summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/bessel.c
blob: 6129a2d3b27e407bdffb6e4f98617d7df1cc9077 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
/* specfunc/bessel.c
 * 
 * Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003 Gerard Jungman
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman */
/* Miscellaneous support functions for Bessel function evaluations.
 */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_airy.h>
#include <gsl/gsl_sf_elementary.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_trig.h>

#include "error.h"

#include "bessel_amp_phase.h"
#include "bessel_temme.h"
#include "bessel.h"

#define CubeRoot2_  1.25992104989487316476721060728



/* Debye functions [Abramowitz+Stegun, 9.3.9-10] */

inline static double 
debye_u1(const double * tpow)
{
  return (3.0*tpow[1] - 5.0*tpow[3])/24.0;
}

inline static double 
debye_u2(const double * tpow)
{
  return (81.0*tpow[2] - 462.0*tpow[4] + 385.0*tpow[6])/1152.0;
}

inline
static double debye_u3(const double * tpow)
{
  return (30375.0*tpow[3] - 369603.0*tpow[5] + 765765.0*tpow[7] - 425425.0*tpow[9])/414720.0;
}

inline
static double debye_u4(const double * tpow)
{
  return (4465125.0*tpow[4] - 94121676.0*tpow[6] + 349922430.0*tpow[8] - 
          446185740.0*tpow[10] + 185910725.0*tpow[12])/39813120.0;
}

inline
static double debye_u5(const double * tpow)
{
  return (1519035525.0*tpow[5]     - 49286948607.0*tpow[7] + 
          284499769554.0*tpow[9]   - 614135872350.0*tpow[11] + 
          566098157625.0*tpow[13]  - 188699385875.0*tpow[15])/6688604160.0;
}

#if 0
inline
static double debye_u6(const double * tpow)
{
  return (2757049477875.0*tpow[6] - 127577298354750.0*tpow[8] + 
          1050760774457901.0*tpow[10] - 3369032068261860.0*tpow[12] + 
          5104696716244125.0*tpow[14] - 3685299006138750.0*tpow[16] + 
          1023694168371875.0*tpow[18])/4815794995200.0;
}
#endif


/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/

int
gsl_sf_bessel_IJ_taylor_e(const double nu, const double x,
                             const int sign,
                             const int kmax,
                             const double threshold,
                             gsl_sf_result * result
                             )
{
  /* CHECK_POINTER(result) */

  if(nu < 0.0 || x < 0.0) {
    DOMAIN_ERROR(result);
  }
  else if(x == 0.0) {
    if(nu == 0.0) {
      result->val = 1.0;
      result->err = 0.0;
    }
    else {
      result->val = 0.0;
      result->err = 0.0;
    }
    return GSL_SUCCESS;
  }
  else {
    gsl_sf_result prefactor;   /* (x/2)^nu / Gamma(nu+1) */
    gsl_sf_result sum;

    int stat_pre;
    int stat_sum;
    int stat_mul;

    if(nu == 0.0) {
      prefactor.val = 1.0;
      prefactor.err = 0.0;
      stat_pre = GSL_SUCCESS;
    }
    else if(nu < INT_MAX-1) {
      /* Separate the integer part and use
       * y^nu / Gamma(nu+1) = y^N /N! y^f / (N+1)_f,
       * to control the error.
       */
      const int    N = (int)floor(nu + 0.5);
      const double f = nu - N;
      gsl_sf_result poch_factor;
      gsl_sf_result tc_factor;
      const int stat_poch = gsl_sf_poch_e(N+1.0, f, &poch_factor);
      const int stat_tc   = gsl_sf_taylorcoeff_e(N, 0.5*x, &tc_factor);
      const double p = pow(0.5*x,f);
      prefactor.val  = tc_factor.val * p / poch_factor.val;
      prefactor.err  = tc_factor.err * p / poch_factor.val;
      prefactor.err += fabs(prefactor.val) / poch_factor.val * poch_factor.err;
      prefactor.err += 2.0 * GSL_DBL_EPSILON * fabs(prefactor.val);
      stat_pre = GSL_ERROR_SELECT_2(stat_tc, stat_poch);
    }
    else {
      gsl_sf_result lg;
      const int stat_lg = gsl_sf_lngamma_e(nu+1.0, &lg);
      const double term1  = nu*log(0.5*x);
      const double term2  = lg.val;
      const double ln_pre = term1 - term2;
      const double ln_pre_err = GSL_DBL_EPSILON * (fabs(term1)+fabs(term2)) + lg.err;
      const int stat_ex = gsl_sf_exp_err_e(ln_pre, ln_pre_err, &prefactor);
      stat_pre = GSL_ERROR_SELECT_2(stat_ex, stat_lg);
    }

