summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/hyperg_U.c
blob: 9b28835d6f1f9d9a934aef71530b0b4a0c7bcbf0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
/* specfunc/hyperg_U.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman */

#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_sf_laguerre.h>
#include <gsl/gsl_sf_pow_int.h>
#include <gsl/gsl_sf_hyperg.h>

#include "error.h"
#include "hyperg.h"

#define INT_THRESHOLD (1000.0*GSL_DBL_EPSILON)

#define SERIES_EVAL_OK(a,b,x) ((fabs(a) < 5 && b < 5 && x < 2.0) || (fabs(a) <  10 && b < 10 && x < 1.0))

#define ASYMP_EVAL_OK(a,b,x) (GSL_MAX_DBL(fabs(a),1.0)*GSL_MAX_DBL(fabs(1.0+a-b),1.0) < 0.99*fabs(x))


/* Log[U(a,2a,x)]
 * [Abramowitz+stegun, 13.6.21]
 * Assumes x > 0, a > 1/2.
 */
static
int
hyperg_lnU_beq2a(const double a, const double x, gsl_sf_result * result)
{
  const double lx = log(x);
  const double nu = a - 0.5;
  const double lnpre = 0.5*(x - M_LNPI) - nu*lx;
  gsl_sf_result lnK;
  gsl_sf_bessel_lnKnu_e(nu, 0.5*x, &lnK);
  result->val  = lnpre + lnK.val;
  result->err  = 2.0 * GSL_DBL_EPSILON * (fabs(0.5*x) + 0.5*M_LNPI + fabs(nu*lx));
  result->err += lnK.err;
  result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
  return GSL_SUCCESS;
}


/* Evaluate u_{N+1}/u_N by Steed's continued fraction method.
 *
 * u_N := Gamma[a+N]/Gamma[a] U(a + N, b, x)
 *
 * u_{N+1}/u_N = (a+N) U(a+N+1,b,x)/U(a+N,b,x)
 */
static
int
hyperg_U_CF1(const double a, const double b, const int N, const double x,
             double * result, int * count)
{
  const double RECUR_BIG = GSL_SQRT_DBL_MAX;
  const int maxiter = 20000;
  int n = 1;
  double Anm2 = 1.0;
  double Bnm2 = 0.0;
  double Anm1 = 0.0;
  double Bnm1 = 1.0;
  double a1 = -(a + N);
  double b1 =  (b - 2.0*a - x - 2.0*(N+1));
  double An = b1*Anm1 + a1*Anm2;
  double Bn = b1*Bnm1 + a1*Bnm2;
  double an, bn;
  double fn = An/Bn;

  while(n < maxiter) {
    double old_fn;
    double del;
    n++;
    Anm2 = Anm1;
    Bnm2 = Bnm1;
    Anm1 = An;
    Bnm1 = Bn;
    an = -(a + N + n - b)*(a + N + n - 1.0);
    bn =  (b - 2.0*a - x - 2.0*(N+n));
    An = bn*Anm1 + an*Anm2;
    Bn = bn*Bnm1 + an*Bnm2;
    
    if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
      An /= RECUR_BIG;
      Bn /= RECUR_BIG;
      Anm1 /= RECUR_BIG;
      Bnm1 /= RECUR_BIG;
      Anm2 /= RECUR_BIG;
      Bnm2 /= RECUR_BIG;
    }
    
    old_fn = fn;
    fn = An/Bn;
    del = old_fn/fn;
    
    if(fabs(del - 1.0) < 10.0*GSL_DBL_EPSILON) break;
  }
  
  *result = fn;
  *count  = n;

  if(n == maxiter)
    GSL_ERROR ("error", GSL_EMAXITER);
  else
    return GSL_SUCCESS;
}


/* Large x asymptotic for  x^a U(a,b,x)
 * Based on SLATEC D9CHU() [W. Fullerton]
 *
 * Uses a rational approximation due to Luke.
 * See [Luke, Algorithms for the Computation of Special Functions, p. 252]
 *     [Luke, Utilitas Math. (1977)]
 *
 * z^a U(a,b,z) ~ 2F0(a,1+a-b,-1/z)
 *
 * This assumes that a is not a negative integer and
 * that 1+a-b is not a negative integer. If one of them
 * is, then the 2F0 actually terminates, the above
 * relation is an equality, and the sum should be
 * evaluated directly [see below].
 */
static
int
d9chu(const double a, const double b, const double x, gsl_sf_result * result)
{
  const double EPS   = 8.0 * GSL_DBL_EPSILON;  /* EPS = 4.0D0*D1MACH(4)   */
  const int maxiter = 500;
  double aa[4], bb[4];
  int i;

  double bp = 1.0 + a - b;
  double ab = a*bp;
  double ct2 = 2.0 * (x - ab);
  double sab = a + bp;
  
  double ct3 = sab + 1.0 + ab;
  double anbn = ct3 + sab + 3.0;
  double ct1 = 1.0 + 2.0*x/anbn;

  bb[0] = 1.0;
  aa[0] = 1.0;

  bb[1] = 1.0 + 2.0*x/ct3;
  aa[1] = 1.0 + ct2/ct3;
  
  bb[2] = 1.0 + 6.0*ct1*x/ct3;
  aa[2] = 1.0 + 6.0*ab/anbn + 3.0*ct1*ct2/ct3;

  for(i=4; i<maxiter; i++) {
    int j;
    double c2;
    double d1z;
    double g1, g2, g3;
    double x2i1 = 2*i - 3;
    ct1   = x2i1/(x2i1-2.0);
    anbn += x2i1 + sab;
    ct2   = (x2i1 - 1.0)/anbn;
    c2    = x2i1*ct2 - 1.0;
    d1z   = 2.0*x2i1*x/anbn;
    
    ct3 = sab*ct2;
    g1  = d1z + ct1*(c2+ct3);
    g2  = d1z - c2;
    g3  = ct1*(1.0 - ct3 - 2.0*ct2);
    
    bb[3] = g1*bb[2] + g2*bb[1] + g3*bb[0];
    aa[3] = g1*aa[2] + g2*aa[1] + g3*aa[0];
    
    if(fabs(aa[3]*bb[0]-aa[0]*bb[3]) < EPS*fabs(bb[3]*bb[0])) break;
    
    for(j=0; j<3; j++) {
      aa[j] = aa[j+1];
      bb[j] = bb[j+1];
    }
  }
  
  result->val = aa[3]/bb[3];
  result->err = 8.0 * GSL_DBL_EPSILON * fabs(result->val);
  
  if(i == maxiter) {
    GSL_ERROR ("error", GSL_EMAXITER);
  }
  else {
    return GSL_SUCCESS;
  }
}


