summaryrefslogtreecommitdiff
path: root/gsl-1.9/linalg/svd.c
blob: cd5588ac3e1904ce2c8dd939a61793f6840ccc15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/* linalg/svd.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman, Brian Gough
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

#include <gsl/gsl_linalg.h>

#include "givens.c"
#include "svdstep.c"

/* Factorise a general M x N matrix A into,
 *
 *   A = U D V^T
 *
 * where U is a column-orthogonal M x N matrix (U^T U = I), 
 * D is a diagonal N x N matrix, 
 * and V is an N x N orthogonal matrix (V^T V = V V^T = I)
 *
 * U is stored in the original matrix A, which has the same size
 *
 * V is stored as a separate matrix (not V^T). You must take the
 * transpose to form the product above.
 *
 * The diagonal matrix D is stored in the vector S,  D_ii = S_i
 */

int
gsl_linalg_SV_decomp (gsl_matrix * A, gsl_matrix * V, gsl_vector * S, 
                      gsl_vector * work)
{
  size_t a, b, i, j;

  const size_t M = A->size1;
  const size_t N = A->size2;
  const size_t K = GSL_MIN (M, N);

  if (M < N)
    {
      GSL_ERROR ("svd of MxN matrix, M<N, is not implemented", GSL_EUNIMPL);
    }
  else if (V->size1 != N)
    {
      GSL_ERROR ("square matrix V must match second dimension of matrix A",
                 GSL_EBADLEN);
    }
  else if (V->size1 != V->size2)
    {
      GSL_ERROR ("matrix V must be square", GSL_ENOTSQR);
    }
  else if (S->size != N)
    {
      GSL_ERROR ("length of vector S must match second dimension of matrix A",
                 GSL_EBADLEN);
    }
  else if (work->size != N)
    {
      GSL_ERROR ("length of workspace must match second dimension of matrix A",
                 GSL_EBADLEN);
    }

  /* Handle the case of N = 1 (SVD of a column vector) */

  if (N == 1)
    {
      gsl_vector_view column = gsl_matrix_column (A, 0);
      double norm = gsl_blas_dnrm2 (&column.vector);

      gsl_vector_set (S, 0, norm); 
      gsl_matrix_set (V, 0, 0, 1.0);
      
      if (norm != 0.0)
        {
          gsl_blas_dscal (1.0/norm, &column.vector);
        }

      return GSL_SUCCESS;
    }
  
  {
    gsl_vector_view f = gsl_vector_subvector (work, 0, K - 1);
    
    /* bidiagonalize matrix A, unpack A into U S V */
    
    gsl_linalg_bidiag_decomp (A, S, &f.vector);
    gsl_linalg_bidiag_unpack2 (A, S, &f.vector, V);
    
    /* apply reduction steps to B=(S,Sd) */
    
    chop_small_elements (S, &f.vector);
    
    /* Progressively reduce the matrix until it is diagonal */
    
    b = N - 1;
    
    while (b > 0)
      {
        double fbm1 = gsl_vector_get (&f.vector, b - 1);

        if (fbm1 == 0.0 || gsl_isnan (fbm1))
          {
            b--;
            continue;
          }
        
        /* Find the largest unreduced block (a,b) starting from b
           and working backwards */
        
        a = b - 1;
        
        while (a > 0)
          {
            double fam1 = gsl_vector_get (&f.vector, a - 1);

            if (fam1 == 0.0 || gsl_isnan (fam1))
              {
                break;
              }
            
            a--;
          }
        
        {
          const size_t n_block = b - a + 1;
          gsl_vector_view S_block = gsl_vector_subvector (S, a, n_block);
          gsl_vector_view f_block = gsl_vector_subvector (&f.vector, a, n_block - 1);
          
          gsl_matrix_view U_block =
            gsl_matrix_submatrix (A, 0, a, A->size1, n_block);
          gsl_matrix_view V_block =
            gsl_matrix_submatrix (V, 0, a, V->size1, n_block);
          
          qrstep (&S_block.vector, &f_block.vector, &U_block.matrix, &V_block.matrix);
          