    /* Evaluate the sum.
     * [Abramowitz+Stegun, 9.1.10]
     * [Abramowitz+Stegun, 9.6.7]
     */
    {
      const double y = sign * 0.25 * x*x;
      double sumk = 1.0;
      double term = 1.0;
      int k;

      for(k=1; k<=kmax; k++) {
        term *= y/((nu+k)*k);
        sumk += term;
        if(fabs(term/sumk) < threshold) break;
      }

      sum.val = sumk;
      sum.err = threshold * fabs(sumk);

      stat_sum = ( k >= kmax ? GSL_EMAXITER : GSL_SUCCESS );
    }

    stat_mul = gsl_sf_multiply_err_e(prefactor.val, prefactor.err,
                                        sum.val, sum.err,
                                        result);

    return GSL_ERROR_SELECT_3(stat_mul, stat_pre, stat_sum);
  }
}


/* x >> nu*nu+1
 * error ~ O( ((nu*nu+1)/x)^4 )
 *
 * empirical error analysis:
 *   choose  GSL_ROOT4_MACH_EPS * x > (nu*nu + 1)
 *
 * This is not especially useful. When the argument gets
 * large enough for this to apply, the cos() and sin()
 * start loosing digits. However, this seems inevitable
 * for this particular method.
 *
 * Wed Jun 25 14:39:38 MDT 2003 [GJ]
 * This function was inconsistent since the Q term did not
 * go to relative order eps^2. That's why the error estimate
 * originally given was screwy (it didn't make sense that the
 * "empirical" error was coming out O(eps^3)).
 * With Q to proper order, the error is O(eps^4).
 */
int
gsl_sf_bessel_Jnu_asympx_e(const double nu, const double x, gsl_sf_result * result)
{
  double mu   = 4.0*nu*nu;
  double mum1 = mu-1.0;
  double mum9 = mu-9.0;
  double mum25 = mu-25.0;
  double chi = x - (0.5*nu + 0.25)*M_PI;
  double P   = 1.0 - mum1*mum9/(128.0*x*x);
  double Q   = mum1/(8.0*x) * (1.0 - mum9*mum25/(384.0*x*x));
  double pre = sqrt(2.0/(M_PI*x));
  double c   = cos(chi);
  double s   = sin(chi);
  double r   = mu/x;
  result->val  = pre * (c*P - s*Q);
  result->err  = pre * GSL_DBL_EPSILON * (1.0 + fabs(x)) * (fabs(c*P) + fabs(s*Q));
  result->err += pre * fabs(0.1*r*r*r*r);
  return GSL_SUCCESS;
}


/* x >> nu*nu+1
 */
int
gsl_sf_bessel_Ynu_asympx_e(const double nu, const double x, gsl_sf_result * result)
{
  double ampl;
  double theta;
  double alpha = x;
  double beta  = -0.5*nu*M_PI;
  int stat_a = gsl_sf_bessel_asymp_Mnu_e(nu, x, &ampl);
  int stat_t = gsl_sf_bessel_asymp_thetanu_corr_e(nu, x, &theta);
  double sin_alpha = sin(alpha);
  double cos_alpha = cos(alpha);
  double sin_chi   = sin(beta + theta);
  double cos_chi   = cos(beta + theta);
  double sin_term     = sin_alpha * cos_chi + sin_chi * cos_alpha;
  double sin_term_mag = fabs(sin_alpha * cos_chi) + fabs(sin_chi * cos_alpha);
  result->val  = ampl * sin_term;
  result->err  = fabs(ampl) * GSL_DBL_EPSILON * sin_term_mag;
  result->err += fabs(result->val) * 2.0 * GSL_DBL_EPSILON;

  if(fabs(alpha) > 1.0/GSL_DBL_EPSILON) {
    result->err *= 0.5 * fabs(alpha);
  }
  else if(fabs(alpha) > 1.0/GSL_SQRT_DBL_EPSILON) {
    result->err *= 256.0 * fabs(alpha) * GSL_SQRT_DBL_EPSILON;
  }

  return GSL_ERROR_SELECT_2(stat_t, stat_a);
}


/* x >> nu*nu+1
 */
int
gsl_sf_bessel_Inu_scaled_asympx_e(const double nu, const double x, gsl_sf_result * result)
{
  double mu   = 4.0*nu*nu;
  double mum1 = mu-1.0;
  double mum9 = mu-9.0;
  double pre  = 1.0/sqrt(2.0*M_PI*x);
  double r    = mu/x;
  result->val = pre * (1.0 - mum1/(8.0*x) + mum1*mum9/(128.0*x*x));
  result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * fabs(0.1*r*r*r);
  return GSL_SUCCESS;
}

