summaryrefslogtreecommitdiff
path: root/gsl-1.9/linalg/bidiag.c
blob: 914ce7e135e8baa6db2ed72afa2fa07d85028274 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/* linalg/bidiag.c
 * 
 * Copyright (C) 2001 Brian Gough
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Factorise a matrix A into
 *
 * A = U B V^T
 *
 * where U and V are orthogonal and B is upper bidiagonal. 
 *
 * On exit, B is stored in the diagonal and first superdiagonal of A.
 *
 * U is stored as a packed set of Householder transformations in the
 * lower triangular part of the input matrix below the diagonal.
 *
 * V is stored as a packed set of Householder transformations in the
 * upper triangular part of the input matrix above the first
 * superdiagonal.
 *
 * The full matrix for U can be obtained as the product
 *
 *       U = U_1 U_2 .. U_N
 *
 * where 
 *
 *       U_i = (I - tau_i * u_i * u_i')
 *
 * and where u_i is a Householder vector
 *
 *       u_i = [0, .. , 0, 1, A(i+1,i), A(i+3,i), .. , A(M,i)]
 *
 * The full matrix for V can be obtained as the product
 *
 *       V = V_1 V_2 .. V_(N-2)
 *
 * where 
 *
 *       V_i = (I - tau_i * v_i * v_i')
 *
 * and where v_i is a Householder vector
 *
 *       v_i = [0, .. , 0, 1, A(i,i+2), A(i,i+3), .. , A(i,N)]
 *
 * See Golub & Van Loan, "Matrix Computations" (3rd ed), Algorithm 5.4.2 
 *
 * Note: this description uses 1-based indices. The code below uses
 * 0-based indices 
 */

#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

#include <gsl/gsl_linalg.h>

int 
gsl_linalg_bidiag_decomp (gsl_matrix * A, gsl_vector * tau_U, gsl_vector * tau_V)  
{
  if (A->size1 < A->size2)
    {
      GSL_ERROR ("bidiagonal decomposition requires M>=N", GSL_EBADLEN);
    }
  else if (tau_U->size  != A->size2)
    {
      GSL_ERROR ("size of tau_U must be N", GSL_EBADLEN);
    }
  else if (tau_V->size + 1 != A->size2)
    {
      GSL_ERROR ("size of tau_V must be (N - 1)", GSL_EBADLEN);
    }
  else
    {
      const size_t M = A->size1;
      const size_t N = A->size2;
      size_t i;
  
      for (i = 0 ; i < N; i++)
        {
          /* Apply Householder transformation to current column */
          
          {
            gsl_vector_view c = gsl_matrix_column (A, i);
            gsl_vector_view v = gsl_vector_subvector (&c.vector, i, M - i);
            double tau_i = gsl_linalg_householder_transform (&v.vector);
            
            /* Apply the transformation to the remaining columns */
            
            if (i + 1 < N)
              {
                gsl_matrix_view m = 
                  gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i + 1));
                gsl_linalg_householder_hm (tau_i, &v.vector, &m.matrix);
              }

            gsl_vector_set (tau_U, i, tau_i);            

          }

          /* Apply Householder transformation to current row */
          
          if (i + 1 < N)
            {
              gsl_vector_view r = gsl_matrix_row (A, i);
              gsl_vector_view v = gsl_vector_subvector (&r.vector, i + 1, N - (i + 1));
              double tau_i = gsl_linalg_householder_transform (&v.vector);
              
              /* Apply the transformation to the remaining rows */
              
              if (i + 1 < M)
                {
                  gsl_matrix_view m = 
                    gsl_matrix_submatrix (A, i+1, i+1, M - (i+1), N - (i+1));
                  gsl_linalg_householder_mh (tau_i, &v.vector, &m.matrix);
                }

              gsl_vector_set (tau_V, i, tau_i);
            }
        }
    }
        
  return GSL_SUCCESS;
}

/* Form the orthogonal matrices U, V, diagonal d and superdiagonal sd
   from the packed bidiagonal matrix A */

int
gsl_linalg_bidiag_unpack (const gsl_matrix * A, 
                          const gsl_vector * tau_U, 
                          gsl_matrix * U, 
                          const gsl_vector * tau_V,
                          gsl_matrix * V,
                          gsl_vector * diag, 
                          gsl_vector * superdiag)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  const size_t K = GSL_MIN(M, N);

  if (M < N)
    {
      GSL_ERROR ("matrix A must have M >= N", GSL_EBADLEN);
    }
  else if (tau_U->size != K)
    {
      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
    }
  else if (tau_V->size + 1 != K)
    {
      GSL_ERROR ("size of tau must be MIN(M,N) - 1", GSL_EBADLEN);
    }
  else if (U->size1 != M || U->size2 != N)
    {
      GSL_ERROR ("size of U must be M x N", GSL_EBADLEN);
    }
  else if (V->size1 != N || V->size2 != N)
    {
      GSL_ERROR ("size of V must be N x N", GSL_EBADLEN);
    }
  else if (diag->size != K)
    {
      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);
    }
  else if (superdiag->size + 1 != K)
    {
      GSL_ERROR ("size of subdiagonal must be (diagonal size - 1)", GSL_EBADLEN);
    }
  else
    {
      size_t i, j;

