summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/hyperg_2F1.c
blob: a186a2276c69260dec6ae54051ed031b2965459c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
/* specfunc/hyperg_2F1.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman */

#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_pow_int.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_psi.h>
#include <gsl/gsl_sf_hyperg.h>

#include "error.h"

#define locEPS (1000.0*GSL_DBL_EPSILON)


/* Assumes c != negative integer.
 */
static int
hyperg_2F1_series(const double a, const double b, const double c,
                  const double x, 
                  gsl_sf_result * result
                  )
{
  double sum_pos = 1.0;
  double sum_neg = 0.0;
  double del_pos = 1.0;
  double del_neg = 0.0;
  double del = 1.0;
  double k = 0.0;
  int i = 0;

  if(fabs(c) < GSL_DBL_EPSILON) {
    result->val = 0.0; /* FIXME: ?? */
    result->err = 1.0;
    GSL_ERROR ("error", GSL_EDOM);
  }

  do {
    if(++i > 30000) {
      result->val  = sum_pos - sum_neg;
      result->err  = del_pos + del_neg;
      result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg);
      result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k)+1.0) * fabs(result->val);
      GSL_ERROR ("error", GSL_EMAXITER);
    }
    del *= (a+k)*(b+k) * x / ((c+k) * (k+1.0));  /* Gauss series */

    if(del > 0.0) {
      del_pos  =  del;
      sum_pos +=  del;
    }
    else if(del == 0.0) {
      /* Exact termination (a or b was a negative integer).
       */
      del_pos = 0.0;
      del_neg = 0.0;
      break;
    }
    else {
      del_neg  = -del;
      sum_neg -=  del;
    }

    k += 1.0;
  } while(fabs((del_pos + del_neg)/(sum_pos-sum_neg)) > GSL_DBL_EPSILON);

  result->val  = sum_pos - sum_neg;
  result->err  = del_pos + del_neg;
  result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg);
  result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k) + 1.0) * fabs(result->val);

  return GSL_SUCCESS;
}


/* a = aR + i aI, b = aR - i aI */
static
int
hyperg_2F1_conj_series(const double aR, const double aI, const double c,
                       double x,
                       gsl_sf_result * result)
{
  if(c == 0.0) {
    result->val = 0.0; /* FIXME: should be Inf */
    result->err = 0.0;
    GSL_ERROR ("error", GSL_EDOM);
  }
  else {
    double sum_pos = 1.0;
    double sum_neg = 0.0;
    double del_pos = 1.0;
    double del_neg = 0.0;
    double del = 1.0;
    double k = 0.0;
    do {
      del *= ((aR+k)*(aR+k) + aI*aI)/((k+1.0)*(c+k)) * x;

      if(del >= 0.0) {
        del_pos  =  del;
        sum_pos +=  del;
      }
      else {
        del_neg  = -del;
        sum_neg -=  del;
      }

      if(k > 30000) {
        result->val  = sum_pos - sum_neg;
        result->err  = del_pos + del_neg;
        result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg);
        result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k)+1.0) * fabs(result->val);
        GSL_ERROR ("error", GSL_EMAXITER);
      }

      k += 1.0;
    } while(fabs((del_pos + del_neg)/(sum_pos - sum_neg)) > GSL_DBL_EPSILON);

    result->val  = sum_pos - sum_neg;
    result->err  = del_pos + del_neg;
    result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg);
    result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k) + 1.0) * fabs(result->val);

    return GSL_SUCCESS;
  }
}


/* Luke's rational approximation. The most accesible
 * discussion is in [Kolbig, CPC 23, 51 (1981)].
 * The convergence is supposedly guaranteed for x < 0.
 * You have to read Luke's books to see this and other
 * results. Unfortunately, the stability is not so
 * clear to me, although it seems very efficient when
 * it works.
 */
static
int
hyperg_2F1_luke(const double a, const double b, const double c,
                const double xin, 
                gsl_sf_result * result)
{
  int stat_iter;
  const double RECUR_BIG = 1.0e+50;
  const int nmax = 20000;
  int n = 3;
  const double x  = -xin;
  const double x3 = x*x*x;
  const double t0 = a*b/c;
  const double t1 = (a+1.0)*(b+1.0)/(2.0*c);
  const double t2 = (a+2.0)*(b+2.0)/(2.0*(c+1.0));
  double F = 1.0;
  double prec;

