summaryrefslogtreecommitdiff
path: root/gsl-1.9/linalg/hessenberg.c
blob: de9a47a49c2fe6b22f0c71ebee477c78a5803c86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/* linalg/hessenberg.c
 * 
 * Copyright (C) 2006 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>

/*
gsl_linalg_hessenberg()
  Compute the Householder reduction to Hessenberg form of a
square N-by-N matrix A.

H = U^t A U

See Golub & Van Loan, "Matrix Computations" (3rd ed), algorithm
7.4.2

Inputs: A   - matrix to reduce
        tau - where to store scalar factors in Householder
              matrices; this vector must be of length N,
              where N is the order of A

Return: GSL_SUCCESS unless error occurs

Notes: on output, the upper triangular portion of A (including
the diagaonal and subdiagonal) contains the Hessenberg matrix.
The lower triangular portion (below the subdiagonal) contains
the Householder vectors which can be used to construct
the similarity transform matrix U.

The matrix U is

U = U(1) U(2) ... U(n - 2)

where

U(i) = I - tau(i) * v(i) * v(i)^t

and the vector v(i) is stored in column i of the matrix A
underneath the subdiagonal. So the first element of v(i)
is stored in row i + 2, column i, the second element at
row i + 3, column i, and so on.

Also note that for the purposes of computing U(i),
v(1:i) = 0, v(i + 1) = 1, and v(i+2:n) is what is stored in
column i of A beneath the subdiagonal.
*/

int
gsl_linalg_hessenberg(gsl_matrix *A, gsl_vector *tau)
{
  const size_t N = A->size1;

  if (N != A->size2)
    {
      GSL_ERROR ("Hessenberg reduction requires square matrix",
                 GSL_ENOTSQR);
    }
  else if (N != tau->size)
    {
      GSL_ERROR ("tau vector must match matrix size", GSL_EBADLEN);
    }
  else if (N < 3)
    {
      /* nothing to do */
      return GSL_SUCCESS;
    }
  else
    {
      size_t i;           /* looping */
      gsl_vector_view c,  /* matrix column */
                      hv; /* householder vector */
      gsl_matrix_view m;
      double tau_i;       /* beta in algorithm 7.4.2 */

      for (i = 0; i < N - 2; ++i)
        {
          /*
           * make a copy of A(i + 1:n, i) and store it in the section
           * of 'tau' that we haven't stored coefficients in yet
           */

          c = gsl_matrix_column(A, i);
          c = gsl_vector_subvector(&c.vector, i + 1, N - (i + 1));

          hv = gsl_vector_subvector(tau, i + 1, N - (i + 1));
          gsl_vector_memcpy(&hv.vector, &c.vector);

          /* compute householder transformation of A(i+1:n,i) */
          tau_i = gsl_linalg_householder_transform(&hv.vector);

          /* apply left householder matrix (I - tau_i v v') to A */
          m = gsl_matrix_submatrix(A, i + 1, i, N - (i + 1), N - i);
          gsl_linalg_householder_hm(tau_i, &hv.vector, &m.matrix);

          /* apply right householder matrix (I - tau_i v v') to A */
          m = gsl_matrix_submatrix(A, 0, i + 1, N, N - (i + 1));
          gsl_linalg_householder_mh(tau_i, &hv.vector, &m.matrix);

          /* save Householder coefficient */
          gsl_vector_set(tau, i, tau_i);

          /*
           * store Householder vector below the subdiagonal in column
           * i of the matrix. hv(1) does not need to be stored since
           * it is always 1.
           */
          c = gsl_vector_subvector(&c.vector, 1, c.vector.size - 1);
          hv = gsl_vector_subvector(&hv.vector, 1, hv.vector.size - 1);
          gsl_vector_memcpy(&c.vector, &hv.vector);
        }

      return GSL_SUCCESS;
    }
} /* gsl_linalg_hessenberg() */

/*
gsl_linalg_hessenberg_unpack()
  Construct the matrix U which transforms a matrix A into
its upper Hessenberg form:

H = U^t A U

by unpacking the information stored in H from gsl_linalg_hessenberg().

U is a product of Householder matrices:

U = U(1) U(2) ... U(n - 2)

where

U(i) = I - tau(i) * v(i) * v(i)^t

The v(i) are stored in the lower triangular part of H by
gsl_linalg_hessenberg(). The tau(i) are stored in the vector tau.