/* x >> nu*nu+1
 */
int
gsl_sf_bessel_Knu_scaled_asympx_e(const double nu, const double x, gsl_sf_result * result)
{
  double mu   = 4.0*nu*nu;
  double mum1 = mu-1.0;
  double mum9 = mu-9.0;
  double pre  = sqrt(M_PI/(2.0*x));
  double r    = nu/x;
  result->val = pre * (1.0 + mum1/(8.0*x) + mum1*mum9/(128.0*x*x));
  result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * fabs(0.1*r*r*r);
  return GSL_SUCCESS;
}


/* nu -> Inf; uniform in x > 0  [Abramowitz+Stegun, 9.7.7]
 *
 * error:
 *   The error has the form u_N(t)/nu^N  where  0 <= t <= 1.
 *   It is not hard to show that |u_N(t)| is small for such t.
 *   We have N=6 here, and |u_6(t)| < 0.025, so the error is clearly
 *   bounded by 0.025/nu^6. This gives the asymptotic bound on nu
 *   seen below as nu ~ 100. For general MACH_EPS it will be 
 *                     nu > 0.5 / MACH_EPS^(1/6)
 *   When t is small, the bound is even better because |u_N(t)| vanishes
 *   as t->0. In fact u_N(t) ~ C t^N as t->0, with C ~= 0.1.
 *   We write
 *                     err_N <= min(0.025, C(1/(1+(x/nu)^2))^3) / nu^6
 *   therefore
 *                     min(0.29/nu^2, 0.5/(nu^2+x^2)) < MACH_EPS^{1/3}
 *   and this is the general form.
 *
 * empirical error analysis, assuming 14 digit requirement:
 *   choose   x > 50.000 nu   ==>  nu >   3
 *   choose   x > 10.000 nu   ==>  nu >  15
 *   choose   x >  2.000 nu   ==>  nu >  50
 *   choose   x >  1.000 nu   ==>  nu >  75
 *   choose   x >  0.500 nu   ==>  nu >  80
 *   choose   x >  0.100 nu   ==>  nu >  83
 *
 * This makes sense. For x << nu, the error will be of the form u_N(1)/nu^N,
 * since the polynomial term will be evaluated near t=1, so the bound
 * on nu will become constant for small x. Furthermore, increasing x with
 * nu fixed will decrease the error.
 */
int
gsl_sf_bessel_Inu_scaled_asymp_unif_e(const double nu, const double x, gsl_sf_result * result)
{
  int i;
  double z = x/nu;
  double root_term = hypot(1.0,z);
  double pre = 1.0/sqrt(2.0*M_PI*nu * root_term);
  double eta = root_term + log(z/(1.0+root_term));
  double ex_arg = ( z < 1.0/GSL_ROOT3_DBL_EPSILON ? nu*(-z + eta) : -0.5*nu/z*(1.0 - 1.0/(12.0*z*z)) );
  gsl_sf_result ex_result;
  int stat_ex = gsl_sf_exp_e(ex_arg, &ex_result);
  if(stat_ex == GSL_SUCCESS) {
    double t = 1.0/root_term;
    double sum;
    double tpow[16];
    tpow[0] = 1.0;
    for(i=1; i<16; i++) tpow[i] = t * tpow[i-1];
    sum = 1.0 + debye_u1(tpow)/nu + debye_u2(tpow)/(nu*nu) + debye_u3(tpow)/(nu*nu*nu)
          + debye_u4(tpow)/(nu*nu*nu*nu) + debye_u5(tpow)/(nu*nu*nu*nu*nu);
    result->val  = pre * ex_result.val * sum;
    result->err  = pre * ex_result.val / (nu*nu*nu*nu*nu*nu);
    result->err += pre * ex_result.err * fabs(sum);
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  else {
    result->val = 0.0;
    result->err = 0.0;
    return stat_ex;
  }
}


