summaryrefslogtreecommitdiff
path: root/gsl-1.9/linalg/symmtd.c
blob: 77356b96b44942d308629dcd7a1dfe4fbed51d8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/* linalg/sytd.c
 * 
 * Copyright (C) 2001 Brian Gough
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Factorise a symmetric matrix A into
 *
 * A = Q T Q'
 *
 * where Q is orthogonal and T is symmetric tridiagonal.  Only the
 * diagonal and lower triangular part of A is referenced and modified.
 *
 * On exit, T is stored in the diagonal and first subdiagonal of
 * A. Since T is symmetric the upper diagonal is not stored.
 *
 * Q is stored as a packed set of Householder transformations in the
 * lower triangular part of the input matrix below the first subdiagonal.
 *
 * The full matrix for Q can be obtained as the product
 *
 *       Q = Q_1 Q_2 ... Q_(N-2)
 *
 * where 
 *
 *       Q_i = (I - tau_i * v_i * v_i')
 *
 * and where v_i is a Householder vector
 *
 *       v_i = [0, ... , 0, 1, A(i+1,i), A(i+2,i), ... , A(N,i)]
 *
 * This storage scheme is the same as in LAPACK.  See LAPACK's
 * ssytd2.f for details.
 *
 * See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 
 *
 * Note: this description uses 1-based indices. The code below uses
 * 0-based indices 
 */

#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

#include <gsl/gsl_linalg.h>

int 
gsl_linalg_symmtd_decomp (gsl_matrix * A, gsl_vector * tau)  
{
  if (A->size1 != A->size2)
    {
      GSL_ERROR ("symmetric tridiagonal decomposition requires square matrix",
                 GSL_ENOTSQR);
    }
  else if (tau->size + 1 != A->size1)
    {
      GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);
    }
  else
    {
      const size_t N = A->size1;
      size_t i;
  
      for (i = 0 ; i < N - 2; i++)
        {
          gsl_vector_view c = gsl_matrix_column (A, i);
          gsl_vector_view v = gsl_vector_subvector (&c.vector, i + 1, N - (i + 1));
          double tau_i = gsl_linalg_householder_transform (&v.vector);
          
          /* Apply the transformation H^T A H to the remaining columns */

          if (tau_i != 0.0) 
            {
              gsl_matrix_view m = gsl_matrix_submatrix (A, i + 1, i + 1, 
                                                        N - (i+1), N - (i+1));
              double ei = gsl_vector_get(&v.vector, 0);
              gsl_vector_view x = gsl_vector_subvector (tau, i, N-(i+1));
              gsl_vector_set (&v.vector, 0, 1.0);
              
              /* x = tau * A * v */
              gsl_blas_dsymv (CblasLower, tau_i, &m.matrix, &v.vector, 0.0, &x.vector);

              /* w = x - (1/2) tau * (x' * v) * v  */
              {
                double xv, alpha;
                gsl_blas_ddot(&x.vector, &v.vector, &xv);
                alpha = - (tau_i / 2.0) * xv;
                gsl_blas_daxpy(alpha, &v.vector, &x.vector);
              }
              
              /* apply the transformation A = A - v w' - w v' */
              gsl_blas_dsyr2(CblasLower, -1.0, &v.vector, &x.vector, &m.matrix);

              gsl_vector_set (&v.vector, 0, ei);
            }
          
          gsl_vector_set (tau, i, tau_i);
        }
      
      return GSL_SUCCESS;
    }
}  


/*  Form the orthogonal matrix Q from the packed QR matrix */

int
gsl_linalg_symmtd_unpack (const gsl_matrix * A, 
                          const gsl_vector * tau,
                          gsl_matrix * Q, 
                          gsl_vector * diag, 
                          gsl_vector * sdiag)
{
  if (A->size1 !=  A->size2)
    {
      GSL_ERROR ("matrix A must be square", GSL_ENOTSQR);
    }
  else if (tau->size + 1 != A->size1)
    {
      GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);
    }
  else if (Q->size1 != A->size1 || Q->size2 != A->size1)
    {
      GSL_ERROR ("size of Q must match size of A", GSL_EBADLEN);
    }
  else if (diag->size != A->size1)
    {
      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);
    }
  else if (sdiag->size + 1 != A->size1)
    {
      GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);
    }
  else
    {
      const size_t N = A->size1;

      size_t i;

      /* Initialize Q to the identity */

      gsl_matrix_set_identity (Q);

      for (i = N - 2; i > 0 && i--;)
        {
          gsl_vector_const_view c = gsl_matrix_const_column (A, i);
          gsl_vector_const_view h = gsl_vector_const_subvector (&c.vector, i + 1, N - (i+1));
          double ti = gsl_vector_get (tau, i);

          gsl_matrix_view m = gsl_matrix_submatrix (Q, i + 1, i + 1, N-(i+1), N-(i+1));

          gsl_linalg_householder_hm (ti, &h.vector, &m.matrix);
        }

      /* Copy diagonal into diag */

      for (i = 0; i < N; i++)
        {
          double Aii = gsl_matrix_get (A, i, i);
          gsl_vector_set (diag, i, Aii);
        }

      /* Copy subdiagonal into sd */

      for (i = 0; i < N - 1; i++)
        {
          double Aji = gsl_matrix_get (A, i+1, i);
          gsl_vector_set (sdiag, i, Aji);
        }

      return GSL_SUCCESS;
    }
}

int
gsl_linalg_symmtd_unpack_T (const gsl_matrix * A, 
                            gsl_vector * diag, 
                            gsl_vector * sdiag)
{
  if (A->size1 !=  A->size2)
    {
      GSL_ERROR ("matrix A must be square", GSL_ENOTSQR);
    }
  else if (diag->size != A->size1)
    {
      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);
    }
  else if (sdiag->size + 1 != A->size1)
    {
      GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);
    }
  else
    {
      const size_t N = A->size1;

      size_t i;

      /* Copy diagonal into diag */

      for (i = 0; i < N; i++)
        {
          double Aii = gsl_matrix_get (A, i, i);
          gsl_vector_set (diag, i, Aii);
        }

      /* Copy subdiagonal into sdiag */

      for (i = 0; i < N - 1; i++)
        {
          double Aij = gsl_matrix_get (A, i+1, i);
          gsl_vector_set (sdiag, i, Aij);
        }

      return GSL_SUCCESS;
    }
}