Inputs: H       - Hessenberg matrix computed from
                  gsl_linalg_hessenberg()
        tau     - tau vector computed from gsl_linalg_hessenberg()
        U       - (output) where to store similarity matrix

Return: success or error
*/

int
gsl_linalg_hessenberg_unpack(gsl_matrix * H, gsl_vector * tau,
                             gsl_matrix * U)
{
  int s;

  gsl_matrix_set_identity(U);

  s = gsl_linalg_hessenberg_unpack_accum(H, tau, U);

  return s;
} /* gsl_linalg_hessenberg_unpack() */

/*
gsl_linalg_hessenberg_unpack_accum()
  This routine is the same as gsl_linalg_hessenberg_unpack(), except
instead of storing the similarity matrix in U, it accumulates it,
so that

U -> U * [ U(1) U(2) ... U(n - 2) ]

instead of:

U -> U(1) U(2) ... U(n - 2)

Inputs: H       - Hessenberg matrix computed from
                  gsl_linalg_hessenberg()
        tau     - tau vector computed from gsl_linalg_hessenberg()
        V       - (input/output) where to accumulate similarity matrix

Return: success or error

Notes: 1) On input, V needs to be initialized. The Householder matrices
          are accumulated into V, so on output,

            V_out = V_in * U(1) * U(2) * ... * U(n - 2)

          so if you just want the product of the Householder matrices,
          initialize V to the identity matrix before calling this
          function.

       2) V does not have to be square, but must have the same
          number of columns as the order of H
*/

int
gsl_linalg_hessenberg_unpack_accum(gsl_matrix * H, gsl_vector * tau,
                                   gsl_matrix * V)
{
  const size_t N = H->size1;

  if (N != H->size2)
    {
      GSL_ERROR ("Hessenberg reduction requires square matrix",
                 GSL_ENOTSQR);
    }
  else if (N != tau->size)
    {
      GSL_ERROR ("tau vector must match matrix size", GSL_EBADLEN);
    }
  else if (N != V->size2)
    {
      GSL_ERROR ("V matrix has wrong dimension", GSL_EBADLEN);
    }
  else
    {
      size_t j;           /* looping */
      double tau_j;       /* householder coefficient */
      gsl_vector_view c,  /* matrix column */
                      hv; /* householder vector */
      gsl_matrix_view m;

      if (N < 3)
        {
          /* nothing to do */
          return GSL_SUCCESS;
        }

      for (j = 0; j < (N - 2); ++j)
        {
          c = gsl_matrix_column(H, j);

          tau_j = gsl_vector_get(tau, j);

          /*
           * get a view to the householder vector in column j, but
           * make sure hv(2) starts at the element below the
           * subdiagonal, since hv(1) was never stored and is always
           * 1
           */
          hv = gsl_vector_subvector(&c.vector, j + 1, N - (j + 1));

          /*
           * Only operate on part of the matrix since the first
           * j + 1 entries of the real householder vector are 0
           *
           * V -> V * U(j)
           *
           * Note here that V->size1 is not necessarily equal to N
           */
          m = gsl_matrix_submatrix(V, 0, j + 1, V->size1, N - (j + 1));

          /* apply right Householder matrix to V */
          gsl_linalg_householder_mh(tau_j, &hv.vector, &m.matrix);
        }

      return GSL_SUCCESS;
    }
} /* gsl_linalg_hessenberg_unpack_accum() */

/*
gsl_linalg_hessenberg_set_zero()
  Zero out the lower triangular portion of the Hessenberg matrix H.
This is useful when Householder vectors may be stored in the lower
part of H, but eigenvalue solvers need some scratch space with zeros.
*/

void
gsl_linalg_hessenberg_set_zero(gsl_matrix * H)
{
  const int N = (int) H->size1;
  int i, j;

  for (j = 0; j < N - 2; ++j)
    {
      for (i = j + 2; i < N; ++i)
        {
          gsl_matrix_set(H, i, j, 0.0);
        }
    }
} /* gsl_linalg_hessenberg_set_zero() */

/*
gsl_linalg_hessenberg_submatrix()

  This routine does the same thing as gsl_linalg_hessenberg(),
except that it operates on a submatrix of a larger matrix, but
updates the larger matrix with the Householder transformations.