  double Bnm3 = 1.0;                                  /* B0 */
  double Bnm2 = 1.0 + t1 * x;                         /* B1 */
  double Bnm1 = 1.0 + t2 * x * (1.0 + t1/3.0 * x);    /* B2 */
 
  double Anm3 = 1.0;                                                      /* A0 */
  double Anm2 = Bnm2 - t0 * x;                                            /* A1 */
  double Anm1 = Bnm1 - t0*(1.0 + t2*x)*x + t0 * t1 * (c/(c+1.0)) * x*x;   /* A2 */

  while(1) {
    double npam1 = n + a - 1;
    double npbm1 = n + b - 1;
    double npcm1 = n + c - 1;
    double npam2 = n + a - 2;
    double npbm2 = n + b - 2;
    double npcm2 = n + c - 2;
    double tnm1  = 2*n - 1;
    double tnm3  = 2*n - 3;
    double tnm5  = 2*n - 5;
    double n2 = n*n;
    double F1 =  (3.0*n2 + (a+b-6)*n + 2 - a*b - 2*(a+b)) / (2*tnm3*npcm1);
    double F2 = -(3.0*n2 - (a+b+6)*n + 2 - a*b)*npam1*npbm1/(4*tnm1*tnm3*npcm2*npcm1);
    double F3 = (npam2*npam1*npbm2*npbm1*(n-a-2)*(n-b-2)) / (8*tnm3*tnm3*tnm5*(n+c-3)*npcm2*npcm1);
    double E  = -npam1*npbm1*(n-c-1) / (2*tnm3*npcm2*npcm1);

    double An = (1.0+F1*x)*Anm1 + (E + F2*x)*x*Anm2 + F3*x3*Anm3;
    double Bn = (1.0+F1*x)*Bnm1 + (E + F2*x)*x*Bnm2 + F3*x3*Bnm3;
    double r = An/Bn;

    prec = fabs((F - r)/F);
    F = r;

    if(prec < GSL_DBL_EPSILON || n > nmax) break;

    if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
      An   /= RECUR_BIG;
      Bn   /= RECUR_BIG;
      Anm1 /= RECUR_BIG;
      Bnm1 /= RECUR_BIG;
      Anm2 /= RECUR_BIG;
      Bnm2 /= RECUR_BIG;
      Anm3 /= RECUR_BIG;
      Bnm3 /= RECUR_BIG;
    }
    else if(fabs(An) < 1.0/RECUR_BIG || fabs(Bn) < 1.0/RECUR_BIG) {
      An   *= RECUR_BIG;
      Bn   *= RECUR_BIG;
      Anm1 *= RECUR_BIG;
      Bnm1 *= RECUR_BIG;
      Anm2 *= RECUR_BIG;
      Bnm2 *= RECUR_BIG;
      Anm3 *= RECUR_BIG;
      Bnm3 *= RECUR_BIG;
    }

    n++;
    Bnm3 = Bnm2;
    Bnm2 = Bnm1;
    Bnm1 = Bn;
    Anm3 = Anm2;
    Anm2 = Anm1;
    Anm1 = An;
  }

  result->val  = F;
  result->err  = 2.0 * fabs(prec * F);
  result->err += 2.0 * GSL_DBL_EPSILON * (n+1.0) * fabs(F);

  /* FIXME: just a hack: there's a lot of shit going on here */
  result->err *= 8.0 * (fabs(a) + fabs(b) + 1.0);

  stat_iter = (n >= nmax ? GSL_EMAXITER : GSL_SUCCESS );

  return stat_iter;
}


/* Luke's rational approximation for the
 * case a = aR + i aI, b = aR - i aI.
 */
static
int
hyperg_2F1_conj_luke(const double aR, const double aI, const double c,
                     const double xin, 
                     gsl_sf_result * result)
{
  int stat_iter;
  const double RECUR_BIG = 1.0e+50;
  const int nmax = 10000;
  int n = 3;
  const double x = -xin;
  const double x3 = x*x*x;
  const double atimesb = aR*aR + aI*aI;
  const double apb     = 2.0*aR;
  const double t0 = atimesb/c;
  const double t1 = (atimesb +     apb + 1.0)/(2.0*c);
  const double t2 = (atimesb + 2.0*apb + 4.0)/(2.0*(c+1.0));
  double F = 1.0;
  double prec;

  double Bnm3 = 1.0;                                  /* B0 */
  double Bnm2 = 1.0 + t1 * x;                         /* B1 */
  double Bnm1 = 1.0 + t2 * x * (1.0 + t1/3.0 * x);    /* B2 */
 
