0*C[5]/T[1]-C[6])/V[6] 
                      );
  *V1 = C[1]/V[1] + (8.0*(C[3]/T[2]-C[4]/T[1])+C[5])/V[5]
                  + (384.0*C[5]/T[4] - 768.0*C[6]/T[3])/V[9]
                  + sgn * (Cm1*V[1] + (2.0*C[2]/T[1]-C[3])/V[3]
                           + (48.0*C[4]/T[3]-72.0*C[5]/T[2] + 18.0*C[6]/T[1])/V[7]
                           );

  return GSL_SUCCESS;
}



/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/

/* P^0_{-1/2 + I lambda}
 */
int
gsl_sf_conicalP_0_e(const double lambda, const double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  if(x <= -1.0) {
    DOMAIN_ERROR(result);
  }
  else if(x == 1.0) {
    result->val = 1.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else if(lambda == 0.0) {
    gsl_sf_result K;
    int stat_K;
    if(x < 1.0) {
      const double th = acos(x);
      const double s  = sin(0.5*th);
      stat_K = gsl_sf_ellint_Kcomp_e(s, GSL_MODE_DEFAULT, &K);
      result->val  = 2.0/M_PI * K.val;
      result->err  = 2.0/M_PI * K.err;
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      return stat_K;
    }
    else {
      const double xi = acosh(x);
      const double c  = cosh(0.5*xi);
      const double t  = tanh(0.5*xi);
      stat_K = gsl_sf_ellint_Kcomp_e(t, GSL_MODE_DEFAULT, &K);
      result->val  = 2.0/M_PI / c * K.val;
      result->err  = 2.0/M_PI / c * K.err;
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      return stat_K;
    }
  }
  else if(   (x <= 0.0 && lambda < 1000.0)
          || (x <  0.1 && lambda < 17.0)
          || (x <  0.2 && lambda < 5.0 )
    ) {
    return conicalP_xlt1_hyperg_A(0.0, lambda, x, result);
  }
  else if(   (x <= 0.2 && lambda < 17.0)
          || (x <= 1.5 && lambda < 20.0)
    ) {
    return gsl_sf_hyperg_2F1_conj_e(0.5, lambda, 1.0, (1.0-x)/2, result);
  }
  else if(1.5 < x && lambda < GSL_MAX(x,20.0)) {
    gsl_sf_result P;
    double lm;
    int stat_P = gsl_sf_conicalP_large_x_e(0.0, lambda, x,
                                              &P, &lm
                                              );
    int stat_e = gsl_sf_exp_mult_err_e(lm, 2.0*GSL_DBL_EPSILON * fabs(lm),
                                          P.val, P.err,
                                          result);
    return GSL_ERROR_SELECT_2(stat_e, stat_P);
  }
  else {
    double V0, V1;
    if(x < 1.0) {
      double th  = acos(x);
      double sth = sqrt(1.0-x*x);  /* sin(th) */
      gsl_sf_result I0, I1;
      int stat_I0 = gsl_sf_bessel_I0_scaled_e(th * lambda, &I0);
      int stat_I1 = gsl_sf_bessel_I1_scaled_e(th * lambda, &I1);
      int stat_I  = GSL_ERROR_SELECT_2(stat_I0, stat_I1);
      int stat_V  = conicalP_0_V(th, x/sth, lambda, -1.0, &V0, &V1);
      double bessterm = V0 * I0.val + V1 * I1.val;
      double besserr  = fabs(V0) * I0.err + fabs(V1) * I1.err;
      double arg1 = th*lambda;
      double sqts = sqrt(th/sth);
      int stat_e = gsl_sf_exp_mult_err_e(arg1, 4.0 * GSL_DBL_EPSILON * fabs(arg1),
                                            sqts * bessterm, sqts * besserr,
                                            result);
      return GSL_ERROR_SELECT_3(stat_e, stat_V, stat_I);
    }
    else {
      double sh = sqrt(x-1.0)*sqrt(x+1.0);  /* sinh(xi)      */
      double xi = log(x + sh);              /* xi = acosh(x) */
      gsl_sf_result J0, J1;
      int stat_J0 = gsl_sf_bessel_J0_e(xi * lambda, &J0);
      int stat_J1 = gsl_sf_bessel_J1_e(xi * lambda, &J1);
      int stat_J  = GSL_ERROR_SELECT_2(stat_J0, stat_J1);
      int stat_V  = conicalP_0_V(xi, x/sh, lambda, 1.0, &V0, &V1);
      double bessterm = V0 * J0.val + V1 * J1.val;
      double besserr  = fabs(V0) * J0.err + fabs(V1) * J1.err;
      double pre_val = sqrt(xi/sh);
      double pre_err = 2.0 * fabs(pre_val);
      result->val  = pre_val * bessterm;
      result->err  = pre_val * besserr;
      result->err += pre_err * fabs(bessterm);
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      return GSL_ERROR_SELECT_2(stat_V, stat_J);
    }
  }
}