/* Evaluate asymptotic for z^a U(a,b,z) ~ 2F0(a,1+a-b,-1/z)
 * We check for termination of the 2F0 as a special case.
 * Assumes x > 0.
 * Also assumes a,b are not too large compared to x.
 */
static
int
hyperg_zaU_asymp(const double a, const double b, const double x, gsl_sf_result *result)
{
  const double ap = a;
  const double bp = 1.0 + a - b;
  const double rintap = floor(ap + 0.5);
  const double rintbp = floor(bp + 0.5);
  const int ap_neg_int = ( ap < 0.0 && fabs(ap - rintap) < INT_THRESHOLD );
  const int bp_neg_int = ( bp < 0.0 && fabs(bp - rintbp) < INT_THRESHOLD );

  if(ap_neg_int || bp_neg_int) {
    /* Evaluate 2F0 polynomial.
     */
    double mxi = -1.0/x;
    double nmax = -(int)(GSL_MIN(ap,bp) - 0.1);
    double tn  = 1.0;
    double sum = 1.0;
    double n   = 1.0;
    double sum_err = 0.0;
    while(n <= nmax) {
      double apn = (ap+n-1.0);
      double bpn = (bp+n-1.0);
      tn  *= ((apn/n)*mxi)*bpn;
      sum += tn;
      sum_err += 2.0 * GSL_DBL_EPSILON * fabs(tn);
      n += 1.0;
    }
    result->val  = sum;
    result->err  = sum_err;
    result->err += 2.0 * GSL_DBL_EPSILON * (fabs(nmax)+1.0) * fabs(sum);
    return GSL_SUCCESS;
  }
  else {
    return d9chu(a,b,x,result);
  }
}


/* Evaluate finite sum which appears below.
 */
static
int
hyperg_U_finite_sum(int N, double a, double b, double x, double xeps,
                    gsl_sf_result * result)
{
  int i;
  double sum_val;
  double sum_err;

  if(N <= 0) {
    double t_val = 1.0;
    double t_err = 0.0;
    gsl_sf_result poch;
    int stat_poch;

    sum_val = 1.0;
    sum_err = 0.0;
    for(i=1; i<= -N; i++) {
      const double xi1  = i - 1;
      const double mult = (a+xi1)*x/((b+xi1)*(xi1+1.0));
      t_val *= mult;
      t_err += fabs(mult) * t_err + fabs(t_val) * 8.0 * 2.0 * GSL_DBL_EPSILON;
      sum_val += t_val;
      sum_err += t_err;
    }

    stat_poch = gsl_sf_poch_e(1.0+a-b, -a, &poch);

    result->val  = sum_val * poch.val;
    result->err  = fabs(sum_val) * poch.err + sum_err * fabs(poch.val);
    result->err += fabs(poch.val) * (fabs(N) + 2.0) * GSL_DBL_EPSILON * fabs(sum_val);
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    result->err *= 2.0; /* FIXME: fudge factor... why is the error estimate too small? */
    return stat_poch;
  }
  else {
    const int M = N - 2;
    if(M < 0) {
      result->val = 0.0;
      result->err = 0.0;
      return GSL_SUCCESS;
    }
    else {
      gsl_sf_result gbm1;
      gsl_sf_result gamr;
      int stat_gbm1;
      int stat_gamr;
      double t_val = 1.0;
      double t_err = 0.0;

      sum_val = 1.0;
      sum_err = 0.0;
      for(i=1; i<=M; i++) {
        const double mult = (a-b+i)*x/((1.0-b+i)*i);
        t_val *= mult;
        t_err += t_err * fabs(mult) + fabs(t_val) * 8.0 * 2.0 * GSL_DBL_EPSILON;
        sum_val += t_val;
        sum_err += t_err;
      }

      stat_gbm1 = gsl_sf_gamma_e(b-1.0, &gbm1);
      stat_gamr = gsl_sf_gammainv_e(a,  &gamr);

      if(stat_gbm1 == GSL_SUCCESS) {
        gsl_sf_result powx1N;
        int stat_p = gsl_sf_pow_int_e(x, 1-N, &powx1N);
        double pe_val = powx1N.val * xeps;
        double pe_err = powx1N.err * fabs(xeps) + 2.0 * GSL_DBL_EPSILON * fabs(pe_val);
        double coeff_val = gbm1.val * gamr.val * pe_val;
        double coeff_err = gbm1.err * fabs(gamr.val * pe_val)
                         + gamr.err * fabs(gbm1.val * pe_val)
                         + fabs(gbm1.val * gamr.val) * pe_err
                         + 2.0 * GSL_DBL_EPSILON * fabs(coeff_val);

        result->val  = sum_val * coeff_val;
        result->err  = fabs(sum_val) * coeff_err + sum_err * fabs(coeff_val);
        result->err += 2.0 * GSL_DBL_EPSILON * (M+2.0) * fabs(result->val);
        result->err *= 2.0; /* FIXME: fudge factor... why is the error estimate too small? */
        return stat_p;
      }
      else {
        result->val = 0.0;
        result->err = 0.0;
        return stat_gbm1;
      }
    }
  }
}


/* Based on SLATEC DCHU() [W. Fullerton]
 * Assumes x > 0.
 * This is just a series summation method, and
 * it is not good for large a.
 *
 * I patched up the window for 1+a-b near zero. [GJ]
 */
static
int
hyperg_U_series(const double a, const double b, const double x, gsl_sf_result * result)
{
  const double EPS      = 2.0 * GSL_DBL_EPSILON;  /* EPS = D1MACH(3) */
  const double SQRT_EPS = M_SQRT2 * GSL_SQRT_DBL_EPSILON;

  if(fabs(1.0 + a - b) < SQRT_EPS) {
    /* Original Comment: ALGORITHM IS BAD WHEN 1+A-B IS NEAR ZERO FOR SMALL X
     */
    /* We can however do the following:
     * U(a,b,x) = U(a,a+1,x) when 1+a-b=0
     * and U(a,a+1,x) = x^(-a).
     */
    double lnr = -a * log(x);
    int stat_e =  gsl_sf_exp_e(lnr, result);
    result->err += 2.0 * SQRT_EPS * fabs(result->val);
    return stat_e;
  }
  else {
    double aintb = ( b < 0.0 ? ceil(b-0.5) : floor(b+0.5) );
    double beps  = b - aintb;
    int N = aintb;
    
    double lnx  = log(x);
    double xeps = exp(-beps*lnx);

    /* Evaluate finite sum.
     */
    gsl_sf_result sum;
    int stat_sum = hyperg_U_finite_sum(N, a, b, x, xeps, &sum);