  double Anm3 = 1.0;                                                      /* A0 */
  double Anm2 = Bnm2 - t0 * x;                                            /* A1 */
  double Anm1 = Bnm1 - t0*(1.0 + t2*x)*x + t0 * t1 * (c/(c+1.0)) * x*x;   /* A2 */

  while(1) {
    double nm1 = n - 1;
    double nm2 = n - 2;
    double npam1_npbm1 = atimesb + nm1*apb + nm1*nm1;
    double npam2_npbm2 = atimesb + nm2*apb + nm2*nm2;
    double npcm1 = nm1 + c;
    double npcm2 = nm2 + c;
    double tnm1  = 2*n - 1;
    double tnm3  = 2*n - 3;
    double tnm5  = 2*n - 5;
    double n2 = n*n;
    double F1 =  (3.0*n2 + (apb-6)*n + 2 - atimesb - 2*apb) / (2*tnm3*npcm1);
    double F2 = -(3.0*n2 - (apb+6)*n + 2 - atimesb)*npam1_npbm1/(4*tnm1*tnm3*npcm2*npcm1);
    double F3 = (npam2_npbm2*npam1_npbm1*(nm2*nm2 - nm2*apb + atimesb)) / (8*tnm3*tnm3*tnm5*(n+c-3)*npcm2*npcm1);
    double E  = -npam1_npbm1*(n-c-1) / (2*tnm3*npcm2*npcm1);

    double An = (1.0+F1*x)*Anm1 + (E + F2*x)*x*Anm2 + F3*x3*Anm3;
    double Bn = (1.0+F1*x)*Bnm1 + (E + F2*x)*x*Bnm2 + F3*x3*Bnm3;
    double r = An/Bn;

    prec = fabs(F - r)/fabs(F);
    F = r;

    if(prec < GSL_DBL_EPSILON || n > nmax) break;

    if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
      An   /= RECUR_BIG;
      Bn   /= RECUR_BIG;
      Anm1 /= RECUR_BIG;
      Bnm1 /= RECUR_BIG;
      Anm2 /= RECUR_BIG;
      Bnm2 /= RECUR_BIG;
      Anm3 /= RECUR_BIG;
      Bnm3 /= RECUR_BIG;
    }
    else if(fabs(An) < 1.0/RECUR_BIG || fabs(Bn) < 1.0/RECUR_BIG) {
      An   *= RECUR_BIG;
      Bn   *= RECUR_BIG;
      Anm1 *= RECUR_BIG;
      Bnm1 *= RECUR_BIG;
      Anm2 *= RECUR_BIG;
      Bnm2 *= RECUR_BIG;
      Anm3 *= RECUR_BIG;
      Bnm3 *= RECUR_BIG;
    }

    n++;
    Bnm3 = Bnm2;
    Bnm2 = Bnm1;
    Bnm1 = Bn;
    Anm3 = Anm2;
    Anm2 = Anm1;
    Anm1 = An;
  }
  
  result->val  = F;
  result->err  = 2.0 * fabs(prec * F);
  result->err += 2.0 * GSL_DBL_EPSILON * (n+1.0) * fabs(F);

  /* FIXME: see above */
  result->err *= 8.0 * (fabs(aR) + fabs(aI) + 1.0);

  stat_iter = (n >= nmax ? GSL_EMAXITER : GSL_SUCCESS );

  return stat_iter;
}


/* Do the reflection described in [Moshier, p. 334].
 * Assumes a,b,c != neg integer.
 */
static
int
hyperg_2F1_reflect(const double a, const double b, const double c,
                   const double x, gsl_sf_result * result)
{
  const double d = c - a - b;
  const int intd  = floor(d+0.5);
  const int d_integer = ( fabs(d - intd) < locEPS );

  if(d_integer) {
    const double ln_omx = log(1.0 - x);
    const double ad = fabs(d);
    int stat_F2 = GSL_SUCCESS;
    double sgn_2;
    gsl_sf_result F1;
    gsl_sf_result F2;
    double d1, d2;
    gsl_sf_result lng_c;
    gsl_sf_result lng_ad2;
    gsl_sf_result lng_bd2;
    int stat_c;
    int stat_ad2;
    int stat_bd2;

    if(d >= 0.0) {
      d1 = d;
      d2 = 0.0;
    }
    else {
      d1 = 0.0;
      d2 = d;
    }

    stat_ad2 = gsl_sf_lngamma_e(a+d2, &lng_ad2);
    stat_bd2 = gsl_sf_lngamma_e(b+d2, &lng_bd2);
    stat_c   = gsl_sf_lngamma_e(c,    &lng_c);