/* P^1_{-1/2 + I lambda}
 */
int
gsl_sf_conicalP_1_e(const double lambda, const double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  if(x <= -1.0) {
    DOMAIN_ERROR(result);
  }
  else if(lambda == 0.0) {
    gsl_sf_result K, E;
    int stat_K, stat_E;
    if(x == 1.0) {
      result->val = 0.0;
      result->err = 0.0;
      return GSL_SUCCESS;
    }
    else if(x < 1.0) {
      if(1.0-x < GSL_SQRT_DBL_EPSILON) {
        double err_amp = GSL_MAX_DBL(1.0, 1.0/(GSL_DBL_EPSILON + fabs(1.0-x)));
        result->val = 0.25/M_SQRT2 * sqrt(1.0-x) * (1.0 + 5.0/16.0 * (1.0-x));
        result->err = err_amp * 3.0 * GSL_DBL_EPSILON * fabs(result->val);
        return GSL_SUCCESS;
      }
      else {
        const double th = acos(x);
        const double s  = sin(0.5*th);
        const double c2 = 1.0 - s*s;
        const double sth = sin(th);
        const double pre = 2.0/(M_PI*sth);
        stat_K = gsl_sf_ellint_Kcomp_e(s, GSL_MODE_DEFAULT, &K);
        stat_E = gsl_sf_ellint_Ecomp_e(s, GSL_MODE_DEFAULT, &E);
        result->val  = pre * (E.val - c2 * K.val);
        result->err  = pre * (E.err + fabs(c2) * K.err);
        result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
        return stat_K;
      }
    }
    else {
      if(x-1.0 < GSL_SQRT_DBL_EPSILON) {
        double err_amp = GSL_MAX_DBL(1.0, 1.0/(GSL_DBL_EPSILON + fabs(1.0-x)));
        result->val = -0.25/M_SQRT2 * sqrt(x-1.0) * (1.0 - 5.0/16.0 * (x-1.0));
        result->err = err_amp * 3.0 * GSL_DBL_EPSILON * fabs(result->val);
        return GSL_SUCCESS;
      }
      else {
        const double xi = acosh(x);
        const double c  = cosh(0.5*xi);
        const double t  = tanh(0.5*xi);
        const double sxi = sinh(xi);
        const double pre = 2.0/(M_PI*sxi) * c;
        stat_K = gsl_sf_ellint_Kcomp_e(t, GSL_MODE_DEFAULT, &K);
        stat_E = gsl_sf_ellint_Ecomp_e(t, GSL_MODE_DEFAULT, &E);
        result->val  = pre * (E.val - K.val);
        result->err  = pre * (E.err + K.err);
        result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
        return stat_K;
      }
    }
  }
  else if(   (x <= 0.0 && lambda < 1000.0)
          || (x <  0.1 && lambda < 17.0)
          || (x <  0.2 && lambda < 5.0 )
    ) {
    return conicalP_xlt1_hyperg_A(1.0, lambda, x, result);
  }
  else if(   (x <= 0.2 && lambda < 17.0)
          || (x <  1.5 && lambda < 20.0)
    ) {
    const double arg = fabs(x*x - 1.0);
    const double sgn = GSL_SIGN(1.0 - x);
    const double pre = 0.5*(lambda*lambda + 0.25) * sgn * sqrt(arg);
    gsl_sf_result F;
    int stat_F = gsl_sf_hyperg_2F1_conj_e(1.5, lambda, 2.0, (1.0-x)/2, &F);
    result->val  = pre * F.val;
    result->err  = fabs(pre) * F.err;
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return stat_F;
  }
  else if(1.5 <= x && lambda < GSL_MAX(x,20.0)) {
    gsl_sf_result P;
    double lm;
    int stat_P = gsl_sf_conicalP_large_x_e(1.0, lambda, x,
                                              &P, &lm
                                              );
    int stat_e = gsl_sf_exp_mult_err_e(lm, 2.0 * GSL_DBL_EPSILON * fabs(lm),
                                          P.val, P.err,
                                          result);
    return GSL_ERROR_SELECT_2(stat_e, stat_P);
  }
  else {
    double V0, V1;
    if(x < 1.0) {
      const double sqrt_1mx = sqrt(1.0 - x);
      const double sqrt_1px = sqrt(1.0 + x);
      const double th  = acos(x);
      const double sth = sqrt_1mx * sqrt_1px;  /* sin(th) */
      gsl_sf_result I0, I1;
      int stat_I0 = gsl_sf_bessel_I0_scaled_e(th * lambda, &I0);
      int stat_I1 = gsl_sf_bessel_I1_scaled_e(th * lambda, &I1);
      int stat_I  = GSL_ERROR_SELECT_2(stat_I0, stat_I1);
      int stat_V  = conicalP_1_V(th, x/sth, lambda, -1.0, &V0, &V1);
      double bessterm = V0 * I0.val + V1 * I1.val;
      double besserr  =  fabs(V0) * I0.err + fabs(V1) * I1.err
                       + 2.0 * GSL_DBL_EPSILON * fabs(V0 * I0.val)
                       + 2.0 * GSL_DBL_EPSILON * fabs(V1 * I1.val);
      double arg1 = th * lambda;
      double sqts = sqrt(th/sth);
      int stat_e = gsl_sf_exp_mult_err_e(arg1, 2.0 * GSL_DBL_EPSILON * fabs(arg1),
                                            sqts * bessterm, sqts * besserr,
                                            result);
      result->err *= 1.0/sqrt_1mx;
      return GSL_ERROR_SELECT_3(stat_e, stat_V, stat_I);
    }
    else {
      const double sqrt_xm1 = sqrt(x - 1.0);
      const double sqrt_xp1 = sqrt(x + 1.0);
      const double sh = sqrt_xm1 * sqrt_xp1;  /* sinh(xi)      */
      const double xi = log(x + sh);          /* xi = acosh(x) */
      const double xi_lam = xi * lambda;
      gsl_sf_result J0, J1;
      const int stat_J0 = gsl_sf_bessel_J0_e(xi_lam, &J0);
      const int stat_J1 = gsl_sf_bessel_J1_e(xi_lam, &J1);
      const int stat_J  = GSL_ERROR_SELECT_2(stat_J0, stat_J1);
      const int stat_V  = conicalP_1_V(xi, x/sh, lambda, 1.0, &V0, &V1);
      const double bessterm = V0 * J0.val + V1 * J1.val;
      const double besserr  = fabs(V0) * J0.err + fabs(V1) * J1.err
                       + 512.0 * 2.0 * GSL_DBL_EPSILON * fabs(V0 * J0.val)
                       + 512.0 * 2.0 * GSL_DBL_EPSILON * fabs(V1 * J1.val)
                       + GSL_DBL_EPSILON * fabs(xi_lam * V0 * J1.val)
                       + GSL_DBL_EPSILON * fabs(xi_lam * V1 * J0.val);
      const double pre = sqrt(xi/sh);
      result->val  = pre * bessterm;
      result->err  = pre * besserr * sqrt_xp1 / sqrt_xm1;
      result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val);
      return GSL_ERROR_SELECT_2(stat_V, stat_J);
    }
  }
}


