summaryrefslogtreecommitdiff
path: root/gsl-1.9/eigen/nonsymm.c
blob: de9088a4588bf1caae3de3267af914d51bf6a8dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/* eigen/nonsymm.c
 * 
 * Copyright (C) 2006 Patrick Alken
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <stdlib.h>
#include <math.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_vector_complex.h>
#include <gsl/gsl_matrix.h>

/*
 * This module computes the eigenvalues of a real nonsymmetric
 * matrix, using the double shift Francis method.
 *
 * See the references in francis.c.
 *
 * This module gets the matrix ready by balancing it and
 * reducing it to Hessenberg form before passing it to the
 * francis module.
 */

/*
gsl_eigen_nonsymm_alloc()

Allocate a workspace for solving the nonsymmetric eigenvalue problem.
The size of this workspace is O(2n)

Inputs: n - size of matrix

Return: pointer to workspace
*/

gsl_eigen_nonsymm_workspace *
gsl_eigen_nonsymm_alloc(const size_t n)
{
  gsl_eigen_nonsymm_workspace *w;

  if (n == 0)
    {
      GSL_ERROR_NULL ("matrix dimension must be positive integer",
                      GSL_EINVAL);
    }

  w = (gsl_eigen_nonsymm_workspace *)
      malloc (sizeof (gsl_eigen_nonsymm_workspace));

  if (w == 0)
    {
      GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM);
    }

  w->size = n;
  w->Z = NULL;
  w->do_balance = 0;

  w->diag = gsl_vector_alloc(n);

  if (w->diag == 0)
    {
      GSL_ERROR_NULL ("failed to allocate space for balancing vector", GSL_ENOMEM);
    }

  w->tau = gsl_vector_alloc(n);

  if (w->tau == 0)
    {
      GSL_ERROR_NULL ("failed to allocate space for hessenberg coefficients", GSL_ENOMEM);
    }

  w->francis_workspace_p = gsl_eigen_francis_alloc();

  if (w->francis_workspace_p == 0)
    {
      GSL_ERROR_NULL ("failed to allocate space for francis workspace", GSL_ENOMEM);
    }

  return (w);
} /* gsl_eigen_nonsymm_alloc() */

/*
gsl_eigen_nonsymm_free()
  Free workspace w
*/

void
gsl_eigen_nonsymm_free (gsl_eigen_nonsymm_workspace * w)
{
  gsl_vector_free(w->tau);

  gsl_vector_free(w->diag);

  gsl_eigen_francis_free(w->francis_workspace_p);

  free(w);
} /* gsl_eigen_nonsymm_free() */

/*
gsl_eigen_nonsymm_params()
  Set some parameters which define how we solve the eigenvalue
problem.

Inputs: compute_t - 1 if we want to compute T, 0 if not
        balance   - 1 if we want to balance the matrix, 0 if not
        w         - nonsymm workspace
*/

void
gsl_eigen_nonsymm_params (const int compute_t, const int balance,
                          gsl_eigen_nonsymm_workspace *w)
{
  gsl_eigen_francis_T(compute_t, w->francis_workspace_p);
  w->do_balance = balance;
} /* gsl_eigen_nonsymm_params() */

/*
gsl_eigen_nonsymm()

Solve the nonsymmetric eigenvalue problem

A x = \lambda x

for the eigenvalues \lambda using the Francis method.

Here we compute the real Schur form

T = Z^t A Z

with the diagonal blocks of T giving us the eigenvalues.
Z is a matrix of Schur vectors which is not computed by
this algorithm. See gsl_eigen_nonsymm_Z().

Inputs: A    - general real matrix
        eval - where to store eigenvalues
        w    - workspace

Return: success or error

Notes: If T is computed, it is stored in A on output. Otherwise
       the diagonal of A contains the 1-by-1 and 2-by-2 eigenvalue
       blocks.
*/

int
gsl_eigen_nonsymm (gsl_matrix * A, gsl_vector_complex * eval,
                   gsl_eigen_nonsymm_workspace * w)
{
  const size_t N = A->size1;

  /* check matrix and vector sizes */

  if (N != A->size2)
    {
      GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR);
    }
  else if (eval->size != N)
    {
      GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN);
    }
  else
    {
      int s;

      if (w->do_balance)
        {
          /* balance the matrix */
          gsl_linalg_balance_matrix(A, w->diag);
        }

      /* compute the Hessenberg reduction of A */
      gsl_linalg_hessenberg(A, w->tau);

      if (w->Z)
        {
          /*
           * initialize the matrix Z to U, which is the matrix used
           * to construct the Hessenberg reduction.
           */

          /* compute U and store it in Z */
          gsl_linalg_hessenberg_unpack(A, w->tau, w->Z);

          /* find the eigenvalues and Schur vectors */
          s = gsl_eigen_francis_Z(A, eval, w->Z, w->francis_workspace_p);

          if (w->do_balance)
            {
              /*
               * The Schur vectors in Z are the vectors for the balanced
               * matrix. We now must undo the balancing to get the
               * vectors for the original matrix A.
               */
              gsl_linalg_balance_accum(w->Z, w->diag);
            }
        }
      else
        {
          /* find the eigenvalues only */
          s = gsl_eigen_francis(A, eval, w->francis_workspace_p);
        }

      w->n_evals = w->francis_workspace_p->n_evals;

      return s;
    }
} /* gsl_eigen_nonsymm() */

/*
gsl_eigen_nonsymm_Z()

Solve the nonsymmetric eigenvalue problem

A x = \lambda x

for the eigenvalues \lambda.

Here we compute the real Schur form

T = Z^t A Z

with the diagonal blocks of T giving us the eigenvalues.
Z is the matrix of Schur vectors.

Inputs: A    - general real matrix
        eval - where to store eigenvalues
        Z    - where to store Schur vectors
        w    - workspace

Return: success or error

Notes: If T is computed, it is stored in A on output. Otherwise
       the diagonal of A contains the 1-by-1 and 2-by-2 eigenvalue
       blocks.
*/

int
gsl_eigen_nonsymm_Z (gsl_matrix * A, gsl_vector_complex * eval,
                     gsl_matrix * Z, gsl_eigen_nonsymm_workspace * w)
{
  /* check matrix and vector sizes */

  if (A->size1 != A->size2)
    {
      GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR);
    }
  else if (eval->size != A->size1)
    {
      GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN);
    }
  else if ((Z->size1 != Z->size2) || (Z->size1 != A->size1))
    {
      GSL_ERROR ("Z matrix has wrong dimensions", GSL_EBADLEN);
    }
  else
    {
      int s;

      w->Z = Z;

      s = gsl_eigen_nonsymm(A, eval, w);

      w->Z = NULL;

      return s;
    }
} /* gsl_eigen_nonsymm_Z() */