          /* remove any small off-diagonal elements */
          
          chop_small_elements (&S_block.vector, &f_block.vector);
        }
      }
  }
  /* Make singular values positive by reflections if necessary */
  
  for (j = 0; j < K; j++)
    {
      double Sj = gsl_vector_get (S, j);
      
      if (Sj < 0.0)
        {
          for (i = 0; i < N; i++)
            {
              double Vij = gsl_matrix_get (V, i, j);
              gsl_matrix_set (V, i, j, -Vij);
            }
          
          gsl_vector_set (S, j, -Sj);
        }
    }
  
  /* Sort singular values into decreasing order */
  
  for (i = 0; i < K; i++)
    {
      double S_max = gsl_vector_get (S, i);
      size_t i_max = i;
      
      for (j = i + 1; j < K; j++)
        {
          double Sj = gsl_vector_get (S, j);
          
          if (Sj > S_max)
            {
              S_max = Sj;
              i_max = j;
            }
        }
      
      if (i_max != i)
        {
          /* swap eigenvalues */
          gsl_vector_swap_elements (S, i, i_max);
          
          /* swap eigenvectors */
          gsl_matrix_swap_columns (A, i, i_max);
          gsl_matrix_swap_columns (V, i, i_max);
        }
    }
  
  return GSL_SUCCESS;
}


/* Modified algorithm which is better for M>>N */

int
gsl_linalg_SV_decomp_mod (gsl_matrix * A,
                          gsl_matrix * X,
                          gsl_matrix * V, gsl_vector * S, gsl_vector * work)
{
  size_t i, j;

  const size_t M = A->size1;
  const size_t N = A->size2;

  if (M < N)
    {
      GSL_ERROR ("svd of MxN matrix, M<N, is not implemented", GSL_EUNIMPL);
    }
  else if (V->size1 != N)
    {
      GSL_ERROR ("square matrix V must match second dimension of matrix A",
                 GSL_EBADLEN);
    }
  else if (V->size1 != V->size2)
    {
      GSL_ERROR ("matrix V must be square", GSL_ENOTSQR);
    }
  else if (X->size1 != N)
    {
      GSL_ERROR ("square matrix X must match second dimension of matrix A",
                 GSL_EBADLEN);
    }
  else if (X->size1 != X->size2)
    {
      GSL_ERROR ("matrix X must be square", GSL_ENOTSQR);
    }
  else if (S->size != N)
    {
      GSL_ERROR ("length of vector S must match second dimension of matrix A",
                 GSL_EBADLEN);
    }
  else if (work->size != N)
    {
      GSL_ERROR ("length of workspace must match second dimension of matrix A",
                 GSL_EBADLEN);
    }

  if (N == 1)
    {
      gsl_vector_view column = gsl_matrix_column (A, 0);
      double norm = gsl_blas_dnrm2 (&column.vector);

      gsl_vector_set (S, 0, norm); 
      gsl_matrix_set (V, 0, 0, 1.0);
      
      if (norm != 0.0)
        {
          gsl_blas_dscal (1.0/norm, &column.vector);
        }

      return GSL_SUCCESS;
    }

  /* Convert A into an upper triangular matrix R */

  for (i = 0; i < N; i++)
    {
      gsl_vector_view c = gsl_matrix_column (A, i);
      gsl_vector_view v = gsl_vector_subvector (&c.vector, i, M - i);
      double tau_i = gsl_linalg_householder_transform (&v.vector);

      /* Apply the transformation to the remaining columns */

      if (i + 1 < N)
        {
          gsl_matrix_view m =
            gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i + 1));
          gsl_linalg_householder_hm (tau_i, &v.vector, &m.matrix);
        }

      gsl_vector_set (S, i, tau_i);
    }

  /* Copy the upper triangular part of A into X */

  for (i = 0; i < N; i++)
    {
      for (j = 0; j < i; j++)
        {
          gsl_matrix_set (X, i, j, 0.0);
        }

      {
        double Aii = gsl_matrix_get (A, i, i);
        gsl_matrix_set (X, i, i, Aii);
      }

      for (j = i + 1; j < N; j++)
        {
          double Aij = gsl_matrix_get (A, i, j);
          gsl_matrix_set (X, i, j, Aij);
        }
    }

  /* Convert A into an orthogonal matrix L */

  for (j = N; j > 0 && j--;)
    {
      /* Householder column transformation to accumulate L */
      double tj = gsl_vector_get (S, j);
      gsl_matrix_view m = gsl_matrix_submatrix (A, j, j, M - j, N - j);
      gsl_linalg_householder_hm1 (tj, &m.matrix);
    }

  /* unpack R into X V S */

  gsl_linalg_SV_decomp (X, V, S, work);