    /* Evaluate infinite sum. */

    int istrt = ( N < 1 ? 1-N : 0 );
    double xi = istrt;

    gsl_sf_result gamr;
    gsl_sf_result powx;
    int stat_gamr = gsl_sf_gammainv_e(1.0+a-b, &gamr);
    int stat_powx = gsl_sf_pow_int_e(x, istrt, &powx);
    double sarg   = beps*M_PI;
    double sfact  = ( sarg != 0.0 ? sarg/sin(sarg) : 1.0 );
    double factor_val = sfact * ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * gamr.val * powx.val;
    double factor_err = fabs(gamr.val) * powx.err + fabs(powx.val) * gamr.err
                      + 2.0 * GSL_DBL_EPSILON * fabs(factor_val);

    gsl_sf_result pochai;
    gsl_sf_result gamri1;
    gsl_sf_result gamrni;
    int stat_pochai = gsl_sf_poch_e(a, xi, &pochai);
    int stat_gamri1 = gsl_sf_gammainv_e(xi + 1.0, &gamri1);
    int stat_gamrni = gsl_sf_gammainv_e(aintb + xi, &gamrni);
    int stat_gam123 = GSL_ERROR_SELECT_3(stat_gamr, stat_gamri1, stat_gamrni);
    int stat_gamall = GSL_ERROR_SELECT_4(stat_sum, stat_gam123, stat_pochai, stat_powx);

    gsl_sf_result pochaxibeps;
    gsl_sf_result gamrxi1beps;
    int stat_pochaxibeps = gsl_sf_poch_e(a, xi-beps, &pochaxibeps);
    int stat_gamrxi1beps = gsl_sf_gammainv_e(xi + 1.0 - beps, &gamrxi1beps);

    int stat_all = GSL_ERROR_SELECT_3(stat_gamall, stat_pochaxibeps, stat_gamrxi1beps);

    double b0_val = factor_val * pochaxibeps.val * gamrni.val * gamrxi1beps.val;
    double b0_err =  fabs(factor_val * pochaxibeps.val * gamrni.val) * gamrxi1beps.err
                   + fabs(factor_val * pochaxibeps.val * gamrxi1beps.val) * gamrni.err
                   + fabs(factor_val * gamrni.val * gamrxi1beps.val) * pochaxibeps.err
                   + fabs(pochaxibeps.val * gamrni.val * gamrxi1beps.val) * factor_err
                   + 2.0 * GSL_DBL_EPSILON * fabs(b0_val);

    if(fabs(xeps-1.0) < 0.5) {
      /*
       C  X**(-BEPS) IS CLOSE TO 1.0D0, SO WE MUST BE
       C  CAREFUL IN EVALUATING THE DIFFERENCES.
       */
      int i;
      gsl_sf_result pch1ai;
      gsl_sf_result pch1i;
      gsl_sf_result poch1bxibeps;
      int stat_pch1ai = gsl_sf_pochrel_e(a + xi, -beps, &pch1ai);
      int stat_pch1i  = gsl_sf_pochrel_e(xi + 1.0 - beps, beps, &pch1i);
      int stat_poch1bxibeps = gsl_sf_pochrel_e(b+xi, -beps, &poch1bxibeps);
      double c0_t1_val = beps*pch1ai.val*pch1i.val;
      double c0_t1_err = fabs(beps) * fabs(pch1ai.val) * pch1i.err
                       + fabs(beps) * fabs(pch1i.val)  * pch1ai.err
                       + 2.0 * GSL_DBL_EPSILON * fabs(c0_t1_val);
      double c0_t2_val = -poch1bxibeps.val + pch1ai.val - pch1i.val + c0_t1_val;
      double c0_t2_err =  poch1bxibeps.err + pch1ai.err + pch1i.err + c0_t1_err
                       + 2.0 * GSL_DBL_EPSILON * fabs(c0_t2_val);
      double c0_val = factor_val * pochai.val * gamrni.val * gamri1.val * c0_t2_val;
      double c0_err =  fabs(factor_val * pochai.val * gamrni.val * gamri1.val) * c0_t2_err
                     + fabs(factor_val * pochai.val * gamrni.val * c0_t2_val) * gamri1.err
                     + fabs(factor_val * pochai.val * gamri1.val * c0_t2_val) * gamrni.err
                     + fabs(factor_val * gamrni.val * gamri1.val * c0_t2_val) * pochai.err
                     + fabs(pochai.val * gamrni.val * gamri1.val * c0_t2_val) * factor_err
                     + 2.0 * GSL_DBL_EPSILON * fabs(c0_val);
      /*
       C  XEPS1 = (1.0 - X**(-BEPS))/BEPS = (X**(-BEPS) - 1.0)/(-BEPS)
       */
      gsl_sf_result dexprl;
      int stat_dexprl = gsl_sf_exprel_e(-beps*lnx, &dexprl);
      double xeps1_val = lnx * dexprl.val;
      double xeps1_err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(beps*lnx)) * fabs(dexprl.val)
                       + fabs(lnx) * dexprl.err
                       + 2.0 * GSL_DBL_EPSILON * fabs(xeps1_val);
      double dchu_val = sum.val + c0_val + xeps1_val*b0_val;
      double dchu_err = sum.err + c0_err
                      + fabs(xeps1_val)*b0_err + xeps1_err * fabs(b0_val)
                      + fabs(b0_val*lnx)*dexprl.err
                      + 2.0 * GSL_DBL_EPSILON * (fabs(sum.val) + fabs(c0_val) + fabs(xeps1_val*b0_val));
      double xn = N;
      double t_val;
      double t_err;

      stat_all = GSL_ERROR_SELECT_5(stat_all, stat_dexprl, stat_poch1bxibeps, stat_pch1i, stat_pch1ai);

      for(i=1; i<2000; i++) {
        const double xi  = istrt + i;
        const double xi1 = istrt + i - 1;
        const double tmp = (a-1.0)*(xn+2.0*xi-1.0) + xi*(xi-beps);
        const double b0_multiplier = (a+xi1-beps)*x/((xn+xi1)*(xi-beps));
        const double c0_multiplier_1 = (a+xi1)*x/((b+xi1)*xi);
        const double c0_multiplier_2 = tmp / (xi*(b+xi1)*(a+xi1-beps));
        b0_val *= b0_multiplier;
        b0_err += fabs(b0_multiplier) * b0_err + fabs(b0_val) * 8.0 * 2.0 * GSL_DBL_EPSILON;
        c0_val  = c0_multiplier_1 * c0_val - c0_multiplier_2 * b0_val;
        c0_err  =  fabs(c0_multiplier_1) * c0_err
                 + fabs(c0_multiplier_2) * b0_err
                 + fabs(c0_val) * 8.0 * 2.0 * GSL_DBL_EPSILON
                 + fabs(b0_val * c0_multiplier_2) * 16.0 * 2.0 * GSL_DBL_EPSILON;
        t_val  = c0_val + xeps1_val*b0_val;
        t_err  = c0_err + fabs(xeps1_val)*b0_err;
        t_err += fabs(b0_val*lnx) * dexprl.err;
        t_err += fabs(b0_val)*xeps1_err;
        dchu_val += t_val;
        dchu_err += t_err;
        if(fabs(t_val) < EPS*fabs(dchu_val)) break;
      }

      result->val  = dchu_val;
      result->err  = 2.0 * dchu_err;
      result->err += 2.0 * fabs(t_val);
      result->err += 4.0 * GSL_DBL_EPSILON * (i+2.0) * fabs(dchu_val);
      result->err *= 2.0; /* FIXME: fudge factor */