/* nu -> Inf; uniform in x > 0  [Abramowitz+Stegun, 9.7.8]
 *
 * error:
 *   identical to that above for Inu_scaled
 */
int
gsl_sf_bessel_Knu_scaled_asymp_unif_e(const double nu, const double x, gsl_sf_result * result)
{
  int i;
  double z = x/nu;
  double root_term = hypot(1.0,z);
  double pre = sqrt(M_PI/(2.0*nu*root_term));
  double eta = root_term + log(z/(1.0+root_term));
  double ex_arg = ( z < 1.0/GSL_ROOT3_DBL_EPSILON ? nu*(z - eta) : 0.5*nu/z*(1.0 + 1.0/(12.0*z*z)) );
  gsl_sf_result ex_result;
  int stat_ex = gsl_sf_exp_e(ex_arg, &ex_result);
  if(stat_ex == GSL_SUCCESS) {
    double t = 1.0/root_term;
    double sum;
    double tpow[16];
    tpow[0] = 1.0;
    for(i=1; i<16; i++) tpow[i] = t * tpow[i-1];
    sum = 1.0 - debye_u1(tpow)/nu + debye_u2(tpow)/(nu*nu) - debye_u3(tpow)/(nu*nu*nu)
          + debye_u4(tpow)/(nu*nu*nu*nu) - debye_u5(tpow)/(nu*nu*nu*nu*nu);
    result->val  = pre * ex_result.val * sum;
    result->err  = pre * ex_result.err * fabs(sum);
    result->err += pre * ex_result.val / (nu*nu*nu*nu*nu*nu);
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  else {
    result->val = 0.0;
    result->err = 0.0;
    return stat_ex;
  }
}


/* Evaluate J_mu(x),J_{mu+1}(x) and Y_mu(x),Y_{mu+1}(x)  for |mu| < 1/2
 */
int
gsl_sf_bessel_JY_mu_restricted(const double mu, const double x,
                               gsl_sf_result * Jmu, gsl_sf_result * Jmup1,
                               gsl_sf_result * Ymu, gsl_sf_result * Ymup1)
{
  /* CHECK_POINTER(Jmu) */
  /* CHECK_POINTER(Jmup1) */
  /* CHECK_POINTER(Ymu) */
  /* CHECK_POINTER(Ymup1) */

  if(x < 0.0 || fabs(mu) > 0.5) {
    Jmu->val   = 0.0;
    Jmu->err   = 0.0;
    Jmup1->val = 0.0;
    Jmup1->err = 0.0;
    Ymu->val   = 0.0;
    Ymu->err   = 0.0;
    Ymup1->val = 0.0;
    Ymup1->err = 0.0;
    GSL_ERROR ("error", GSL_EDOM);
  }
  else if(x == 0.0) {
    if(mu == 0.0) {
      Jmu->val   = 1.0;
      Jmu->err   = 0.0;
    }
    else {
      Jmu->val   = 0.0;
      Jmu->err   = 0.0;
    }
    Jmup1->val = 0.0;
    Jmup1->err = 0.0;
    Ymu->val   = 0.0;
    Ymu->err   = 0.0;
    Ymup1->val = 0.0;
    Ymup1->err = 0.0;
    GSL_ERROR ("error", GSL_EDOM);
  }
  else {
    int stat_Y;
    int stat_J;