      /* Copy diagonal into diag */

      for (i = 0; i < N; i++)
        {
          double Aii = gsl_matrix_get (A, i, i);
          gsl_vector_set (diag, i, Aii);
        }

      /* Copy superdiagonal into superdiag */

      for (i = 0; i < N - 1; i++)
        {
          double Aij = gsl_matrix_get (A, i, i+1);
          gsl_vector_set (superdiag, i, Aij);
        }

      /* Initialize V to the identity */

      gsl_matrix_set_identity (V);

      for (i = N - 1; i > 0 && i--;)
        {
          /* Householder row transformation to accumulate V */
          gsl_vector_const_view r = gsl_matrix_const_row (A, i);
          gsl_vector_const_view h = 
            gsl_vector_const_subvector (&r.vector, i + 1, N - (i+1));
          
          double ti = gsl_vector_get (tau_V, i);
          
          gsl_matrix_view m = 
            gsl_matrix_submatrix (V, i + 1, i + 1, N-(i+1), N-(i+1));
          
          gsl_linalg_householder_hm (ti, &h.vector, &m.matrix);
        }

      /* Initialize U to the identity */

      gsl_matrix_set_identity (U);

      for (j = N; j > 0 && j--;)
        {
          /* Householder column transformation to accumulate U */
          gsl_vector_const_view c = gsl_matrix_const_column (A, j);
          gsl_vector_const_view h = gsl_vector_const_subvector (&c.vector, j, M - j);
          double tj = gsl_vector_get (tau_U, j);
          
          gsl_matrix_view m = 
            gsl_matrix_submatrix (U, j, j, M-j, N-j);
          
          gsl_linalg_householder_hm (tj, &h.vector, &m.matrix);
        }

      return GSL_SUCCESS;
    }
}

int
gsl_linalg_bidiag_unpack2 (gsl_matrix * A, 
                           gsl_vector * tau_U, 
                           gsl_vector * tau_V,
                           gsl_matrix * V)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  const size_t K = GSL_MIN(M, N);

  if (M < N)
    {
      GSL_ERROR ("matrix A must have M >= N", GSL_EBADLEN);
    }
  else if (tau_U->size != K)
    {
      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
    }
  else if (tau_V->size + 1 != K)
    {
      GSL_ERROR ("size of tau must be MIN(M,N) - 1", GSL_EBADLEN);
    }
  else if (V->size1 != N || V->size2 != N)
    {
      GSL_ERROR ("size of V must be N x N", GSL_EBADLEN);
    }
  else
    {
      size_t i, j;

      /* Initialize V to the identity */

      gsl_matrix_set_identity (V);

      for (i = N - 1; i > 0 && i--;)
        {
          /* Householder row transformation to accumulate V */
          gsl_vector_const_view r = gsl_matrix_const_row (A, i);
          gsl_vector_const_view h = 
            gsl_vector_const_subvector (&r.vector, i + 1, N - (i+1));
          
          double ti = gsl_vector_get (tau_V, i);
          
          gsl_matrix_view m = 
            gsl_matrix_submatrix (V, i + 1, i + 1, N-(i+1), N-(i+1));
          
          gsl_linalg_householder_hm (ti, &h.vector, &m.matrix);
        }

      /* Copy superdiagonal into tau_v */

      for (i = 0; i < N - 1; i++)
        {
          double Aij = gsl_matrix_get (A, i, i+1);
          gsl_vector_set (tau_V, i, Aij);
        }

      /* Allow U to be unpacked into the same memory as A, copy
         diagonal into tau_U */

      for (j = N; j > 0 && j--;)
        {
          /* Householder column transformation to accumulate U */
          double tj = gsl_vector_get (tau_U, j);
          double Ajj = gsl_matrix_get (A, j, j);
          gsl_matrix_view m = gsl_matrix_submatrix (A, j, j, M-j, N-j);

          gsl_vector_set (tau_U, j, Ajj);
          gsl_linalg_householder_hm1 (tj, &m.matrix);
        }

      return GSL_SUCCESS;
    }
}


int
gsl_linalg_bidiag_unpack_B (const gsl_matrix * A, 
                            gsl_vector * diag, 
                            gsl_vector * superdiag)
{
  const size_t M = A->size1;
  const size_t N = A->size2;

  const size_t K = GSL_MIN(M, N);

  if (diag->size != K)
    {
      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);
    }
  else if (superdiag->size + 1 != K)
    {
      GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);
    }
  else
    {
      size_t i;

      /* Copy diagonal into diag */

      for (i = 0; i < K; i++)
        {
          double Aii = gsl_matrix_get (A, i, i);
          gsl_vector_set (diag, i, Aii);
        }

      /* Copy superdiagonal into superdiag */

      for (i = 0; i < K - 1; i++)
        {
          double Aij = gsl_matrix_get (A, i, i+1);
          gsl_vector_set (superdiag, i, Aij);
        }

      return GSL_SUCCESS;
    }
}