      if(i >= 2000) {
        GSL_ERROR ("error", GSL_EMAXITER);
      }
      else {
        return stat_all;
      }
    }
    else {
      /*
       C  X**(-BEPS) IS VERY DIFFERENT FROM 1.0, SO THE
       C  STRAIGHTFORWARD FORMULATION IS STABLE.
       */
      int i;
      double dchu_val;
      double dchu_err;
      double t_val;
      double t_err;
      gsl_sf_result dgamrbxi;
      int stat_dgamrbxi = gsl_sf_gammainv_e(b+xi, &dgamrbxi);
      double a0_val = factor_val * pochai.val * dgamrbxi.val * gamri1.val / beps;
      double a0_err =  fabs(factor_val * pochai.val * dgamrbxi.val / beps) * gamri1.err
                     + fabs(factor_val * pochai.val * gamri1.val / beps) * dgamrbxi.err
                     + fabs(factor_val * dgamrbxi.val * gamri1.val / beps) * pochai.err
                     + fabs(pochai.val * dgamrbxi.val * gamri1.val / beps) * factor_err
                     + 2.0 * GSL_DBL_EPSILON * fabs(a0_val);
      stat_all = GSL_ERROR_SELECT_2(stat_all, stat_dgamrbxi);

      b0_val = xeps * b0_val / beps;
      b0_err = fabs(xeps / beps) * b0_err + 4.0 * GSL_DBL_EPSILON * fabs(b0_val);
      dchu_val = sum.val + a0_val - b0_val;
      dchu_err = sum.err + a0_err + b0_err
        + 2.0 * GSL_DBL_EPSILON * (fabs(sum.val) + fabs(a0_val) + fabs(b0_val));

      for(i=1; i<2000; i++) {
        double xi = istrt + i;
        double xi1 = istrt + i - 1;
        double a0_multiplier = (a+xi1)*x/((b+xi1)*xi);
        double b0_multiplier = (a+xi1-beps)*x/((aintb+xi1)*(xi-beps));
        a0_val *= a0_multiplier;
        a0_err += fabs(a0_multiplier) * a0_err;
        b0_val *= b0_multiplier;
        b0_err += fabs(b0_multiplier) * b0_err;
        t_val = a0_val - b0_val;
        t_err = a0_err + b0_err;
        dchu_val += t_val;
        dchu_err += t_err;
        if(fabs(t_val) < EPS*fabs(dchu_val)) break;
      }

      result->val  = dchu_val;
      result->err  = 2.0 * dchu_err;
      result->err += 2.0 * fabs(t_val);
      result->err += 4.0 * GSL_DBL_EPSILON * (i+2.0) * fabs(dchu_val);
      result->err *= 2.0; /* FIXME: fudge factor */

      if(i >= 2000) {
        GSL_ERROR ("error", GSL_EMAXITER);
      }
      else {
        return stat_all;
      }
    }
  }
}


/* Assumes b > 0 and x > 0.
 */
static
int
hyperg_U_small_ab(const double a, const double b, const double x, gsl_sf_result * result)
{
  if(a == -1.0) {
    /* U(-1,c+1,x) = Laguerre[c,0,x] = -b + x
     */
    result->val  = -b + x;
    result->err  = 2.0 * GSL_DBL_EPSILON * (fabs(b) + fabs(x));
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  else if(a == 0.0) {
    /* U(0,c+1,x) = Laguerre[c,0,x] = 1
     */
    result->val = 1.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else if(ASYMP_EVAL_OK(a,b,x)) {
    double p = pow(x, -a);
    gsl_sf_result asymp;
    int stat_asymp = hyperg_zaU_asymp(a, b, x, &asymp);
    result->val  = asymp.val * p;
    result->err  = asymp.err * p;
    result->err += fabs(asymp.val) * GSL_DBL_EPSILON * fabs(a) * p;
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return stat_asymp;
  }
  else {
    return hyperg_U_series(a, b, x, result);
  }
}


/* Assumes b > 0 and x > 0.
 */
static
int
hyperg_U_small_a_bgt0(const double a, const double b, const double x,
                      gsl_sf_result * result,
                      double * ln_multiplier
                      )
{
  if(a == 0.0) {
    result->val = 1.0;
    result->err = 1.0;
    *ln_multiplier = 0.0;
    return GSL_SUCCESS;
  }
  else if(   (b > 5000.0 && x < 0.90 * fabs(b))
          || (b >  500.0 && x < 0.50 * fabs(b))
    ) {
    int stat = gsl_sf_hyperg_U_large_b_e(a, b, x, result, ln_multiplier);
    if(stat == GSL_EOVRFLW)
      return GSL_SUCCESS;
    else
      return stat;
  }
  else if(b > 15.0) {
    /* Recurse up from b near 1.
     */
    double eps = b - floor(b);
    double b0  = 1.0 + eps;
    gsl_sf_result r_Ubm1;
    gsl_sf_result r_Ub;
    int stat_0 = hyperg_U_small_ab(a, b0,     x, &r_Ubm1);
    int stat_1 = hyperg_U_small_ab(a, b0+1.0, x, &r_Ub);
    double Ubm1 = r_Ubm1.val;
    double Ub   = r_Ub.val;
    double Ubp1;
    double bp;

    for(bp = b0+1.0; bp<b-0.1; bp += 1.0) {
      Ubp1 = ((1.0+a-bp)*Ubm1 + (bp+x-1.0)*Ub)/x;
      Ubm1 = Ub;
      Ub   = Ubp1;
    }
    result->val  = Ub;
    result->err  = (fabs(r_Ubm1.err/r_Ubm1.val) + fabs(r_Ub.err/r_Ub.val)) * fabs(Ub);
    result->err += 2.0 * GSL_DBL_EPSILON * (fabs(b-b0)+1.0) * fabs(Ub);
    *ln_multiplier = 0.0;
    return GSL_ERROR_SELECT_2(stat_0, stat_1);
  }
  else {
    *ln_multiplier = 0.0;
    return hyperg_U_small_ab(a, b, x, result);
  }
}


/* We use this to keep track of large
 * dynamic ranges in the recursions.
 * This can be important because sometimes
 * we want to calculate a very large and
 * a very small number and the answer is
 * the product, of order 1. This happens,
 * for instance, when we apply a Kummer
 * transform to make b positive and
 * both x and b are large.
 */
#define RESCALE_2(u0,u1,factor,count)      \
do {                                       \
  double au0 = fabs(u0);                   \
  if(au0 > factor) {                       \
    u0 /= factor;                          \
    u1 /= factor;                          \
    count++;                               \
  }                                        \
  else if(au0 < 1.0/factor) {              \
    u0 *= factor;                          \
    u1 *= factor;                          \
    count--;                               \
  }                                        \
} while (0)


