summaryrefslogtreecommitdiff
path: root/gsl-1.9/doc/integration.texi
blob: 62afb3ea50dabc4d885b4717cf507ceefd5eaf00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
@cindex quadrature
@cindex numerical integration (quadrature)
@cindex integration, numerical (quadrature)
@cindex QUADPACK

This chapter describes routines for performing numerical integration
(quadrature) of a function in one dimension.  There are routines for
adaptive and non-adaptive integration of general functions, with
specialised routines for specific cases.  These include integration over
infinite and semi-infinite ranges, singular integrals, including
logarithmic singularities, computation of Cauchy principal values and
oscillatory integrals.  The library reimplements the algorithms used in
@sc{quadpack}, a numerical integration package written by Piessens,
Doncker-Kapenga, Uberhuber and Kahaner.  Fortran code for @sc{quadpack} is
available on Netlib.

The functions described in this chapter are declared in the header file
@file{gsl_integration.h}.

@menu
* Numerical Integration Introduction::  
* QNG non-adaptive Gauss-Kronrod integration::  
* QAG adaptive integration::    
* QAGS adaptive integration with singularities::  
* QAGP adaptive integration with known singular points::  
* QAGI adaptive integration on infinite intervals::  
* QAWC adaptive integration for Cauchy principal values::  
* QAWS adaptive integration for singular functions::  
* QAWO adaptive integration for oscillatory functions::  
* QAWF adaptive integration for Fourier integrals::  
* Numerical integration error codes::  
* Numerical integration examples::  
* Numerical integration References and Further Reading::  
@end menu

@node Numerical Integration Introduction
@section Introduction

Each algorithm computes an approximation to a definite integral of the
form,
@tex
\beforedisplay
$$
I = \int_a^b f(x) w(x) \,dx
$$
\afterdisplay
@end tex
@ifinfo

@example
I = \int_a^b f(x) w(x) dx
@end example

@end ifinfo
@noindent
where @math{w(x)} is a weight function (for general integrands @math{w(x)=1}).
The user provides absolute and relative error bounds 
@c{$(\hbox{\it epsabs}, \hbox{\it epsrel}\,)$}
@math{(epsabs, epsrel)} which specify the following accuracy requirement,
@tex
\beforedisplay
$$
|\hbox{\it RESULT} - I|  \leq \max(\hbox{\it epsabs}, \hbox{\it epsrel}\, |I|)
$$
\afterdisplay
@end tex
@ifinfo

@example
|RESULT - I|  <= max(epsabs, epsrel |I|)
@end example

@end ifinfo
@noindent
where 
@c{$\hbox{\it RESULT}$}
@math{RESULT} is the numerical approximation obtained by the
algorithm.  The algorithms attempt to estimate the absolute error
@c{$\hbox{\it ABSERR} = |\hbox{\it RESULT} - I|$}
@math{ABSERR = |RESULT - I|} in such a way that the following inequality
holds,
@tex
\beforedisplay
$$
|\hbox{\it RESULT} - I| \leq \hbox{\it ABSERR} \leq \max(\hbox{\it epsabs}, \hbox{\it epsrel}\,|I|)
$$
\afterdisplay
@end tex
@ifinfo

@example
|RESULT - I| <= ABSERR <= max(epsabs, epsrel |I|)
@end example

@end ifinfo
@noindent
The routines will fail to converge if the error bounds are too
stringent, but always return the best approximation obtained up to that
stage.

The algorithms in @sc{quadpack} use a naming convention based on the
following letters,

@display 
@code{Q} - quadrature routine

@code{N} - non-adaptive integrator
@code{A} - adaptive integrator

@code{G} - general integrand (user-defined)
@code{W} - weight function with integrand

@code{S} - singularities can be more readily integrated
@code{P} - points of special difficulty can be supplied
@code{I} - infinite range of integration
@code{O} - oscillatory weight function, cos or sin
@code{F} - Fourier integral
@code{C} - Cauchy principal value
@end display

@noindent
The algorithms are built on pairs of quadrature rules, a higher order
rule and a lower order rule.  The higher order rule is used to compute
the best approximation to an integral over a small range.  The
difference between the results of the higher order rule and the lower
order rule gives an estimate of the error in the approximation.