    if(x < 2.0) {
      /* Use Taylor series for J and the Temme series for Y.
       * The Taylor series for J requires nu > 0, so we shift
       * up one and use the recursion relation to get Jmu, in
       * case mu < 0.
       */
      gsl_sf_result Jmup2;
      int stat_J1 = gsl_sf_bessel_IJ_taylor_e(mu+1.0, x, -1, 100, GSL_DBL_EPSILON,  Jmup1);
      int stat_J2 = gsl_sf_bessel_IJ_taylor_e(mu+2.0, x, -1, 100, GSL_DBL_EPSILON, &Jmup2);
      double c = 2.0*(mu+1.0)/x;
      Jmu->val  = c * Jmup1->val - Jmup2.val;
      Jmu->err  = c * Jmup1->err + Jmup2.err;
      Jmu->err += 2.0 * GSL_DBL_EPSILON * fabs(Jmu->val);
      stat_J = GSL_ERROR_SELECT_2(stat_J1, stat_J2);
      stat_Y = gsl_sf_bessel_Y_temme(mu, x, Ymu, Ymup1);
      return GSL_ERROR_SELECT_2(stat_J, stat_Y);
    }
    else if(x < 1000.0) {
      double P, Q;
      double J_ratio;
      double J_sgn;
      const int stat_CF1 = gsl_sf_bessel_J_CF1(mu, x, &J_ratio, &J_sgn);
      const int stat_CF2 = gsl_sf_bessel_JY_steed_CF2(mu, x, &P, &Q);
      double Jprime_J_ratio = mu/x - J_ratio;
      double gamma = (P - Jprime_J_ratio)/Q;
      Jmu->val = J_sgn * sqrt(2.0/(M_PI*x) / (Q + gamma*(P-Jprime_J_ratio)));
      Jmu->err = 4.0 * GSL_DBL_EPSILON * fabs(Jmu->val);
      Jmup1->val = J_ratio * Jmu->val;
      Jmup1->err = fabs(J_ratio) * Jmu->err;
      Ymu->val = gamma * Jmu->val;
      Ymu->err = fabs(gamma) * Jmu->err;
      Ymup1->val = Ymu->val * (mu/x - P - Q/gamma);
      Ymup1->err = Ymu->err * fabs(mu/x - P - Q/gamma) + 4.0*GSL_DBL_EPSILON*fabs(Ymup1->val);
      return GSL_ERROR_SELECT_2(stat_CF1, stat_CF2);
    }
    else {
      /* Use asymptotics for large argument.
       */
      const int stat_J0 = gsl_sf_bessel_Jnu_asympx_e(mu,     x, Jmu);
      const int stat_J1 = gsl_sf_bessel_Jnu_asympx_e(mu+1.0, x, Jmup1);
      const int stat_Y0 = gsl_sf_bessel_Ynu_asympx_e(mu,     x, Ymu);
      const int stat_Y1 = gsl_sf_bessel_Ynu_asympx_e(mu+1.0, x, Ymup1);
      stat_J = GSL_ERROR_SELECT_2(stat_J0, stat_J1);
      stat_Y = GSL_ERROR_SELECT_2(stat_Y0, stat_Y1);
      return GSL_ERROR_SELECT_2(stat_J, stat_Y);
    }
  }
}


int
gsl_sf_bessel_J_CF1(const double nu, const double x,
                    double * ratio, double * sgn)
{
  const double RECUR_BIG = GSL_SQRT_DBL_MAX;
  const int maxiter = 10000;
  int n = 1;
  double Anm2 = 1.0;
  double Bnm2 = 0.0;
  double Anm1 = 0.0;
  double Bnm1 = 1.0;
  double a1 = x/(2.0*(nu+1.0));
  double An = Anm1 + a1*Anm2;
  double Bn = Bnm1 + a1*Bnm2;
  double an;
  double fn = An/Bn;
  double dn = a1;
  double s  = 1.0;

  while(n < maxiter) {
    double old_fn;
    double del;
    n++;
    Anm2 = Anm1;
    Bnm2 = Bnm1;
    Anm1 = An;
    Bnm1 = Bn;
    an = -x*x/(4.0*(nu+n-1.0)*(nu+n));
    An = Anm1 + an*Anm2;
    Bn = Bnm1 + an*Bnm2;

    if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
      An /= RECUR_BIG;
      Bn /= RECUR_BIG;
      Anm1 /= RECUR_BIG;
      Bnm1 /= RECUR_BIG;
      Anm2 /= RECUR_BIG;
      Bnm2 /= RECUR_BIG;
    }

    old_fn = fn;
    fn = An/Bn;
    del = old_fn/fn;

    dn = 1.0 / (2.0*(nu+n)/x - dn);
    if(dn < 0.0) s = -s;

    if(fabs(del - 1.0) < 2.0*GSL_DBL_EPSILON) break;
  }

  *ratio = fn;
  *sgn   = s;

  if(n >= maxiter)
    GSL_ERROR ("error", GSL_EMAXITER);
  else
    return GSL_SUCCESS;
}