/* P^{1/2}_{-1/2 + I lambda} (x)
 * [Abramowitz+Stegun 8.6.8, 8.6.12]
 * checked OK [GJ] Fri May  8 12:24:36 MDT 1998 
 */
int gsl_sf_conicalP_half_e(const double lambda, const double x,
                              gsl_sf_result * result
                              )
{
  /* CHECK_POINTER(result) */

  if(x <= -1.0) {
    DOMAIN_ERROR(result);
  }
  else if(x < 1.0) {
    double err_amp = 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-fabs(x)));
    double ac  = acos(x);
    double den = sqrt(sqrt(1.0-x)*sqrt(1.0+x));
    result->val  = Root_2OverPi_ / den * cosh(ac * lambda);
    result->err  = err_amp * 3.0 * GSL_DBL_EPSILON * fabs(result->val);
    result->err *= fabs(ac * lambda) + 1.0;
    return GSL_SUCCESS;
  }
  else if(x == 1.0) {
    result->val = 0.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else {
    /* x > 1 */
    double err_amp = 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-fabs(x)));
    double sq_term = sqrt(x-1.0)*sqrt(x+1.0);
    double ln_term = log(x + sq_term);
    double den = sqrt(sq_term);
    double carg_val = lambda * ln_term;
    double carg_err = 2.0 * GSL_DBL_EPSILON * fabs(carg_val);
    gsl_sf_result cos_result;
    int stat_cos = gsl_sf_cos_err_e(carg_val, carg_err, &cos_result);
    result->val  = Root_2OverPi_ / den * cos_result.val;
    result->err  = err_amp * Root_2OverPi_ / den * cos_result.err;
    result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val);
    return stat_cos;
  }
}