  /* Multiply L by X, to obtain U = L X, stored in U */

  {
    gsl_vector_view sum = gsl_vector_subvector (work, 0, N);

    for (i = 0; i < M; i++)
      {
        gsl_vector_view L_i = gsl_matrix_row (A, i);
        gsl_vector_set_zero (&sum.vector);

        for (j = 0; j < N; j++)
          {
            double Lij = gsl_vector_get (&L_i.vector, j);
            gsl_vector_view X_j = gsl_matrix_row (X, j);
            gsl_blas_daxpy (Lij, &X_j.vector, &sum.vector);
          }

        gsl_vector_memcpy (&L_i.vector, &sum.vector);
      }
  }

  return GSL_SUCCESS;
}


/*  Solves the system A x = b using the SVD factorization
 *
 *  A = U S V^T
 *
 *  to obtain x. For M x N systems it finds the solution in the least
 *  squares sense.  
 */

int
gsl_linalg_SV_solve (const gsl_matrix * U,
                     const gsl_matrix * V,
                     const gsl_vector * S,
                     const gsl_vector * b, gsl_vector * x)
{
  if (U->size1 != b->size)
    {
      GSL_ERROR ("first dimension of matrix U must size of vector b",
                 GSL_EBADLEN);
    }
  else if (U->size2 != S->size)
    {
      GSL_ERROR ("length of vector S must match second dimension of matrix U",
                 GSL_EBADLEN);
    }
  else if (V->size1 != V->size2)
    {
      GSL_ERROR ("matrix V must be square", GSL_ENOTSQR);
    }
  else if (S->size != V->size1)
    {
      GSL_ERROR ("length of vector S must match size of matrix V",
                 GSL_EBADLEN);
    }
  else if (V->size2 != x->size)
    {
      GSL_ERROR ("size of matrix V must match size of vector x", GSL_EBADLEN);
    }
  else
    {
      const size_t N = U->size2;
      size_t i;

      gsl_vector *w = gsl_vector_calloc (N);

      gsl_blas_dgemv (CblasTrans, 1.0, U, b, 0.0, w);

      for (i = 0; i < N; i++)
        {
          double wi = gsl_vector_get (w, i);
          double alpha = gsl_vector_get (S, i);
          if (alpha != 0)
            alpha = 1.0 / alpha;
          gsl_vector_set (w, i, alpha * wi);
        }

      gsl_blas_dgemv (CblasNoTrans, 1.0, V, w, 0.0, x);

      gsl_vector_free (w);

      return GSL_SUCCESS;
    }
}

/* This is a the jacobi version */
/* Author:  G. Jungman */

/*
 * Algorithm due to J.C. Nash, Compact Numerical Methods for
 * Computers (New York: Wiley and Sons, 1979), chapter 3.
 * See also Algorithm 4.1 in
 * James Demmel, Kresimir Veselic, "Jacobi's Method is more
 * accurate than QR", Lapack Working Note 15 (LAWN15), October 1989.
 * Available from netlib.
 *
 * Based on code by Arthur Kosowsky, Rutgers University
 *                  kosowsky@physics.rutgers.edu  
 *
 * Another relevant paper is, P.P.M. De Rijk, "A One-Sided Jacobi
 * Algorithm for computing the singular value decomposition on a
 * vector computer", SIAM Journal of Scientific and Statistical
 * Computing, Vol 10, No 2, pp 359-371, March 1989.
 * 
 */

int
gsl_linalg_SV_decomp_jacobi (gsl_matrix * A, gsl_matrix * Q, gsl_vector * S)
{
  if (A->size1 < A->size2)
    {
      /* FIXME: only implemented  M>=N case so far */

      GSL_ERROR ("svd of MxN matrix, M<N, is not implemented", GSL_EUNIMPL);
    }
  else if (Q->size1 != A->size2)
    {
      GSL_ERROR ("square matrix Q must match second dimension of matrix A",
                 GSL_EBADLEN);
    }
  else if (Q->size1 != Q->size2)
    {
      GSL_ERROR ("matrix Q must be square", GSL_ENOTSQR);
    }
  else if (S->size != A->size2)
    {
      GSL_ERROR ("length of vector S must match second dimension of matrix A",
                 GSL_EBADLEN);
    }
  else
    {
      const size_t M = A->size1;
      const size_t N = A->size2;
      size_t i, j, k;

      /* Initialize the rotation counter and the sweep counter. */
      int count = 1;
      int sweep = 0;
      int sweepmax = 5*N;

      double tolerance = 10 * M * GSL_DBL_EPSILON;

      /* Always do at least 12 sweeps. */
      sweepmax = GSL_MAX (sweepmax, 12);

      /* Set Q to the identity matrix. */
      gsl_matrix_set_identity (Q);