/* Evaluate the continued fraction CF1 for J_{nu+1}/J_nu
 * using Gautschi (Euler) equivalent series.
 * This exhibits an annoying problem because the
 * a_k are not positive definite (in fact they are all negative).
 * There are cases when rho_k blows up. Example: nu=1,x=4.
 */
#if 0
int
gsl_sf_bessel_J_CF1_ser(const double nu, const double x,
                        double * ratio, double * sgn)
{
  const int maxk = 20000;
  double tk   = 1.0;
  double sum  = 1.0;
  double rhok = 0.0;
  double dk = 0.0;
  double s  = 1.0;
  int k;

  for(k=1; k<maxk; k++) {
    double ak = -0.25 * (x/(nu+k)) * x/(nu+k+1.0);
    rhok = -ak*(1.0 + rhok)/(1.0 + ak*(1.0 + rhok));
    tk  *= rhok;
    sum += tk;

    dk = 1.0 / (2.0/x - (nu+k-1.0)/(nu+k) * dk);
    if(dk < 0.0) s = -s;

    if(fabs(tk/sum) < GSL_DBL_EPSILON) break;
  }

  *ratio = x/(2.0*(nu+1.0)) * sum;
  *sgn   = s;

  if(k == maxk)
    GSL_ERROR ("error", GSL_EMAXITER);
  else
    return GSL_SUCCESS;
}
#endif


/* Evaluate the continued fraction CF1 for I_{nu+1}/I_nu
 * using Gautschi (Euler) equivalent series.
 */
int
gsl_sf_bessel_I_CF1_ser(const double nu, const double x, double * ratio)
{
  const int maxk = 20000;
  double tk   = 1.0;
  double sum  = 1.0;
  double rhok = 0.0;
  int k;

  for(k=1; k<maxk; k++) {
    double ak = 0.25 * (x/(nu+k)) * x/(nu+k+1.0);
    rhok = -ak*(1.0 + rhok)/(1.0 + ak*(1.0 + rhok));
    tk  *= rhok;
    sum += tk;
    if(fabs(tk/sum) < GSL_DBL_EPSILON) break;
  }

  *ratio = x/(2.0*(nu+1.0)) * sum;

  if(k == maxk)
    GSL_ERROR ("error", GSL_EMAXITER);
  else
    return GSL_SUCCESS;
}


int
gsl_sf_bessel_JY_steed_CF2(const double nu, const double x,
                           double * P, double * Q)
{
  const int max_iter = 10000;
  const double SMALL = 1.0e-100;

  int i = 1;

  double x_inv = 1.0/x;
  double a = 0.25 - nu*nu;
  double p = -0.5*x_inv;
  double q = 1.0;
  double br = 2.0*x;
  double bi = 2.0;
  double fact = a*x_inv/(p*p + q*q);
  double cr = br + q*fact;
  double ci = bi + p*fact;
  double den = br*br + bi*bi;
  double dr = br/den;
  double di = -bi/den;
  double dlr = cr*dr - ci*di;
  double dli = cr*di + ci*dr;
  double temp = p*dlr - q*dli;
  q = p*dli + q*dlr;
  p = temp;
  for (i=2; i<=max_iter; i++) {
    a  += 2*(i-1);
    bi += 2.0;
    dr = a*dr + br;
    di = a*di + bi;
    if(fabs(dr)+fabs(di) < SMALL) dr = SMALL;
    fact = a/(cr*cr+ci*ci);
    cr = br + cr*fact;
    ci = bi - ci*fact;
    if(fabs(cr)+fabs(ci) < SMALL) cr = SMALL;
    den = dr*dr + di*di;
    dr /= den;
    di /= -den;
    dlr = cr*dr - ci*di;
    dli = cr*di + ci*dr;
    temp = p*dlr - q*dli;
    q = p*dli + q*dlr;
    p = temp;
    if(fabs(dlr-1.0)+fabs(dli) < GSL_DBL_EPSILON) break;
  }

  *P = p;
  *Q = q;

  if(i == max_iter)
    GSL_ERROR ("error", GSL_EMAXITER);
  else
    return GSL_SUCCESS;
}


/* Evaluate continued fraction CF2, using Thompson-Barnett-Temme method,
 * to obtain values of exp(x)*K_nu and exp(x)*K_{nu+1}.
 *
 * This is unstable for small x; x > 2 is a good cutoff.
 * Also requires |nu| < 1/2.
 */
int
gsl_sf_bessel_K_scaled_steed_temme_CF2(const double nu, const double x,
                                       double * K_nu, double * K_nup1,
                                       double * Kp_nu)
{
  const int maxiter = 10000;

  int i = 1;
  double bi = 2.0*(1.0 + x);
  double di = 1.0/bi;
  double delhi = di;
  double hi    = di;

  double qi   = 0.0;
  double qip1 = 1.0;

  double ai = -(0.25 - nu*nu);
  double a1 = ai;
  double ci = -ai;
  double Qi = -ai;

  double s = 1.0 + Qi*delhi;

  for(i=2; i<=maxiter; i++) {
    double dels;
    double tmp;
    ai -= 2.0*(i-1);
    ci  = -ai*ci/i;
    tmp  = (qi - bi*qip1)/ai;
    qi   = qip1;
    qip1 = tmp;
    Qi += ci*qip1;
    bi += 2.0;
    di  = 1.0/(bi + ai*di);
    delhi = (bi*di - 1.0) * delhi;
    hi += delhi;
    dels = Qi*delhi;
    s += dels;
    if(fabs(dels/s) < GSL_DBL_EPSILON) break;
  }
  
  hi *= -a1;
  