/* P^{-1/2}_{-1/2 + I lambda} (x)
 * [Abramowitz+Stegun 8.6.9, 8.6.14]
 * checked OK [GJ] Fri May  8 12:24:43 MDT 1998 
 */
int gsl_sf_conicalP_mhalf_e(const double lambda, const double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  if(x <= -1.0) {
    DOMAIN_ERROR(result);
  }
  else if(x < 1.0) {
    double ac  = acos(x);
    double den = sqrt(sqrt(1.0-x)*sqrt(1.0+x));
    double arg = ac * lambda;
    double err_amp = 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-fabs(x)));
    if(fabs(arg) < GSL_SQRT_DBL_EPSILON) {
      result->val  = Root_2OverPi_ / den * ac;
      result->err  = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      result->err *= err_amp;
    }
    else {
      result->val  = Root_2OverPi_ / (den*lambda) * sinh(arg);
      result->err  = GSL_DBL_EPSILON * (fabs(arg)+1.0) * fabs(result->val);
      result->err *= err_amp;
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    }
    return GSL_SUCCESS;
  }
  else if(x == 1.0) {
    result->val = 0.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else {
    /* x > 1 */
    double sq_term = sqrt(x-1.0)*sqrt(x+1.0);
    double ln_term = log(x + sq_term);
    double den = sqrt(sq_term);
    double arg_val = lambda * ln_term;
    double arg_err = 2.0 * GSL_DBL_EPSILON * fabs(arg_val);
    if(arg_val < GSL_SQRT_DBL_EPSILON) {
      result->val = Root_2OverPi_ / den * ln_term;
      result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      return GSL_SUCCESS;
    }
    else {
      gsl_sf_result sin_result;
      int stat_sin = gsl_sf_sin_err_e(arg_val, arg_err, &sin_result);
      result->val  = Root_2OverPi_ / (den*lambda) * sin_result.val;
      result->err  = Root_2OverPi_ / fabs(den*lambda) * sin_result.err;
      result->err += 3.0 * GSL_DBL_EPSILON * fabs(result->val);
      return stat_sin;
    }
  }
}


int gsl_sf_conicalP_sph_reg_e(const int l, const double lambda,
                                 const double x,
                                 gsl_sf_result * result
                                 )
{
  /* CHECK_POINTER(result) */

  if(x <= -1.0 || l < -1) {
    DOMAIN_ERROR(result);
  }
  else if(l == -1) {
    return gsl_sf_conicalP_half_e(lambda, x, result);
  }
  else if(l == 0) {
    return gsl_sf_conicalP_mhalf_e(lambda, x, result);
  }
  else if(x == 1.0) {
    result->val = 0.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else if(x < 0.0) {
    double c = 1.0/sqrt(1.0-x*x);
    gsl_sf_result r_Pellm1;
    gsl_sf_result r_Pell;
    int stat_0 = gsl_sf_conicalP_half_e(lambda, x, &r_Pellm1);  /* P^( 1/2) */
    int stat_1 = gsl_sf_conicalP_mhalf_e(lambda, x, &r_Pell);   /* P^(-1/2) */
    int stat_P = GSL_ERROR_SELECT_2(stat_0, stat_1);
    double Pellm1 = r_Pellm1.val;
    double Pell   = r_Pell.val;
    double Pellp1;
    int ell;

    for(ell=0; ell<l; ell++) {
      double d = (ell+1.0)*(ell+1.0) + lambda*lambda;
      Pellp1 = (Pellm1 - (2.0*ell+1.0)*c*x * Pell) / d;
      Pellm1 = Pell;
      Pell   = Pellp1;
    }

