summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/erfc.c
blob: 2e2cff5718ca5ca6572f01cd618b3fb333e62189 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/* specfunc/erfc.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Gerard Jungman
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  J. Theiler (modifications by G. Jungman) */

/*
 * See Hart et al, Computer Approximations, John Wiley and Sons, New York (1968)
 * (This applies only to the erfc8 stuff, which is the part
 *  of the original code that survives. I have replaced much of
 *  the other stuff with Chebyshev fits. These are simpler and
 *  more precise than the original approximations. [GJ])
 */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_erf.h>

#include "check.h"

#include "chebyshev.h"
#include "cheb_eval.c"

#define LogRootPi_  0.57236494292470008706


static double erfc8_sum(double x)
{
  /* estimates erfc(x) valid for 8 < x < 100 */
  /* This is based on index 5725 in Hart et al */

  static double P[] = {
      2.97886562639399288862,
      7.409740605964741794425,
      6.1602098531096305440906,
      5.019049726784267463450058,
      1.275366644729965952479585264,
      0.5641895835477550741253201704
  };
  static double Q[] = {
      3.3690752069827527677,
      9.608965327192787870698,
      17.08144074746600431571095,
      12.0489519278551290360340491,
      9.396034016235054150430579648,
      2.260528520767326969591866945,
      1.0
  };
  double num=0.0, den=0.0;
  int i;

  num = P[5];
  for (i=4; i>=0; --i) {
      num = x*num + P[i];
  }
  den = Q[6];
  for (i=5; i>=0; --i) {
      den = x*den + Q[i];
  }

  return num/den;
}

inline
static double erfc8(double x)
{
  double e;
  e = erfc8_sum(x);
  e *= exp(-x*x);
  return e;
}

inline
static double log_erfc8(double x)
{
  double e;
  e = erfc8_sum(x);
  e = log(e) - x*x;
  return e;
}

#if 0
/* Abramowitz+Stegun, 7.2.14 */
static double erfcasympsum(double x)
{
  int i;
  double e = 1.;
  double coef = 1.;
  for (i=1; i<5; ++i) {
    /* coef *= -(2*i-1)/(2*x*x); ??? [GJ] */
    coef *= -(2*i+1)/(i*(4*x*x*x*x));
    e += coef;
    /*
    if (fabs(coef) < 1.0e-15) break;
    if (fabs(coef) > 1.0e10) break;
    
    [GJ]: These tests are not useful. This function is only
    used below. Took them out; they gum up the pipeline.
    */
  }
  return e;
}
#endif /* 0 */


/* Abramowitz+Stegun, 7.1.5 */
static int erfseries(double x, gsl_sf_result * result)
{
  double coef = x;
  double e    = coef;
  double del;
  int k;
  for (k=1; k<30; ++k) {
    coef *= -x*x/k;
    del   = coef/(2.0*k+1.0);
    e += del;
  }
  result->val = 2.0 / M_SQRTPI * e;
  result->err = 2.0 / M_SQRTPI * (fabs(del) + GSL_DBL_EPSILON);
  return GSL_SUCCESS;
}


/* Chebyshev fit for erfc((t+1)/2), -1 < t < 1
 */
static double erfc_xlt1_data[20] = {
  1.06073416421769980345174155056,
 -0.42582445804381043569204735291,
  0.04955262679620434040357683080,
  0.00449293488768382749558001242,
 -0.00129194104658496953494224761,
 -0.00001836389292149396270416979,
  0.00002211114704099526291538556,
 -5.23337485234257134673693179020e-7,
 -2.78184788833537885382530989578e-7,
  1.41158092748813114560316684249e-8,
  2.72571296330561699984539141865e-9,
 -2.06343904872070629406401492476e-10,
 -2.14273991996785367924201401812e-11,
  2.22990255539358204580285098119e-12,
  1.36250074650698280575807934155e-13,
 -1.95144010922293091898995913038e-14,
 -6.85627169231704599442806370690e-16,
  1.44506492869699938239521607493e-16,
  2.45935306460536488037576200030e-18,
 -9.29599561220523396007359328540e-19
};
static cheb_series erfc_xlt1_cs = {
  erfc_xlt1_data,
  19,
  -1, 1,
  12
};