  *K_nu   = sqrt(M_PI/(2.0*x)) / s;
  *K_nup1 = *K_nu * (nu + x + 0.5 - hi)/x;
  *Kp_nu  = - *K_nup1 + nu/x * *K_nu;
  if(i == maxiter)
    GSL_ERROR ("error", GSL_EMAXITER);
  else
    return GSL_SUCCESS;
}


int gsl_sf_bessel_cos_pi4_e(double y, double eps, gsl_sf_result * result)
{
  const double sy = sin(y);
  const double cy = cos(y);
  const double s = sy + cy;
  const double d = sy - cy;
  const double abs_sum = fabs(cy) + fabs(sy);
  double seps;
  double ceps;
  if(fabs(eps) < GSL_ROOT5_DBL_EPSILON) {
    const double e2 = eps*eps;
    seps = eps * (1.0 - e2/6.0 * (1.0 - e2/20.0));
    ceps = 1.0 - e2/2.0 * (1.0 - e2/12.0);
  }
  else {
    seps = sin(eps);
    ceps = cos(eps);
  }
  result->val = (ceps * s - seps * d)/ M_SQRT2;
  result->err = 2.0 * GSL_DBL_EPSILON * (fabs(ceps) + fabs(seps)) * abs_sum / M_SQRT2;

  /* Try to account for error in evaluation of sin(y), cos(y).
   * This is a little sticky because we don't really know
   * how the library routines are doing their argument reduction.
   * However, we will make a reasonable guess.
   * FIXME ?
   */
  if(y > 1.0/GSL_DBL_EPSILON) {
    result->err *= 0.5 * y;
  }
  else if(y > 1.0/GSL_SQRT_DBL_EPSILON) {
    result->err *= 256.0 * y * GSL_SQRT_DBL_EPSILON;
  }

  return GSL_SUCCESS;
}


int gsl_sf_bessel_sin_pi4_e(double y, double eps, gsl_sf_result * result)
{
  const double sy = sin(y);
  const double cy = cos(y);
  const double s = sy + cy;
  const double d = sy - cy;
  const double abs_sum = fabs(cy) + fabs(sy);
  double seps;
  double ceps;
  if(fabs(eps) < GSL_ROOT5_DBL_EPSILON) {
    const double e2 = eps*eps;
    seps = eps * (1.0 - e2/6.0 * (1.0 - e2/20.0));
    ceps = 1.0 - e2/2.0 * (1.0 - e2/12.0);
  }
  else {
    seps = sin(eps);
    ceps = cos(eps);
  }
  result->val = (ceps * d + seps * s)/ M_SQRT2;
  result->err = 2.0 * GSL_DBL_EPSILON * (fabs(ceps) + fabs(seps)) * abs_sum / M_SQRT2;

  /* Try to account for error in evaluation of sin(y), cos(y).
   * See above.
   * FIXME ?
   */
  if(y > 1.0/GSL_DBL_EPSILON) {
    result->err *= 0.5 * y;
  }
  else if(y > 1.0/GSL_SQRT_DBL_EPSILON) {
    result->err *= 256.0 * y * GSL_SQRT_DBL_EPSILON;
  }

  return GSL_SUCCESS;
}


/************************************************************************
 *                                                                      *
  Asymptotic approximations 8.11.5, 8.12.5, and 8.42.7 from
  G.N.Watson, A Treatise on the Theory of Bessel Functions,
  2nd Edition (Cambridge University Press, 1944).
  Higher terms in expansion for x near l given by
  Airey in Phil. Mag. 31, 520 (1916).