    /* Evaluate F1.
     */
    if(ad < GSL_DBL_EPSILON) {
      /* d = 0 */
      F1.val = 0.0;
      F1.err = 0.0;
    }
    else {
      gsl_sf_result lng_ad;
      gsl_sf_result lng_ad1;
      gsl_sf_result lng_bd1;
      int stat_ad  = gsl_sf_lngamma_e(ad,   &lng_ad);
      int stat_ad1 = gsl_sf_lngamma_e(a+d1, &lng_ad1);
      int stat_bd1 = gsl_sf_lngamma_e(b+d1, &lng_bd1);

      if(stat_ad1 == GSL_SUCCESS && stat_bd1 == GSL_SUCCESS && stat_ad == GSL_SUCCESS) {
        /* Gamma functions in the denominator are ok.
         * Proceed with evaluation.
         */
        int i;
        double sum1 = 1.0;
        double term = 1.0;
        double ln_pre1_val = lng_ad.val + lng_c.val + d2*ln_omx - lng_ad1.val - lng_bd1.val;
        double ln_pre1_err = lng_ad.err + lng_c.err + lng_ad1.err + lng_bd1.err + GSL_DBL_EPSILON * fabs(ln_pre1_val);
        int stat_e;

        /* Do F1 sum.
         */
        for(i=1; i<ad; i++) {
          int j = i-1;
          term *= (a + d2 + j) * (b + d2 + j) / (1.0 + d2 + j) / i * (1.0-x);
          sum1 += term;
        }
        
        stat_e = gsl_sf_exp_mult_err_e(ln_pre1_val, ln_pre1_err,
                                       sum1, GSL_DBL_EPSILON*fabs(sum1),
                                       &F1);
        if(stat_e == GSL_EOVRFLW) {
          OVERFLOW_ERROR(result);
        }
      }
      else {
        /* Gamma functions in the denominator were not ok.
         * So the F1 term is zero.
         */
        F1.val = 0.0;
        F1.err = 0.0;
      }
    } /* end F1 evaluation */


    /* Evaluate F2.
     */
    if(stat_ad2 == GSL_SUCCESS && stat_bd2 == GSL_SUCCESS) {
      /* Gamma functions in the denominator are ok.
       * Proceed with evaluation.
       */
      const int maxiter = 2000;
      double psi_1 = -M_EULER;
      gsl_sf_result psi_1pd; 
      gsl_sf_result psi_apd1;
      gsl_sf_result psi_bpd1;
      int stat_1pd  = gsl_sf_psi_e(1.0 + ad, &psi_1pd);
      int stat_apd1 = gsl_sf_psi_e(a + d1,   &psi_apd1);
      int stat_bpd1 = gsl_sf_psi_e(b + d1,   &psi_bpd1);
      int stat_dall = GSL_ERROR_SELECT_3(stat_1pd, stat_apd1, stat_bpd1);

      double psi_val = psi_1 + psi_1pd.val - psi_apd1.val - psi_bpd1.val - ln_omx;
      double psi_err = psi_1pd.err + psi_apd1.err + psi_bpd1.err + GSL_DBL_EPSILON*fabs(psi_val);
      double fact = 1.0;
      double sum2_val = psi_val;
      double sum2_err = psi_err;
      double ln_pre2_val = lng_c.val + d1*ln_omx - lng_ad2.val - lng_bd2.val;
      double ln_pre2_err = lng_c.err + lng_ad2.err + lng_bd2.err + GSL_DBL_EPSILON * fabs(ln_pre2_val);
      int stat_e;

      int j;

      /* Do F2 sum.
       */
      for(j=1; j<maxiter; j++) {
        /* values for psi functions use recurrence; Abramowitz+Stegun 6.3.5 */
        double term1 = 1.0/(double)j  + 1.0/(ad+j);
        double term2 = 1.0/(a+d1+j-1.0) + 1.0/(b+d1+j-1.0);
        double delta = 0.0;
        psi_val += term1 - term2;
        psi_err += GSL_DBL_EPSILON * (fabs(term1) + fabs(term2));
        fact *= (a+d1+j-1.0)*(b+d1+j-1.0)/((ad+j)*j) * (1.0-x);
        delta = fact * psi_val;
        sum2_val += delta;
        sum2_err += fabs(fact * psi_err) + GSL_DBL_EPSILON*fabs(delta);
        if(fabs(delta) < GSL_DBL_EPSILON * fabs(sum2_val)) break;
      }