    result->val  = Pell;
    result->err  = (0.5*l + 1.0) * GSL_DBL_EPSILON * fabs(Pell);
    result->err += GSL_DBL_EPSILON * l * fabs(result->val);
    return stat_P;
  }
  else if(x < 1.0) {
    const double xi = x/(sqrt(1.0-x)*sqrt(1.0+x));
    gsl_sf_result rat;
    gsl_sf_result Phf;
    int stat_CF1 = conicalP_negmu_xlt1_CF1(0.5, l, lambda, x, &rat);
    int stat_Phf = gsl_sf_conicalP_half_e(lambda, x, &Phf);
    double Pellp1 = rat.val * GSL_SQRT_DBL_MIN;
    double Pell   = GSL_SQRT_DBL_MIN;
    double Pellm1;
    int ell;

    for(ell=l; ell>=0; ell--) {
      double d = (ell+1.0)*(ell+1.0) + lambda*lambda;
      Pellm1 = (2.0*ell+1.0)*xi * Pell + d * Pellp1;
      Pellp1 = Pell;
      Pell   = Pellm1;
    }

    result->val  = GSL_SQRT_DBL_MIN * Phf.val / Pell;
    result->err  = GSL_SQRT_DBL_MIN * Phf.err / fabs(Pell);
    result->err += fabs(rat.err/rat.val) * (l + 1.0) * fabs(result->val);
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);

    return GSL_ERROR_SELECT_2(stat_Phf, stat_CF1);
  }
  else if(x == 1.0) {
    result->val = 0.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else {
    /* x > 1.0 */

    const double xi = x/sqrt((x-1.0)*(x+1.0));
    gsl_sf_result rat;
    int stat_CF1 = conicalP_negmu_xgt1_CF1(0.5, l, lambda, x, &rat);
    int stat_P;
    double Pellp1 = rat.val * GSL_SQRT_DBL_MIN;
    double Pell   = GSL_SQRT_DBL_MIN;
    double Pellm1;
    int ell;

    for(ell=l; ell>=0; ell--) {
      double d = (ell+1.0)*(ell+1.0) + lambda*lambda;
      Pellm1 = (2.0*ell+1.0)*xi * Pell - d * Pellp1;
      Pellp1 = Pell;
      Pell   = Pellm1;
    }

    if(fabs(Pell) > fabs(Pellp1)){
      gsl_sf_result Phf;
      stat_P = gsl_sf_conicalP_half_e(lambda, x, &Phf);
      result->val  =       GSL_SQRT_DBL_MIN * Phf.val / Pell;
      result->err  = 2.0 * GSL_SQRT_DBL_MIN * Phf.err / fabs(Pell);
      result->err += 2.0 * fabs(rat.err/rat.val) * (l + 1.0) * fabs(result->val);
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    }
    else {
      gsl_sf_result Pmhf;
      stat_P = gsl_sf_conicalP_mhalf_e(lambda, x, &Pmhf);
      result->val  =       GSL_SQRT_DBL_MIN * Pmhf.val / Pellp1;
      result->err  = 2.0 * GSL_SQRT_DBL_MIN * Pmhf.err / fabs(Pellp1);
      result->err += 2.0 * fabs(rat.err/rat.val) * (l + 1.0) * fabs(result->val);
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    }

    return GSL_ERROR_SELECT_2(stat_P, stat_CF1);
  }
}


int gsl_sf_conicalP_cyl_reg_e(const int m, const double lambda,
                                 const double x,
                                 gsl_sf_result * result
                                 )
{
  /* CHECK_POINTER(result) */

  if(x <= -1.0 || m < -1) {
    DOMAIN_ERROR(result);
  }
  else if(m == -1) {
    return gsl_sf_conicalP_1_e(lambda, x, result);
  }
  else if(m == 0) {
    return gsl_sf_conicalP_0_e(lambda, x, result);
  }
  else if(x == 1.0) {
    result->val = 0.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else if(x < 0.0) {
    double c = 1.0/sqrt(1.0-x*x);
    gsl_sf_result r_Pkm1;
    gsl_sf_result r_Pk;
    int stat_0 = gsl_sf_conicalP_1_e(lambda, x, &r_Pkm1);  /* P^1 */
    int stat_1 = gsl_sf_conicalP_0_e(lambda, x, &r_Pk);    /* P^0 */
    int stat_P = GSL_ERROR_SELECT_2(stat_0, stat_1);
    double Pkm1 = r_Pkm1.val;
    double Pk   = r_Pk.val;
    double Pkp1;
    int k;

    for(k=0; k<m; k++) {
      double d = (k+0.5)*(k+0.5) + lambda*lambda;
      Pkp1 = (Pkm1 - 2.0*k*c*x * Pk) / d;
      Pkm1 = Pk;
      Pk   = Pkp1;
    }