/* Specialization to b >= 1, for integer parameters.
 * Assumes x > 0.
 */
static
int
hyperg_U_int_bge1(const int a, const int b, const double x,
                  gsl_sf_result_e10 * result)
{
  if(a == 0) {
    result->val = 1.0;
    result->err = 0.0;
    result->e10 = 0;
    return GSL_SUCCESS;
  }
  else if(a == -1) {
    result->val  = -b + x;
    result->err  = 2.0 * GSL_DBL_EPSILON * (fabs(b) + fabs(x));
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    result->e10  = 0;
    return GSL_SUCCESS;
  }
  else if(b == a + 1) {
    /* U(a,a+1,x) = x^(-a)
     */
    return gsl_sf_exp_e10_e(-a*log(x), result);
  }
  else if(ASYMP_EVAL_OK(a,b,x)) {
    const double ln_pre_val = -a*log(x);
    const double ln_pre_err = 2.0 * GSL_DBL_EPSILON * fabs(ln_pre_val);
    gsl_sf_result asymp;
    int stat_asymp = hyperg_zaU_asymp(a, b, x, &asymp);
    int stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val, ln_pre_err,
                                              asymp.val, asymp.err,
                                              result);
    return GSL_ERROR_SELECT_2(stat_e, stat_asymp);
  }
  else if(SERIES_EVAL_OK(a,b,x)) {
    gsl_sf_result ser;
    const int stat_ser = hyperg_U_series(a, b, x, &ser);
    result->val = ser.val;
    result->err = ser.err;
    result->e10 = 0;
    return stat_ser;
  }
  else if(a < 0) {
    /* Recurse backward from a = -1,0.
     */
    int scale_count = 0;
    const double scale_factor = GSL_SQRT_DBL_MAX;
    gsl_sf_result lnm;
    gsl_sf_result y;
    double lnscale;
    double Uap1 = 1.0;     /* U(0,b,x)  */
    double Ua   = -b + x;  /* U(-1,b,x) */
    double Uam1;
    int ap;

    for(ap=-1; ap>a; ap--) {
      Uam1 = ap*(b-ap-1.0)*Uap1 + (x+2.0*ap-b)*Ua;
      Uap1 = Ua;
      Ua   = Uam1;
      RESCALE_2(Ua,Uap1,scale_factor,scale_count);
    }

    lnscale = log(scale_factor);
    lnm.val = scale_count*lnscale;
    lnm.err = 2.0 * GSL_DBL_EPSILON * fabs(lnm.val);
    y.val = Ua;
    y.err = 4.0 * GSL_DBL_EPSILON * (fabs(a)+1.0) * fabs(Ua);
    return gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
  }
  else if(b >= 2.0*a + x) {
    /* Recurse forward from a = 0,1.
     */
    int scale_count = 0;
    const double scale_factor = GSL_SQRT_DBL_MAX;
    gsl_sf_result r_Ua;
    gsl_sf_result lnm;
    gsl_sf_result y;
    double lnscale;
    double lm;
    int stat_1 = hyperg_U_small_a_bgt0(1.0, b, x, &r_Ua, &lm);  /* U(1,b,x) */
    int stat_e;
    double Uam1 = 1.0;  /* U(0,b,x) */
    double Ua   = r_Ua.val;
    double Uap1;
    int ap;

    Uam1 *= exp(-lm);

    for(ap=1; ap<a; ap++) {
      Uap1 = -(Uam1 + (b-2.0*ap-x)*Ua)/(ap*(1.0+ap-b));
      Uam1 = Ua;
      Ua   = Uap1;
      RESCALE_2(Ua,Uam1,scale_factor,scale_count);
    }

    lnscale = log(scale_factor);
    lnm.val = lm + scale_count * lnscale;
    lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm) + fabs(scale_count*lnscale));
    y.val  = Ua;
    y.err  = fabs(r_Ua.err/r_Ua.val) * fabs(Ua);
    y.err += 2.0 * GSL_DBL_EPSILON * (fabs(a) + 1.0) * fabs(Ua);
    stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
    return GSL_ERROR_SELECT_2(stat_e, stat_1);
  }
  else {
    if(b <= x) {
      /* Recurse backward either to the b=a+1 line
       * or to a=0, whichever we hit.
       */
      const double scale_factor = GSL_SQRT_DBL_MAX;
      int scale_count = 0;
      int stat_CF1;
      double ru;
      int CF1_count;
      int a_target;
      double lnU_target;
      double Ua;
      double Uap1;
      double Uam1;
      int ap;

      if(b < a + 1) {
        a_target = b-1;
        lnU_target = -a_target*log(x);
      }
      else {
        a_target = 0;
        lnU_target = 0.0;
      }

      stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count);

      Ua   = 1.0;
      Uap1 = ru/a * Ua;
      for(ap=a; ap>a_target; ap--) {
        Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1);
        Uap1 = Ua;
        Ua   = Uam1;
        RESCALE_2(Ua,Uap1,scale_factor,scale_count);
      }

      if(Ua == 0.0) {
        result->val = 0.0;
        result->err = 0.0;
        result->e10 = 0;
        GSL_ERROR ("error", GSL_EZERODIV);
      }
      else {
        double lnscl = -scale_count*log(scale_factor);
        double lnpre_val = lnU_target + lnscl;
        double lnpre_err = 2.0 * GSL_DBL_EPSILON * (fabs(lnU_target) + fabs(lnscl));
        double oUa_err   = 2.0 * (fabs(a_target-a) + CF1_count + 1.0) * GSL_DBL_EPSILON * fabs(1.0/Ua);
        int stat_e = gsl_sf_exp_mult_err_e10_e(lnpre_val, lnpre_err,
                                                  1.0/Ua, oUa_err,
                                                  result);
        return GSL_ERROR_SELECT_2(stat_e, stat_CF1);
      }
    }
    else {
      /* Recurse backward to near the b=2a+x line, then
       * determine normalization by either direct evaluation
       * or by a forward recursion. The direct evaluation
       * is needed when x is small (which is precisely
       * when it is easy to do).
       */
      const double scale_factor = GSL_SQRT_DBL_MAX;
      int scale_count_for = 0;
      int scale_count_bck = 0;
      int a0 = 1;
      int a1 = a0 + ceil(0.5*(b-x) - a0);
      double Ua1_bck_val;
      double Ua1_bck_err;
      double Ua1_for_val;
      double Ua1_for_err;
      int stat_for;
      int stat_bck;
      gsl_sf_result lm_for;

      {
        /* Recurse back to determine U(a1,b), sans normalization.
         */
        double ru;
        int CF1_count;
        int stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count);
        double Ua   = 1.0;
        double Uap1 = ru/a * Ua;
        double Uam1;
        int ap;
        for(ap=a; ap>a1; ap--) {
          Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1);
          Uap1 = Ua;
          Ua   = Uam1;
          RESCALE_2(Ua,Uap1,scale_factor,scale_count_bck);
        }
        Ua1_bck_val = Ua;
        Ua1_bck_err = 2.0 * GSL_DBL_EPSILON * (fabs(a1-a)+CF1_count+1.0) * fabs(Ua);
        stat_bck = stat_CF1;
      }