      if(j == maxiter) stat_F2 = GSL_EMAXITER;

      if(sum2_val == 0.0) {
        F2.val = 0.0;
        F2.err = 0.0;
      }
      else {
        stat_e = gsl_sf_exp_mult_err_e(ln_pre2_val, ln_pre2_err,
                                       sum2_val, sum2_err,
                                       &F2);
        if(stat_e == GSL_EOVRFLW) {
          result->val = 0.0;
          result->err = 0.0;
          GSL_ERROR ("error", GSL_EOVRFLW);
        }
      }
      stat_F2 = GSL_ERROR_SELECT_2(stat_F2, stat_dall);
    }
    else {
      /* Gamma functions in the denominator not ok.
       * So the F2 term is zero.
       */
      F2.val = 0.0;
      F2.err = 0.0;
    } /* end F2 evaluation */

    sgn_2 = ( GSL_IS_ODD(intd) ? -1.0 : 1.0 );
    result->val  = F1.val + sgn_2 * F2.val;
    result->err  = F1.err + F2. err;
    result->err += 2.0 * GSL_DBL_EPSILON * (fabs(F1.val) + fabs(F2.val));
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return stat_F2;
  }
  else {
    /* d not an integer */

    gsl_sf_result pre1, pre2;
    double sgn1, sgn2;
    gsl_sf_result F1, F2;
    int status_F1, status_F2;

    /* These gamma functions appear in the denominator, so we
     * catch their harmless domain errors and set the terms to zero.
     */
    gsl_sf_result ln_g1ca,  ln_g1cb,  ln_g2a,  ln_g2b;
    double sgn_g1ca, sgn_g1cb, sgn_g2a, sgn_g2b;
    int stat_1ca = gsl_sf_lngamma_sgn_e(c-a, &ln_g1ca, &sgn_g1ca);
    int stat_1cb = gsl_sf_lngamma_sgn_e(c-b, &ln_g1cb, &sgn_g1cb);
    int stat_2a  = gsl_sf_lngamma_sgn_e(a, &ln_g2a, &sgn_g2a);
    int stat_2b  = gsl_sf_lngamma_sgn_e(b, &ln_g2b, &sgn_g2b);
    int ok1 = (stat_1ca == GSL_SUCCESS && stat_1cb == GSL_SUCCESS);
    int ok2 = (stat_2a  == GSL_SUCCESS && stat_2b  == GSL_SUCCESS);
    
    gsl_sf_result ln_gc,  ln_gd,  ln_gmd;
    double sgn_gc, sgn_gd, sgn_gmd;
    gsl_sf_lngamma_sgn_e( c, &ln_gc,  &sgn_gc);
    gsl_sf_lngamma_sgn_e( d, &ln_gd,  &sgn_gd);
    gsl_sf_lngamma_sgn_e(-d, &ln_gmd, &sgn_gmd);
    
    sgn1 = sgn_gc * sgn_gd  * sgn_g1ca * sgn_g1cb;
    sgn2 = sgn_gc * sgn_gmd * sgn_g2a  * sgn_g2b;