/* Chebyshev fit for erfc(x) exp(x^2), 1 < x < 5, x = 2t + 3, -1 < t < 1
 */
static double erfc_x15_data[25] = {
  0.44045832024338111077637466616,
 -0.143958836762168335790826895326,
  0.044786499817939267247056666937,
 -0.013343124200271211203618353102,
  0.003824682739750469767692372556,
 -0.001058699227195126547306482530,
  0.000283859419210073742736310108,
 -0.000073906170662206760483959432,
  0.000018725312521489179015872934,
 -4.62530981164919445131297264430e-6,
  1.11558657244432857487884006422e-6,
 -2.63098662650834130067808832725e-7,
  6.07462122724551777372119408710e-8,
 -1.37460865539865444777251011793e-8,
  3.05157051905475145520096717210e-9,
 -6.65174789720310713757307724790e-10,
  1.42483346273207784489792999706e-10,
 -3.00141127395323902092018744545e-11,
  6.22171792645348091472914001250e-12,
 -1.26994639225668496876152836555e-12,
  2.55385883033257575402681845385e-13,
 -5.06258237507038698392265499770e-14,
  9.89705409478327321641264227110e-15,
 -1.90685978789192181051961024995e-15,
  3.50826648032737849245113757340e-16
};
static cheb_series erfc_x15_cs = {
  erfc_x15_data,
  24,
  -1, 1,
  16
};

/* Chebyshev fit for erfc(x) x exp(x^2), 5 < x < 10, x = (5t + 15)/2, -1 < t < 1
 */
static double erfc_x510_data[20] = {
  1.11684990123545698684297865808,
  0.003736240359381998520654927536,
 -0.000916623948045470238763619870,
  0.000199094325044940833965078819,
 -0.000040276384918650072591781859,
  7.76515264697061049477127605790e-6,
 -1.44464794206689070402099225301e-6,
  2.61311930343463958393485241947e-7,
 -4.61833026634844152345304095560e-8,
  8.00253111512943601598732144340e-9,
 -1.36291114862793031395712122089e-9,
  2.28570483090160869607683087722e-10,
 -3.78022521563251805044056974560e-11,
  6.17253683874528285729910462130e-12,
 -9.96019290955316888445830597430e-13,
  1.58953143706980770269506726000e-13,
 -2.51045971047162509999527428316e-14,
  3.92607828989125810013581287560e-15,
 -6.07970619384160374392535453420e-16,
  9.12600607264794717315507477670e-17
};
static cheb_series erfc_x510_cs = {
  erfc_x510_data,
  19,
  -1, 1,
  12
};

#if 0
inline
static double
erfc_asymptotic(double x)
{
  return exp(-x*x)/x * erfcasympsum(x) / M_SQRTPI;
}
inline
static double
log_erfc_asymptotic(double x)
{
  return log(erfcasympsum(x)/x) - x*x - LogRootPi_;
}
#endif /* 0 */


/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/

int gsl_sf_erfc_e(double x, gsl_sf_result * result)
{
  const double ax = fabs(x);
  double e_val, e_err;

  /* CHECK_POINTER(result) */

  if(ax <= 1.0) {
    double t = 2.0*ax - 1.0;
    gsl_sf_result c;
    cheb_eval_e(&erfc_xlt1_cs, t, &c);
    e_val = c.val;
    e_err = c.err;
  }
  else if(ax <= 5.0) {
    double ex2 = exp(-x*x);
    double t = 0.5*(ax-3.0);
    gsl_sf_result c;
    cheb_eval_e(&erfc_x15_cs, t, &c);
    e_val = ex2 * c.val;
    e_err = ex2 * (c.err + 2.0*fabs(x)*GSL_DBL_EPSILON);
  }
  else if(ax < 10.0) {
    double exterm = exp(-x*x) / ax;
    double t = (2.0*ax - 15.0)/5.0;
    gsl_sf_result c;
    cheb_eval_e(&erfc_x510_cs, t, &c);
    e_val = exterm * c.val;
    e_err = exterm * (c.err + 2.0*fabs(x)*GSL_DBL_EPSILON + GSL_DBL_EPSILON);
  }
  else {
    e_val = erfc8(ax);
    e_err = (x*x + 1.0) * GSL_DBL_EPSILON * fabs(e_val);
  }

  if(x < 0.0) {
    result->val  = 2.0 - e_val;
    result->err  = e_err;
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
  }
  else {
    result->val  = e_val;
    result->err  = e_err;
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
  }