      if(b == 2*a1 && a1 > 1) {
        /* This can happen when x is small, which is
         * precisely when we need to be careful with
         * this evaluation.
         */
        hyperg_lnU_beq2a((double)a1, x, &lm_for);
        Ua1_for_val = 1.0;
        Ua1_for_err = 0.0;
        stat_for = GSL_SUCCESS;
      }
      else if(b == 2*a1 - 1 && a1 > 1) {
        /* Similar to the above. Happens when x is small.
         * Use
         *   U(a,2a-1) = (x U(a,2a) - U(a-1,2(a-1))) / (2a - 2)
         */
        gsl_sf_result lnU00, lnU12;
        gsl_sf_result U00, U12;
        hyperg_lnU_beq2a(a1-1.0, x, &lnU00);
        hyperg_lnU_beq2a(a1,     x, &lnU12);
        if(lnU00.val > lnU12.val) {
          lm_for.val = lnU00.val;
          lm_for.err = lnU00.err;
          U00.val = 1.0;
          U00.err = 0.0;
          gsl_sf_exp_err_e(lnU12.val - lm_for.val, lnU12.err + lm_for.err, &U12);
        }
        else {
          lm_for.val = lnU12.val;
          lm_for.err = lnU12.err;
          U12.val = 1.0;
          U12.err = 0.0;
          gsl_sf_exp_err_e(lnU00.val - lm_for.val, lnU00.err + lm_for.err, &U00);
        }
        Ua1_for_val  = (x * U12.val - U00.val) / (2.0*a1 - 2.0);
        Ua1_for_err  = (fabs(x)*U12.err + U00.err) / fabs(2.0*a1 - 2.0);
        Ua1_for_err += 2.0 * GSL_DBL_EPSILON * fabs(Ua1_for_val);
        stat_for = GSL_SUCCESS;
      }
      else {
        /* Recurse forward to determine U(a1,b) with
         * absolute normalization.
         */
        gsl_sf_result r_Ua;
        double Uam1 = 1.0;  /* U(a0-1,b,x) = U(0,b,x) */
        double Ua;
        double Uap1;
        int ap;
        double lm_for_local;
        stat_for = hyperg_U_small_a_bgt0(a0, b, x, &r_Ua, &lm_for_local); /* U(1,b,x) */
        Ua = r_Ua.val;
        Uam1 *= exp(-lm_for_local);
        lm_for.val = lm_for_local;
        lm_for.err = 0.0;

        for(ap=a0; ap<a1; ap++) {
          Uap1 = -(Uam1 + (b-2.0*ap-x)*Ua)/(ap*(1.0+ap-b));
          Uam1 = Ua;
          Ua   = Uap1;
          RESCALE_2(Ua,Uam1,scale_factor,scale_count_for);
        }
        Ua1_for_val  = Ua;
        Ua1_for_err  = fabs(Ua) * fabs(r_Ua.err/r_Ua.val);
        Ua1_for_err += 2.0 * GSL_DBL_EPSILON * (fabs(a1-a0)+1.0) * fabs(Ua1_for_val);
      }

      /* Now do the matching to produce the final result.
       */
      if(Ua1_bck_val == 0.0) {
        result->val = 0.0;
        result->err = 0.0;
        result->e10 = 0;
        GSL_ERROR ("error", GSL_EZERODIV);
      }
      else if(Ua1_for_val == 0.0) {
        /* Should never happen. */
        UNDERFLOW_ERROR_E10(result);
      }
      else {
        double lns = (scale_count_for - scale_count_bck)*log(scale_factor);
        double ln_for_val = log(fabs(Ua1_for_val));
        double ln_for_err = GSL_DBL_EPSILON + fabs(Ua1_for_err/Ua1_for_val);
        double ln_bck_val = log(fabs(Ua1_bck_val));
        double ln_bck_err = GSL_DBL_EPSILON + fabs(Ua1_bck_err/Ua1_bck_val);
        double lnr_val = lm_for.val + ln_for_val - ln_bck_val + lns;
        double lnr_err = lm_for.err + ln_for_err + ln_bck_err
          + 2.0 * GSL_DBL_EPSILON * (fabs(lm_for.val) + fabs(ln_for_val) + fabs(ln_bck_val) + fabs(lns));
        double sgn = GSL_SIGN(Ua1_for_val) * GSL_SIGN(Ua1_bck_val);
        int stat_e = gsl_sf_exp_err_e10_e(lnr_val, lnr_err, result);
        result->val *= sgn;
        return GSL_ERROR_SELECT_3(stat_e, stat_bck, stat_for);
      }
    }
  }
}


/* Handle b >= 1 for generic a,b values.
 */
static
int
hyperg_U_bge1(const double a, const double b, const double x,
              gsl_sf_result_e10 * result)
{
  const double rinta = floor(a+0.5);
  const int a_neg_integer = (a < 0.0 && fabs(a - rinta) < INT_THRESHOLD);

  if(a == 0.0) {
    result->val = 1.0;
    result->err = 0.0;
    result->e10 = 0;
    return GSL_SUCCESS;
  }
  else if(a_neg_integer && fabs(rinta) < INT_MAX) {
    /* U(-n,b,x) = (-1)^n n! Laguerre[n,b-1,x]
     */
    const int n = -(int)rinta;
    const double sgn = (GSL_IS_ODD(n) ? -1.0 : 1.0);
    gsl_sf_result lnfact;
    gsl_sf_result L;
    const int stat_L = gsl_sf_laguerre_n_e(n, b-1.0, x, &L);
    gsl_sf_lnfact_e(n, &lnfact);
    {
      const int stat_e = gsl_sf_exp_mult_err_e10_e(lnfact.val, lnfact.err,
                                                      sgn*L.val, L.err,
                                                      result);
      return GSL_ERROR_SELECT_2(stat_e, stat_L);
    }
  }
  else if(ASYMP_EVAL_OK(a,b,x)) {
    const double ln_pre_val = -a*log(x);
    const double ln_pre_err = 2.0 * GSL_DBL_EPSILON * fabs(ln_pre_val);
    gsl_sf_result asymp;
    int stat_asymp = hyperg_zaU_asymp(a, b, x, &asymp);
    int stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val, ln_pre_err,
                                              asymp.val, asymp.err,
                                              result);
    return GSL_ERROR_SELECT_2(stat_e, stat_asymp);
  }
  else if(fabs(a) <= 1.0) {
    gsl_sf_result rU;
    double ln_multiplier;
    int stat_U = hyperg_U_small_a_bgt0(a, b, x, &rU, &ln_multiplier);
    int stat_e = gsl_sf_exp_mult_err_e10_e(ln_multiplier, 2.0*GSL_DBL_EPSILON*fabs(ln_multiplier), rU.val, rU.err, result);
    return GSL_ERROR_SELECT_2(stat_U, stat_e);
  }
  else if(SERIES_EVAL_OK(a,b,x)) {
    gsl_sf_result ser;
    const int stat_ser = hyperg_U_series(a, b, x, &ser);
    result->val = ser.val;
    result->err = ser.err;
    result->e10 = 0;
    return stat_ser;
  }
  else if(a < 0.0) {
    /* Recurse backward on a and then upward on b.
     */
    const double scale_factor = GSL_SQRT_DBL_MAX;
    const double a0 = a - floor(a) - 1.0;
    const double b0 = b - floor(b) + 1.0;
    int scale_count = 0;
    double lm_0, lm_1;
    double lm_max;
    gsl_sf_result r_Uap1;
    gsl_sf_result r_Ua;
    int stat_0 = hyperg_U_small_a_bgt0(a0+1.0, b0, x, &r_Uap1, &lm_0);
    int stat_1 = hyperg_U_small_a_bgt0(a0,     b0, x, &r_Ua,   &lm_1);
    int stat_e;
    double Uap1 = r_Uap1.val;
    double Ua   = r_Ua.val;
    double Uam1;
    double ap;
    lm_max = GSL_MAX(lm_0, lm_1);
    Uap1 *= exp(lm_0-lm_max);
    Ua   *= exp(lm_1-lm_max);