    if(ok1 && ok2) {
      double ln_pre1_val = ln_gc.val + ln_gd.val  - ln_g1ca.val - ln_g1cb.val;
      double ln_pre2_val = ln_gc.val + ln_gmd.val - ln_g2a.val  - ln_g2b.val + d*log(1.0-x);
      double ln_pre1_err = ln_gc.err + ln_gd.err + ln_g1ca.err + ln_g1cb.err;
      double ln_pre2_err = ln_gc.err + ln_gmd.err + ln_g2a.err  + ln_g2b.err;
      if(ln_pre1_val < GSL_LOG_DBL_MAX && ln_pre2_val < GSL_LOG_DBL_MAX) {
        gsl_sf_exp_err_e(ln_pre1_val, ln_pre1_err, &pre1);
        gsl_sf_exp_err_e(ln_pre2_val, ln_pre2_err, &pre2);
        pre1.val *= sgn1;
        pre2.val *= sgn2;
      }
      else {
        OVERFLOW_ERROR(result);
      }
    }
    else if(ok1 && !ok2) {
      double ln_pre1_val = ln_gc.val + ln_gd.val - ln_g1ca.val - ln_g1cb.val;
      double ln_pre1_err = ln_gc.err + ln_gd.err + ln_g1ca.err + ln_g1cb.err;
      if(ln_pre1_val < GSL_LOG_DBL_MAX) {
        gsl_sf_exp_err_e(ln_pre1_val, ln_pre1_err, &pre1);
        pre1.val *= sgn1;
        pre2.val = 0.0;
        pre2.err = 0.0;
      }
      else {
        OVERFLOW_ERROR(result);
      }
    }
    else if(!ok1 && ok2) {
      double ln_pre2_val = ln_gc.val + ln_gmd.val - ln_g2a.val - ln_g2b.val + d*log(1.0-x);
      double ln_pre2_err = ln_gc.err + ln_gmd.err + ln_g2a.err + ln_g2b.err;
      if(ln_pre2_val < GSL_LOG_DBL_MAX) {
        pre1.val = 0.0;
        pre1.err = 0.0;
        gsl_sf_exp_err_e(ln_pre2_val, ln_pre2_err, &pre2);
        pre2.val *= sgn2;
      }
      else {
        OVERFLOW_ERROR(result);
      }
    }
    else {
      pre1.val = 0.0;
      pre2.val = 0.0;
      UNDERFLOW_ERROR(result);
    }

    status_F1 = hyperg_2F1_series(  a,   b, 1.0-d, 1.0-x, &F1);
    status_F2 = hyperg_2F1_series(c-a, c-b, 1.0+d, 1.0-x, &F2);

    result->val  = pre1.val*F1.val + pre2.val*F2.val;
    result->err  = fabs(pre1.val*F1.err) + fabs(pre2.val*F2.err);
    result->err += fabs(pre1.err*F1.val) + fabs(pre2.err*F2.val);
    result->err += 2.0 * GSL_DBL_EPSILON * (fabs(pre1.val*F1.val) + fabs(pre2.val*F2.val));
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);

    return GSL_SUCCESS;
  }
}


static int pow_omx(const double x, const double p, gsl_sf_result * result)
{
  double ln_omx;
  double ln_result;
  if(fabs(x) < GSL_ROOT5_DBL_EPSILON) {
    ln_omx = -x*(1.0 + x*(1.0/2.0 + x*(1.0/3.0 + x/4.0 + x*x/5.0)));
  }
  else {
    ln_omx = log(1.0-x);
  }
  ln_result = p * ln_omx;
  return gsl_sf_exp_err_e(ln_result, GSL_DBL_EPSILON * fabs(ln_result), result);
}


/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/

int
gsl_sf_hyperg_2F1_e(double a, double b, const double c,
                       const double x,
                       gsl_sf_result * result)
{
  const double d = c - a - b;
  const double rinta = floor(a + 0.5);
  const double rintb = floor(b + 0.5);
  const double rintc = floor(c + 0.5);
  const int a_neg_integer = ( a < 0.0  &&  fabs(a - rinta) < locEPS );
  const int b_neg_integer = ( b < 0.0  &&  fabs(b - rintb) < locEPS );
  const int c_neg_integer = ( c < 0.0  &&  fabs(c - rintc) < locEPS );

  result->val = 0.0;
  result->err = 0.0;

  if(x < -1.0 || 1.0 <= x) {
    DOMAIN_ERROR(result);
  }

  if(c_neg_integer) {
    if(! (a_neg_integer && a > c + 0.1)) DOMAIN_ERROR(result);
    if(! (b_neg_integer && b > c + 0.1)) DOMAIN_ERROR(result);
  }

  if(fabs(c-b) < locEPS || fabs(c-a) < locEPS) {
    return pow_omx(x, d, result);  /* (1-x)^(c-a-b) */
  }

  if(a >= 0.0 && b >= 0.0 && c >=0.0 && x >= 0.0 && x < 0.995) {
    /* Series has all positive definite
     * terms and x is not close to 1.
     */
    return hyperg_2F1_series(a, b, c, x, result);
  }

  if(fabs(a) < 10.0 && fabs(b) < 10.0) {
    /* a and b are not too large, so we attempt
     * variations on the series summation.
     */
    if(a_neg_integer) {
      return hyperg_2F1_series(rinta, b, c, x, result);
    }
    if(b_neg_integer) {
      return hyperg_2F1_series(a, rintb, c, x, result);
    }