For example, suppose

M = [ M_{11} | M_{12} | M_{13} ]
    [   0    |   A    | M_{23} ]
    [   0    |   0    | M_{33} ]

where M_{11} and M_{33} are already in Hessenberg form, and we
just want to reduce A to Hessenberg form. Applying the transformations
to A alone will cause the larger matrix M to lose its similarity
information. So this routine updates M_{12} and M_{23} as A gets
reduced.

Inputs: M   - total matrix
        A   - (sub)matrix to reduce
        top - row index of top of A in M
        tau - where to store scalar factors in Householder
              matrices; this vector must be of length N,
              where N is the order of A

Return: GSL_SUCCESS unless error occurs

Notes: on output, the upper triangular portion of A (including
the diagaonal and subdiagonal) contains the Hessenberg matrix.
The lower triangular portion (below the subdiagonal) contains
the Householder vectors which can be used to construct
the similarity transform matrix U.

The matrix U is

U = U(1) U(2) ... U(n - 2)

where

U(i) = I - tau(i) * v(i) * v(i)^t

and the vector v(i) is stored in column i of the matrix A
underneath the subdiagonal. So the first element of v(i)
is stored in row i + 2, column i, the second element at
row i + 3, column i, and so on.

Also note that for the purposes of computing U(i),
v(1:i) = 0, v(i + 1) = 1, and v(i+2:n) is what is stored in
column i of A beneath the subdiagonal.
*/

int
gsl_linalg_hessenberg_submatrix(gsl_matrix *M, gsl_matrix *A, size_t top,
                                gsl_vector *tau)
{
  const size_t N = A->size1;
  const size_t N_M = M->size1;

  if (N != A->size2)
    {
      GSL_ERROR ("Hessenberg reduction requires square matrix",
                 GSL_ENOTSQR);
    }
  else if (N != tau->size)
    {
      GSL_ERROR ("tau vector must match matrix size", GSL_EBADLEN);
    }
  else if (N < 3)
    {
      /* nothing to do */
      return GSL_SUCCESS;
    }
  else
    {
      size_t i;           /* looping */
      gsl_vector_view c,  /* matrix column */
                      hv; /* householder vector */
      gsl_matrix_view m;
      double tau_i;       /* beta in algorithm 7.4.2 */

      for (i = 0; i < N - 2; ++i)
        {
          /*
           * make a copy of A(i + 1:n, i) and store it in the section
           * of 'tau' that we haven't stored coefficients in yet
           */

          c = gsl_matrix_column(A, i);
          c = gsl_vector_subvector(&c.vector, i + 1, N - (i + 1));

          hv = gsl_vector_subvector(tau, i + 1, N - (i + 1));
          gsl_vector_memcpy(&hv.vector, &c.vector);

          /* compute householder transformation of A(i+1:n,i) */
          tau_i = gsl_linalg_householder_transform(&hv.vector);

          /*
           * apply left householder matrix (I - tau_i v v') to
           * [ A | M_{23} ]
           */
          m = gsl_matrix_submatrix(M,
                                   top + i + 1,
                                   top + i,
                                   N - (i + 1),
                                   N_M - top - i);
          gsl_linalg_householder_hm(tau_i, &hv.vector, &m.matrix);

          /*
           * apply right householder matrix (I - tau_i v v') to
           *
           * [ M_{12} ]
           * [   A    ]
           */
          m = gsl_matrix_submatrix(M,
                                   0,
                                   top + i + 1,
                                   top + N,
                                   N - (i + 1));
          gsl_linalg_householder_mh(tau_i, &hv.vector, &m.matrix);

          /* save Householder coefficient */
          gsl_vector_set(tau, i, tau_i);

          /*
           * store Householder vector below the subdiagonal in column
           * i of the matrix. hv(1) does not need to be stored since
           * it is always 1.
           */
          c = gsl_vector_subvector(&c.vector, 1, c.vector.size - 1);
          hv = gsl_vector_subvector(&hv.vector, 1, hv.vector.size - 1);
          gsl_vector_memcpy(&c.vector, &hv.vector);
        }

      return GSL_SUCCESS;
    }
} /* gsl_linalg_hessenberg_submatrix() */