    /* Downward recursion on a.
     */
    for(ap=a0; ap>a+0.1; ap -= 1.0) {
      Uam1 = ap*(b0-ap-1.0)*Uap1 + (x+2.0*ap-b0)*Ua;
      Uap1 = Ua;
      Ua   = Uam1;
      RESCALE_2(Ua,Uap1,scale_factor,scale_count);
    }

    if(b < 2.0) {
      /* b == b0, so no recursion necessary
       */
      const double lnscale = log(scale_factor);
      gsl_sf_result lnm;
      gsl_sf_result y;
      lnm.val = lm_max + scale_count * lnscale;
      lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_max) + scale_count * fabs(lnscale));
      y.val  = Ua;
      y.err  = fabs(r_Uap1.err/r_Uap1.val) * fabs(Ua);
      y.err += fabs(r_Ua.err/r_Ua.val) * fabs(Ua);
      y.err += 2.0 * GSL_DBL_EPSILON * (fabs(a-a0) + 1.0) * fabs(Ua);
      y.err *= fabs(lm_0-lm_max) + 1.0;
      y.err *= fabs(lm_1-lm_max) + 1.0;
      stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
    }
    else {
      /* Upward recursion on b.
       */
      const double err_mult = fabs(b-b0) + fabs(a-a0) + 1.0;
      const double lnscale = log(scale_factor);
      gsl_sf_result lnm;
      gsl_sf_result y;

      double Ubm1 = Ua;                                 /* U(a,b0)   */
      double Ub   = (a*(b0-a-1.0)*Uap1 + (a+x)*Ua)/x;   /* U(a,b0+1) */
      double Ubp1;
      double bp;
      for(bp=b0+1.0; bp<b-0.1; bp += 1.0) {
        Ubp1 = ((1.0+a-bp)*Ubm1 + (bp+x-1.0)*Ub)/x;
        Ubm1 = Ub;
        Ub   = Ubp1;
        RESCALE_2(Ub,Ubm1,scale_factor,scale_count);
      }

      lnm.val = lm_max + scale_count * lnscale;
      lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_max) + fabs(scale_count * lnscale));
      y.val = Ub;
      y.err  = 2.0 * err_mult * fabs(r_Uap1.err/r_Uap1.val) * fabs(Ub);
      y.err += 2.0 * err_mult * fabs(r_Ua.err/r_Ua.val) * fabs(Ub);
      y.err += 2.0 * GSL_DBL_EPSILON * err_mult * fabs(Ub);
      y.err *= fabs(lm_0-lm_max) + 1.0;
      y.err *= fabs(lm_1-lm_max) + 1.0;
      stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
    }
    return GSL_ERROR_SELECT_3(stat_e, stat_0, stat_1);
  }
  else if(b >= 2*a + x) {
    /* Recurse forward from a near zero.
     * Note that we cannot cross the singularity at
     * the line b=a+1, because the only way we could
     * be in that little wedge is if a < 1. But we
     * have already dealt with the small a case.
     */
    int scale_count = 0;
    const double a0 = a - floor(a);
    const double scale_factor = GSL_SQRT_DBL_MAX;
    double lnscale;
    double lm_0, lm_1, lm_max;
    gsl_sf_result r_Uam1;
    gsl_sf_result r_Ua;
    int stat_0 = hyperg_U_small_a_bgt0(a0-1.0, b, x, &r_Uam1, &lm_0);
    int stat_1 = hyperg_U_small_a_bgt0(a0,     b, x, &r_Ua,   &lm_1);
    int stat_e;
    gsl_sf_result lnm;
    gsl_sf_result y;
    double Uam1 = r_Uam1.val;
    double Ua   = r_Ua.val;
    double Uap1;
    double ap;
    lm_max = GSL_MAX(lm_0, lm_1);
    Uam1 *= exp(lm_0-lm_max);
    Ua   *= exp(lm_1-lm_max);

    for(ap=a0; ap<a-0.1; ap += 1.0) {
      Uap1 = -(Uam1 + (b-2.0*ap-x)*Ua)/(ap*(1.0+ap-b));
      Uam1 = Ua;
      Ua   = Uap1;
      RESCALE_2(Ua,Uam1,scale_factor,scale_count);
    }

    lnscale = log(scale_factor);
    lnm.val = lm_max + scale_count * lnscale;
    lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_max) + fabs(scale_count * lnscale));
    y.val  = Ua;
    y.err  = fabs(r_Uam1.err/r_Uam1.val) * fabs(Ua);
    y.err += fabs(r_Ua.err/r_Ua.val) * fabs(Ua);
    y.err += 2.0 * GSL_DBL_EPSILON * (fabs(a-a0) + 1.0) * fabs(Ua);
    y.err *= fabs(lm_0-lm_max) + 1.0;
    y.err *= fabs(lm_1-lm_max) + 1.0;
    stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
    return GSL_ERROR_SELECT_3(stat_e, stat_0, stat_1);
  }
  else {
    if(b <= x) {
      /* Recurse backward to a near zero.
       */
      const double a0 = a - floor(a);
      const double scale_factor = GSL_SQRT_DBL_MAX;
      int scale_count = 0;
      gsl_sf_result lnm;
      gsl_sf_result y;
      double lnscale;
      double lm_0;
      double Uap1;
      double Ua;
      double Uam1;
      gsl_sf_result U0;
      double ap;
      double ru;
      double r;
      int CF1_count;
      int stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count);
      int stat_U0;
      int stat_e;
      r = ru/a;
      Ua   = GSL_SQRT_DBL_MIN;
      Uap1 = r * Ua;
      for(ap=a; ap>a0+0.1; ap -= 1.0) {
        Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1);
        Uap1 = Ua;
        Ua   = Uam1;
        RESCALE_2(Ua,Uap1,scale_factor,scale_count);
      }

      stat_U0 = hyperg_U_small_a_bgt0(a0, b, x, &U0, &lm_0);

      lnscale = log(scale_factor);
      lnm.val = lm_0 - scale_count * lnscale;
      lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_0) + fabs(scale_count * lnscale));
      y.val  = GSL_SQRT_DBL_MIN*(U0.val/Ua);
      y.err  = GSL_SQRT_DBL_MIN*(U0.err/fabs(Ua));
      y.err += 2.0 * GSL_DBL_EPSILON * (fabs(a0-a) + CF1_count + 1.0) * fabs(y.val);
      stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
      return GSL_ERROR_SELECT_3(stat_e, stat_U0, stat_CF1);
    }
    else {
      /* Recurse backward to near the b=2a+x line, then
       * forward from a near zero to get the normalization.
       */
      int scale_count_for = 0;
      int scale_count_bck = 0;
      const double scale_factor = GSL_SQRT_DBL_MAX;
      const double eps = a - floor(a);
      const double a0 = ( eps == 0.0 ? 1.0 : eps );
      const double a1 = a0 + ceil(0.5*(b-x) - a0);
      gsl_sf_result lnm;
      gsl_sf_result y;
      double lm_for;
      double lnscale;
      double Ua1_bck;
      double Ua1_for;
      int stat_for;
      int stat_bck;
      int stat_e;
      int CF1_count;