    if(x < -0.25) {
      return hyperg_2F1_luke(a, b, c, x, result);
    }
    else if(x < 0.5) {
      return hyperg_2F1_series(a, b, c, x, result);
    }
    else {
      if(fabs(c) > 10.0) {
        return hyperg_2F1_series(a, b, c, x, result);
      }
      else {
        return hyperg_2F1_reflect(a, b, c, x, result);
      }
    }
  }
  else {
    /* Either a or b or both large.
     * Introduce some new variables ap,bp so that bp is
     * the larger in magnitude.
     */
    double ap, bp; 
    if(fabs(a) > fabs(b)) {
      bp = a;
      ap = b;
    }
    else {
      bp = b;
      ap = a;
    }

    if(x < 0.0) {
      /* What the hell, maybe Luke will converge.
       */
      return hyperg_2F1_luke(a, b, c, x, result);
    }

    if(GSL_MAX_DBL(fabs(a),1.0)*fabs(bp)*fabs(x) < 2.0*fabs(c)) {
      /* If c is large enough or x is small enough,
       * we can attempt the series anyway.
       */
      return hyperg_2F1_series(a, b, c, x, result);
    }

    if(fabs(bp*bp*x*x) < 0.001*fabs(bp) && fabs(a) < 10.0) {
      /* The famous but nearly worthless "large b" asymptotic.
       */
      int stat = gsl_sf_hyperg_1F1_e(a, c, bp*x, result);
      result->err = 0.001 * fabs(result->val);
      return stat;
    }

    /* We give up. */
    result->val = 0.0;
    result->err = 0.0;
    GSL_ERROR ("error", GSL_EUNIMPL);
  }
}


int
gsl_sf_hyperg_2F1_conj_e(const double aR, const double aI, const double c,
                            const double x,
                            gsl_sf_result * result)
{
  const double ax = fabs(x);
  const double rintc = floor(c + 0.5);
  const int c_neg_integer = ( c < 0.0  &&  fabs(c - rintc) < locEPS );

  result->val = 0.0;
  result->err = 0.0;

  if(ax >= 1.0 || c_neg_integer || c == 0.0) {
    DOMAIN_ERROR(result);
  }

  if(   (ax < 0.25 && fabs(aR) < 20.0 && fabs(aI) < 20.0)
     || (c > 0.0 && x > 0.0)
    ) {
    return hyperg_2F1_conj_series(aR, aI, c, x, result);
  }
  else if(fabs(aR) < 10.0 && fabs(aI) < 10.0) {
    if(x < -0.25) {
      return hyperg_2F1_conj_luke(aR, aI, c, x, result);
    }
    else {
      return hyperg_2F1_conj_series(aR, aI, c, x, result);
    }
  }
  else {
    if(x < 0.0) {
      /* What the hell, maybe Luke will converge.
       */
      return hyperg_2F1_conj_luke(aR, aI, c, x, result); 
    }

    /* Give up. */
    result->val = 0.0;
    result->err = 0.0;
    GSL_ERROR ("error", GSL_EUNIMPL);
  }
}


int
gsl_sf_hyperg_2F1_renorm_e(const double a, const double b, const double c,
                              const double x,
                              gsl_sf_result * result
                              )
{
  const double rinta = floor(a + 0.5);
  const double rintb = floor(b + 0.5);
  const double rintc = floor(c + 0.5);
  const int a_neg_integer = ( a < 0.0  &&  fabs(a - rinta) < locEPS );
  const int b_neg_integer = ( b < 0.0  &&  fabs(b - rintb) < locEPS );
  const int c_neg_integer = ( c < 0.0  &&  fabs(c - rintc) < locEPS );
  