    result->val  = Pk;
    result->err  = (m + 2.0) * GSL_DBL_EPSILON * fabs(Pk);
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);

    return stat_P;
  }
  else if(x < 1.0) {
    const double xi = x/(sqrt(1.0-x)*sqrt(1.0+x));
    gsl_sf_result rat;
    gsl_sf_result P0;
    int stat_CF1 = conicalP_negmu_xlt1_CF1(0.0, m, lambda, x, &rat);
    int stat_P0  = gsl_sf_conicalP_0_e(lambda, x, &P0);
    double Pkp1 = rat.val * GSL_SQRT_DBL_MIN;
    double Pk   = GSL_SQRT_DBL_MIN;
    double Pkm1;
    int k;

    for(k=m; k>0; k--) {
      double d = (k+0.5)*(k+0.5) + lambda*lambda;
      Pkm1 = 2.0*k*xi * Pk + d * Pkp1;
      Pkp1 = Pk;
      Pk   = Pkm1;
    }

    result->val  = GSL_SQRT_DBL_MIN * P0.val / Pk;
    result->err  = 2.0 * GSL_SQRT_DBL_MIN * P0.err / fabs(Pk);
    result->err += 2.0 * fabs(rat.err/rat.val) * (m + 1.0) * fabs(result->val);
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);

    return GSL_ERROR_SELECT_2(stat_P0, stat_CF1);
  }
  else if(x == 1.0) {
    result->val = 0.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else {
    /* x > 1.0 */

    const double xi = x/sqrt((x-1.0)*(x+1.0));
    gsl_sf_result rat;
    int stat_CF1 = conicalP_negmu_xgt1_CF1(0.0, m, lambda, x, &rat);
    int stat_P;
    double Pkp1 = rat.val * GSL_SQRT_DBL_MIN;
    double Pk   = GSL_SQRT_DBL_MIN;
    double Pkm1;
    int k;

    for(k=m; k>-1; k--) {
      double d = (k+0.5)*(k+0.5) + lambda*lambda;
      Pkm1 = 2.0*k*xi * Pk - d * Pkp1;
      Pkp1 = Pk;
      Pk   = Pkm1;
    }

    if(fabs(Pk) > fabs(Pkp1)){
      gsl_sf_result P1;
      stat_P = gsl_sf_conicalP_1_e(lambda, x, &P1);
      result->val  = GSL_SQRT_DBL_MIN * P1.val / Pk;
      result->err  = 2.0 * GSL_SQRT_DBL_MIN * P1.err / fabs(Pk);
      result->err += 2.0 * fabs(rat.err/rat.val) * (m+2.0) * fabs(result->val);
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    }
    else {
      gsl_sf_result P0;
      stat_P = gsl_sf_conicalP_0_e(lambda, x, &P0);
      result->val  = GSL_SQRT_DBL_MIN * P0.val / Pkp1;
      result->err  = 2.0 * GSL_SQRT_DBL_MIN * P0.err / fabs(Pkp1);
      result->err += 2.0 * fabs(rat.err/rat.val) * (m+2.0) * fabs(result->val);
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    }

    return GSL_ERROR_SELECT_2(stat_P, stat_CF1);
  }
}


/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/

#include "eval.h"

double gsl_sf_conicalP_0(const double lambda, const double x)
{
  EVAL_RESULT(gsl_sf_conicalP_0_e(lambda, x, &result));
}

double gsl_sf_conicalP_1(const double lambda, const double x)
{
  EVAL_RESULT(gsl_sf_conicalP_1_e(lambda, x, &result));
}

double gsl_sf_conicalP_half(const double lambda, const double x)
{
  EVAL_RESULT(gsl_sf_conicalP_half_e(lambda, x, &result));
}

double gsl_sf_conicalP_mhalf(const double lambda, const double x)
{
  EVAL_RESULT(gsl_sf_conicalP_mhalf_e(lambda, x, &result));
}

double gsl_sf_conicalP_sph_reg(const int l, const double lambda, const double x)
{
  EVAL_RESULT(gsl_sf_conicalP_sph_reg_e(l, lambda, x, &result));
}

double gsl_sf_conicalP_cyl_reg(const int m, const double lambda, const double x)
{
  EVAL_RESULT(gsl_sf_conicalP_cyl_reg_e(m, lambda, x, &result));
}