  This approximation is accurate to near 0.1% at the boundaries
  between the asymptotic regions; well away from the boundaries
  the accuracy is better than 10^{-5}.
 *                                                                      *
 ************************************************************************/
#if 0
double besselJ_meissel(double nu, double x)
{
  double beta = pow(nu, 0.325);
  double result;

  /* Fitted matching points.   */
  double llimit = 1.1 * beta;
  double ulimit = 1.3 * beta;

  double nu2 = nu * nu;

  if (nu < 5. && x < 1.)
    {
      /* Small argument and order. Use a Taylor expansion. */
      int k;
      double xo2 = 0.5 * x;
      double gamfactor = pow(nu,nu) * exp(-nu) * sqrt(nu * 2. * M_PI)
        * (1. + 1./(12.*nu) + 1./(288.*nu*nu));
      double prefactor = pow(xo2, nu) / gamfactor;
      double C[5];

      C[0] = 1.;
      C[1] = -C[0] / (nu+1.);
      C[2] = -C[1] / (2.*(nu+2.));
      C[3] = -C[2] / (3.*(nu+3.));
      C[4] = -C[3] / (4.*(nu+4.));
      
      result = 0.;
      for(k=0; k<5; k++)
        result += C[k] * pow(xo2, 2.*k);

      result *= prefactor;
    }
  else if(x < nu - llimit)
    {
      /* Small x region: x << l.    */
      double z = x / nu;
      double z2 = z*z;
      double rtomz2 = sqrt(1.-z2);
      double omz2_2 = (1.-z2)*(1.-z2);

      /* Calculate Meissel exponent. */
      double term1 = 1./(24.*nu) * ((2.+3.*z2)/((1.-z2)*rtomz2) -2.);
      double term2 = - z2*(4. + z2)/(16.*nu2*(1.-z2)*omz2_2);
      double V_nu = term1 + term2;
      
      /* Calculate the harmless prefactor. */
      double sterlingsum = 1. + 1./(12.*nu) + 1./(288*nu2);
      double harmless = 1. / (sqrt(rtomz2*2.*M_PI*nu) * sterlingsum);

      /* Calculate the logarithm of the nu dependent prefactor. */
      double ln_nupre = rtomz2 + log(z) - log(1. + rtomz2);

      result = harmless * exp(nu*ln_nupre - V_nu);
    } 
  else if(x < nu + ulimit)
    {         
      /* Intermediate region 1: x near nu. */
      double eps = 1.-nu/x;
      double eps_x = eps * x;
      double eps_x_2 = eps_x * eps_x;
      double xo6 = x/6.;
      double B[6];
      static double gam[6] = {2.67894, 1.35412, 1., 0.89298, 0.902745, 1.};
      static double sf[6] = {0.866025, 0.866025, 0., -0.866025, -0.866025, 0.};
      
      /* Some terms are identically zero, because sf[] can be zero.
       * Some terms do not appear in the result.
       */
      B[0] = 1.;
      B[1] = eps_x;
      /* B[2] = 0.5 * eps_x_2 - 1./20.; */
      B[3] = eps_x * (eps_x_2/6. - 1./15.);
      B[4] = eps_x_2 * (eps_x_2 - 1.)/24. + 1./280.;
      /* B[5] = eps_x * (eps_x_2*(0.5*eps_x_2 - 1.)/60. + 43./8400.); */

      result  = B[0] * gam[0] * sf[0] / pow(xo6, 1./3.);
      result += B[1] * gam[1] * sf[1] / pow(xo6, 2./3.);
      result += B[3] * gam[3] * sf[3] / pow(xo6, 4./3.);
      result += B[4] * gam[4] * sf[4] / pow(xo6, 5./3.);

      result /= (3.*M_PI);
    }
  else 
    {
      /* Region of very large argument. Use expansion
       * for x>>l, and we need not be very exacting.
       */
      double secb = x/nu;
      double sec2b= secb*secb;
      
      double cotb = 1./sqrt(sec2b-1.);      /* cotb=cot(beta) */

      double beta = acos(nu/x);
      double trigarg = nu/cotb - nu*beta - 0.25 * M_PI;
      
      double cot3b = cotb * cotb * cotb;
      double cot6b = cot3b * cot3b;

      double sum1, sum2, expterm, prefactor, trigcos;

      sum1  = 2.0 + 3.0 * sec2b;
      trigarg -= sum1 * cot3b / (24.0 * nu);

      trigcos = cos(trigarg);

      sum2 = 4.0 + sec2b;
      expterm = sum2 * sec2b * cot6b / (16.0 * nu2);

      expterm = exp(-expterm);
      prefactor = sqrt(2. * cotb / (nu * M_PI));
      
      result = prefactor * expterm * trigcos;
    }

  return  result;
}
#endif