      /* Store the column error estimates in S, for use during the
         orthogonalization */

      for (j = 0; j < N; j++)
        {
          gsl_vector_view cj = gsl_matrix_column (A, j);
          double sj = gsl_blas_dnrm2 (&cj.vector);
          gsl_vector_set(S, j, GSL_DBL_EPSILON * sj);
        }
    
      /* Orthogonalize A by plane rotations. */

      while (count > 0 && sweep <= sweepmax)
        {
          /* Initialize rotation counter. */
          count = N * (N - 1) / 2;

          for (j = 0; j < N - 1; j++)
            {
              for (k = j + 1; k < N; k++)
                {
                  double a = 0.0;
                  double b = 0.0;
                  double p = 0.0;
                  double q = 0.0;
                  double cosine, sine;
                  double v;
                  double abserr_a, abserr_b;
                  int sorted, orthog, noisya, noisyb;

                  gsl_vector_view cj = gsl_matrix_column (A, j);
                  gsl_vector_view ck = gsl_matrix_column (A, k);

                  gsl_blas_ddot (&cj.vector, &ck.vector, &p);
                  p *= 2.0 ;  /* equation 9a:  p = 2 x.y */

                  a = gsl_blas_dnrm2 (&cj.vector);
                  b = gsl_blas_dnrm2 (&ck.vector);

                  q = a * a - b * b;
                  v = hypot(p, q);

                  /* test for columns j,k orthogonal, or dominant errors */

                  abserr_a = gsl_vector_get(S,j);
                  abserr_b = gsl_vector_get(S,k);

                  sorted = (gsl_coerce_double(a) >= gsl_coerce_double(b));
                  orthog = (fabs (p) <= tolerance * gsl_coerce_double(a * b));
                  noisya = (a < abserr_a);
                  noisyb = (b < abserr_b);

                  if (sorted && (orthog || noisya || noisyb))
                    {
                      count--;
                      continue;
                    }

                  /* calculate rotation angles */
                  if (v == 0 || !sorted)
                    {
                      cosine = 0.0;
                      sine = 1.0;
                    }
                  else
                    {
                      cosine = sqrt((v + q) / (2.0 * v));
                      sine = p / (2.0 * v * cosine);
                    }

                  /* apply rotation to A */
                  for (i = 0; i < M; i++)
                    {
                      const double Aik = gsl_matrix_get (A, i, k);
                      const double Aij = gsl_matrix_get (A, i, j);
                      gsl_matrix_set (A, i, j, Aij * cosine + Aik * sine);
                      gsl_matrix_set (A, i, k, -Aij * sine + Aik * cosine);
                    }

                  gsl_vector_set(S, j, fabs(cosine) * abserr_a + fabs(sine) * abserr_b);
                  gsl_vector_set(S, k, fabs(sine) * abserr_a + fabs(cosine) * abserr_b);

                  /* apply rotation to Q */
                  for (i = 0; i < N; i++)
                    {
                      const double Qij = gsl_matrix_get (Q, i, j);
                      const double Qik = gsl_matrix_get (Q, i, k);
                      gsl_matrix_set (Q, i, j, Qij * cosine + Qik * sine);
                      gsl_matrix_set (Q, i, k, -Qij * sine + Qik * cosine);
                    }
                }
            }

          /* Sweep completed. */
          sweep++;
        }

      /* 
       * Orthogonalization complete. Compute singular values.
       */

      {
        double prev_norm = -1.0;

        for (j = 0; j < N; j++)
          {
            gsl_vector_view column = gsl_matrix_column (A, j);
            double norm = gsl_blas_dnrm2 (&column.vector);

            /* Determine if singular value is zero, according to the
               criteria used in the main loop above (i.e. comparison
               with norm of previous column). */

            if (norm == 0.0 || prev_norm == 0.0 
                || (j > 0 && norm <= tolerance * prev_norm))
              {
                gsl_vector_set (S, j, 0.0);     /* singular */
                gsl_vector_set_zero (&column.vector);   /* annihilate column */

                prev_norm = 0.0;
              }
            else
              {
                gsl_vector_set (S, j, norm);    /* non-singular */
                gsl_vector_scale (&column.vector, 1.0 / norm);  /* normalize column */

                prev_norm = norm;
              }
          }
      }

      if (count > 0)
        {
          /* reached sweep limit */
          GSL_ERROR ("Jacobi iterations did not reach desired tolerance",
                     GSL_ETOL);
        }

      return GSL_SUCCESS;
    }
}