      {
        /* Recurse back to determine U(a1,b), sans normalization.
         */
        double Uap1;
        double Ua;
        double Uam1;
        double ap;
        double ru;
        double r;
        int stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count);
        r = ru/a;
        Ua   = GSL_SQRT_DBL_MIN;
        Uap1 = r * Ua;
        for(ap=a; ap>a1+0.1; ap -= 1.0) {
          Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1);
          Uap1 = Ua;
          Ua   = Uam1;
          RESCALE_2(Ua,Uap1,scale_factor,scale_count_bck);
        }
        Ua1_bck = Ua;
        stat_bck = stat_CF1;
      }
      {
        /* Recurse forward to determine U(a1,b) with
         * absolute normalization.
         */
        gsl_sf_result r_Uam1;
        gsl_sf_result r_Ua;
        double lm_0, lm_1;
        int stat_0 = hyperg_U_small_a_bgt0(a0-1.0, b, x, &r_Uam1, &lm_0);
        int stat_1 = hyperg_U_small_a_bgt0(a0,     b, x, &r_Ua,   &lm_1);
        double Uam1 = r_Uam1.val;
        double Ua   = r_Ua.val;
        double Uap1;
        double ap;

        lm_for = GSL_MAX(lm_0, lm_1);
        Uam1 *= exp(lm_0 - lm_for);
        Ua   *= exp(lm_1 - lm_for);

        for(ap=a0; ap<a1-0.1; ap += 1.0) {
          Uap1 = -(Uam1 + (b-2.0*ap-x)*Ua)/(ap*(1.0+ap-b));
          Uam1 = Ua;
          Ua   = Uap1;
          RESCALE_2(Ua,Uam1,scale_factor,scale_count_for);
        }
        Ua1_for = Ua;
        stat_for = GSL_ERROR_SELECT_2(stat_0, stat_1);
      }

      lnscale = log(scale_factor);
      lnm.val = lm_for + (scale_count_for - scale_count_bck)*lnscale;
      lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_for) + fabs(scale_count_for - scale_count_bck)*fabs(lnscale));
      y.val = GSL_SQRT_DBL_MIN*Ua1_for/Ua1_bck;
      y.err = 2.0 * GSL_DBL_EPSILON * (fabs(a-a0) + CF1_count + 1.0) * fabs(y.val);
      stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result);
      return GSL_ERROR_SELECT_3(stat_e, stat_bck, stat_for);
    }
  }
}


/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/


int
gsl_sf_hyperg_U_int_e10_e(const int a, const int b, const double x,
                             gsl_sf_result_e10 * result)
{
  /* CHECK_POINTER(result) */

  if(x <= 0.0) {
    DOMAIN_ERROR_E10(result);
  }
  else {
    if(b >= 1) {
      return hyperg_U_int_bge1(a, b, x, result);
    }
    else {
      /* Use the reflection formula
       * U(a,b,x) = x^(1-b) U(1+a-b,2-b,x)
       */
      gsl_sf_result_e10 U;
      double ln_x = log(x);
      int ap = 1 + a - b;
      int bp = 2 - b;
      int stat_e;
      int stat_U = hyperg_U_int_bge1(ap, bp, x, &U);
      double ln_pre_val = (1.0-b)*ln_x;
      double ln_pre_err = 2.0 * GSL_DBL_EPSILON * (fabs(b)+1.0) * fabs(ln_x);
      ln_pre_err += 2.0 * GSL_DBL_EPSILON * fabs(1.0-b); /* error in log(x) */
      stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val + U.e10*M_LN10, ln_pre_err,
                                            U.val, U.err,
                                            result);
      return GSL_ERROR_SELECT_2(stat_e, stat_U);
    }
  }
}


int
gsl_sf_hyperg_U_e10_e(const double a, const double b, const double x,
                         gsl_sf_result_e10 * result)
{
  const double rinta = floor(a + 0.5);
  const double rintb = floor(b + 0.5);
  const int a_integer = ( fabs(a - rinta) < INT_THRESHOLD );
  const int b_integer = ( fabs(b - rintb) < INT_THRESHOLD );

  /* CHECK_POINTER(result) */

  if(x <= 0.0) {
    DOMAIN_ERROR_E10(result);
  }
  else if(a == 0.0) {
    result->val = 1.0;
    result->err = 0.0;
    result->e10 = 0;
    return GSL_SUCCESS;
  }
  else if(a_integer && b_integer) {
    return gsl_sf_hyperg_U_int_e10_e(rinta, rintb, x, result);
  }
  else {
    if(b >= 1.0) {
      /* Use b >= 1 function.
       */
      return hyperg_U_bge1(a, b, x, result);
    }
    else {
      /* Use the reflection formula
       * U(a,b,x) = x^(1-b) U(1+a-b,2-b,x)
       */
      const double lnx = log(x);
      const double ln_pre_val = (1.0-b)*lnx;
      const double ln_pre_err = fabs(lnx) * 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(b));
      const double ap = 1.0 + a - b;
      const double bp = 2.0 - b;
      gsl_sf_result_e10 U;
      int stat_U = hyperg_U_bge1(ap, bp, x, &U);
      int stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val + U.e10*M_LN10, ln_pre_err,
                                            U.val, U.err,
                                            result);
      return GSL_ERROR_SELECT_2(stat_e, stat_U);
    }
  }
}


int
gsl_sf_hyperg_U_int_e(const int a, const int b, const double x, gsl_sf_result * result)
{
  gsl_sf_result_e10 re;
  int stat_U = gsl_sf_hyperg_U_int_e10_e(a, b, x, &re);
  int stat_c = gsl_sf_result_smash_e(&re, result);
  return GSL_ERROR_SELECT_2(stat_c, stat_U);
}


int
gsl_sf_hyperg_U_e(const double a, const double b, const double x, gsl_sf_result * result)
{
  gsl_sf_result_e10 re;
  int stat_U = gsl_sf_hyperg_U_e10_e(a, b, x, &re);
  int stat_c = gsl_sf_result_smash_e(&re, result);
  return GSL_ERROR_SELECT_2(stat_c, stat_U);
}


/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/

#include "eval.h"

double gsl_sf_hyperg_U_int(const int a, const int b, const double x)
{
  EVAL_RESULT(gsl_sf_hyperg_U_int_e(a, b, x, &result));
}

double gsl_sf_hyperg_U(const double a, const double b, const double x)
{
  EVAL_RESULT(gsl_sf_hyperg_U_e(a, b, x, &result));
}