  if(c_neg_integer) {
    if((a_neg_integer && a > c+0.1) || (b_neg_integer && b > c+0.1)) {
      /* 2F1 terminates early */
      result->val = 0.0;
      result->err = 0.0;
      return GSL_SUCCESS;
    }
    else {
      /* 2F1 does not terminate early enough, so something survives */
      /* [Abramowitz+Stegun, 15.1.2] */
      gsl_sf_result g1, g2, g3, g4, g5;
      double s1, s2, s3, s4, s5;
      int stat = 0;
      stat += gsl_sf_lngamma_sgn_e(a-c+1, &g1, &s1);
      stat += gsl_sf_lngamma_sgn_e(b-c+1, &g2, &s2);
      stat += gsl_sf_lngamma_sgn_e(a, &g3, &s3);
      stat += gsl_sf_lngamma_sgn_e(b, &g4, &s4);
      stat += gsl_sf_lngamma_sgn_e(-c+2, &g5, &s5);
      if(stat != 0) {
        DOMAIN_ERROR(result);
      }
      else {
        gsl_sf_result F;
        int stat_F = gsl_sf_hyperg_2F1_e(a-c+1, b-c+1, -c+2, x, &F);
        double ln_pre_val = g1.val + g2.val - g3.val - g4.val - g5.val;
        double ln_pre_err = g1.err + g2.err + g3.err + g4.err + g5.err;
        double sg  = s1 * s2 * s3 * s4 * s5;
        int stat_e = gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err,
                                              sg * F.val, F.err,
                                              result);
        return GSL_ERROR_SELECT_2(stat_e, stat_F);
      }
    }
  }
  else {
    /* generic c */
    gsl_sf_result F;
    gsl_sf_result lng;
    double sgn;
    int stat_g = gsl_sf_lngamma_sgn_e(c, &lng, &sgn);
    int stat_F = gsl_sf_hyperg_2F1_e(a, b, c, x, &F);
    int stat_e = gsl_sf_exp_mult_err_e(-lng.val, lng.err,
                                          sgn*F.val, F.err,
                                          result);
    return GSL_ERROR_SELECT_3(stat_e, stat_F, stat_g);
  }
}


int
gsl_sf_hyperg_2F1_conj_renorm_e(const double aR, const double aI, const double c,
                                   const double x,
                                   gsl_sf_result * result
                                   )
{
  const double rintc = floor(c  + 0.5);
  const double rinta = floor(aR + 0.5);
  const int a_neg_integer = ( aR < 0.0 && fabs(aR-rinta) < locEPS && aI == 0.0);
  const int c_neg_integer = (  c < 0.0 && fabs(c - rintc) < locEPS );

  if(c_neg_integer) {
    if(a_neg_integer && aR > c+0.1) {
      /* 2F1 terminates early */
      result->val = 0.0;
      result->err = 0.0;
      return GSL_SUCCESS;
    }
    else {
      /* 2F1 does not terminate early enough, so something survives */
      /* [Abramowitz+Stegun, 15.1.2] */
      gsl_sf_result g1, g2;
      gsl_sf_result g3;
      gsl_sf_result a1, a2;
      int stat = 0;
      stat += gsl_sf_lngamma_complex_e(aR-c+1, aI, &g1, &a1);
      stat += gsl_sf_lngamma_complex_e(aR, aI, &g2, &a2);
      stat += gsl_sf_lngamma_e(-c+2.0, &g3);
      if(stat != 0) {
        DOMAIN_ERROR(result);
      }
      else {
        gsl_sf_result F;
        int stat_F = gsl_sf_hyperg_2F1_conj_e(aR-c+1, aI, -c+2, x, &F);
        double ln_pre_val = 2.0*(g1.val - g2.val) - g3.val;
        double ln_pre_err = 2.0 * (g1.err + g2.err) + g3.err;
        int stat_e = gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err,
                                              F.val, F.err,
                                              result);
        return GSL_ERROR_SELECT_2(stat_e, stat_F);
      }
    }
  }
  else {
    /* generic c */
    gsl_sf_result F;
    gsl_sf_result lng;
    double sgn;
    int stat_g = gsl_sf_lngamma_sgn_e(c, &lng, &sgn);
    int stat_F = gsl_sf_hyperg_2F1_conj_e(aR, aI, c, x, &F);
    int stat_e = gsl_sf_exp_mult_err_e(-lng.val, lng.err,
                                          sgn*F.val, F.err,
                                          result);
    return GSL_ERROR_SELECT_3(stat_e, stat_F, stat_g);
  }
}


/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/

#include "eval.h"

double gsl_sf_hyperg_2F1(double a, double b, double c, double x)
{
  EVAL_RESULT(gsl_sf_hyperg_2F1_e(a, b, c, x, &result));
}

double gsl_sf_hyperg_2F1_conj(double aR, double aI, double c, double x)
{
  EVAL_RESULT(gsl_sf_hyperg_2F1_conj_e(aR, aI, c, x, &result));
}

double gsl_sf_hyperg_2F1_renorm(double a, double b, double c, double x)
{
  EVAL_RESULT(gsl_sf_hyperg_2F1_renorm_e(a, b, c, x, &result));
}

double gsl_sf_hyperg_2F1_conj_renorm(double aR, double aI, double c, double x)
{
  EVAL_RESULT(gsl_sf_hyperg_2F1_conj_renorm_e(aR, aI, c, x, &result));
}