  return GSL_SUCCESS;
}


int gsl_sf_log_erfc_e(double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  if(x*x < 10.0*GSL_ROOT6_DBL_EPSILON) {
    const double y = x / M_SQRTPI;
    /* series for -1/2 Log[Erfc[Sqrt[Pi] y]] */
    const double c3 = (4.0 - M_PI)/3.0;
    const double c4 = 2.0*(1.0 - M_PI/3.0);
    const double c5 = -0.001829764677455021;  /* (96.0 - 40.0*M_PI + 3.0*M_PI*M_PI)/30.0  */
    const double c6 =  0.02629651521057465;   /* 2.0*(120.0 - 60.0*M_PI + 7.0*M_PI*M_PI)/45.0 */
    const double c7 = -0.01621575378835404;
    const double c8 =  0.00125993961762116;
    const double c9 =  0.00556964649138;
    const double c10 = -0.0045563339802;
    const double c11 =  0.0009461589032;
    const double c12 =  0.0013200243174;
    const double c13 = -0.00142906;
    const double c14 =  0.00048204;
    double series = c8 + y*(c9 + y*(c10 + y*(c11 + y*(c12 + y*(c13 + c14*y)))));
    series = y*(1.0 + y*(1.0 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*(c7 + y*series)))))));
    result->val = -2.0 * series;
    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  /*
  don't like use of log1p(); added above series stuff for small x instead, should be ok [GJ]
  else if (fabs(x) < 1.0) {
    gsl_sf_result result_erf;
    gsl_sf_erf_e(x, &result_erf);
    result->val  = log1p(-result_erf.val);
    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  */
  else if(x > 8.0) {
    result->val = log_erfc8(x);
    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  else {
    gsl_sf_result result_erfc;
    gsl_sf_erfc_e(x, &result_erfc);
    result->val  = log(result_erfc.val);
    result->err  = fabs(result_erfc.err / result_erfc.val);
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
}


int gsl_sf_erf_e(double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  if(fabs(x) < 1.0) {
    return erfseries(x, result);
  }
  else {
    gsl_sf_result result_erfc;
    gsl_sf_erfc_e(x, &result_erfc);
    result->val  = 1.0 - result_erfc.val;
    result->err  = result_erfc.err;
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
}


int gsl_sf_erf_Z_e(double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  {
    const double ex2 = exp(-x*x/2.0);
    result->val  = ex2 / (M_SQRT2 * M_SQRTPI);
    result->err  = fabs(x * result->val) * GSL_DBL_EPSILON;
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    CHECK_UNDERFLOW(result);
    return GSL_SUCCESS;
  }
}


int gsl_sf_erf_Q_e(double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  {
    gsl_sf_result result_erfc;
    int stat = gsl_sf_erfc_e(x/M_SQRT2, &result_erfc);
    result->val  = 0.5 * result_erfc.val;
    result->err  = 0.5 * result_erfc.err;
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return stat;
  }
}


int gsl_sf_hazard_e(double x, gsl_sf_result * result)
{
  if(x < 25.0)
  {
    gsl_sf_result result_ln_erfc;
    const int stat_l = gsl_sf_log_erfc_e(x/M_SQRT2, &result_ln_erfc);
    const double lnc = -0.22579135264472743236; /* ln(sqrt(2/pi)) */
    const double arg = lnc - 0.5*x*x - result_ln_erfc.val;
    const int stat_e = gsl_sf_exp_e(arg, result);
    result->err += 3.0 * (1.0 + fabs(x)) * GSL_DBL_EPSILON * fabs(result->val);
    result->err += fabs(result_ln_erfc.err * result->val);
    return GSL_ERROR_SELECT_2(stat_l, stat_e);
  }
  else
  {
    const double ix2 = 1.0/(x*x);
    const double corrB = 1.0 - 9.0*ix2 * (1.0 - 11.0*ix2);
    const double corrM = 1.0 - 5.0*ix2 * (1.0 - 7.0*ix2 * corrB);
    const double corrT = 1.0 - ix2 * (1.0 - 3.0*ix2*corrM);
    result->val = x / corrT;
    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
}



/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/

#include "eval.h"

double gsl_sf_erfc(double x)
{
  EVAL_RESULT(gsl_sf_erfc_e(x, &result));
}

double gsl_sf_log_erfc(double x)
{
  EVAL_RESULT(gsl_sf_log_erfc_e(x, &result));
}

double gsl_sf_erf(double x)
{
  EVAL_RESULT(gsl_sf_erf_e(x, &result));
}

double gsl_sf_erf_Z(double x)
{
  EVAL_RESULT(gsl_sf_erf_Z_e(x, &result));
}

double gsl_sf_erf_Q(double x)
{
  EVAL_RESULT(gsl_sf_erf_Q_e(x, &result));
}

double gsl_sf_hazard(double x)
{
  EVAL_RESULT(gsl_sf_hazard_e(x, &result));
}