@menu
* Integrands without weight functions::  
* Integrands with weight functions::  
* Integrands with singular weight functions::  
@end menu

@node Integrands without weight functions
@subsection Integrands without weight functions
@cindex Gauss-Kronrod quadrature
The algorithms for general functions (without a weight function) are
based on Gauss-Kronrod rules. 

A Gauss-Kronrod rule begins with a classical Gaussian quadrature rule of
order @math{m}.  This is extended with additional points between each of
the abscissae to give a higher order Kronrod rule of order @math{2m+1}.
The Kronrod rule is efficient because it reuses existing function
evaluations from the Gaussian rule.  

The higher order Kronrod rule is used as the best approximation to the
integral, and the difference between the two rules is used as an
estimate of the error in the approximation.

@node Integrands with weight functions
@subsection Integrands with weight functions
@cindex Clenshaw-Curtis quadrature
@cindex Modified Clenshaw-Curtis quadrature
For integrands with weight functions the algorithms use Clenshaw-Curtis
quadrature rules.  

A Clenshaw-Curtis rule begins with an @math{n}-th order Chebyshev
polynomial approximation to the integrand.  This polynomial can be
integrated exactly to give an approximation to the integral of the
original function.  The Chebyshev expansion can be extended to higher
orders to improve the approximation and provide an estimate of the
error.

@node Integrands with singular weight functions
@subsection Integrands with singular weight functions

The presence of singularities (or other behavior) in the integrand can
cause slow convergence in the Chebyshev approximation.  The modified
Clenshaw-Curtis rules used in @sc{quadpack} separate out several common
weight functions which cause slow convergence.  

These weight functions are integrated analytically against the Chebyshev
polynomials to precompute @dfn{modified Chebyshev moments}.  Combining
the moments with the Chebyshev approximation to the function gives the
desired integral.  The use of analytic integration for the singular part
of the function allows exact cancellations and substantially improves
the overall convergence behavior of the integration.


@node QNG non-adaptive Gauss-Kronrod integration
@section QNG non-adaptive Gauss-Kronrod integration
@cindex QNG quadrature algorithm

The QNG algorithm is a non-adaptive procedure which uses fixed
Gauss-Kronrod abscissae to sample the integrand at a maximum of 87
points.  It is provided for fast integration of smooth functions.

@deftypefun int gsl_integration_qng (const gsl_function * @var{f}, double @var{a}, double @var{b}, double @var{epsabs}, double @var{epsrel}, double * @var{result}, double * @var{abserr}, size_t * @var{neval})

This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and
87-point integration rules in succession until an estimate of the
integral of @math{f} over @math{(a,b)} is achieved within the desired
absolute and relative error limits, @var{epsabs} and @var{epsrel}.  The
function returns the final approximation, @var{result}, an estimate of
the absolute error, @var{abserr} and the number of function evaluations
used, @var{neval}.  The Gauss-Kronrod rules are designed in such a way
that each rule uses all the results of its predecessors, in order to
minimize the total number of function evaluations.
@end deftypefun


@node QAG adaptive integration
@section QAG adaptive integration
@cindex QAG quadrature algorithm

The QAG algorithm is a simple adaptive integration procedure.  The
integration region is divided into subintervals, and on each iteration
the subinterval with the largest estimated error is bisected.  This
reduces the overall error rapidly, as the subintervals become
concentrated around local difficulties in the integrand.  These
subintervals are managed by a @code{gsl_integration_workspace} struct,
which handles the memory for the subinterval ranges, results and error
estimates.

@deftypefun {gsl_integration_workspace *} gsl_integration_workspace_alloc (size_t @var{n}) 
This function allocates a workspace sufficient to hold @var{n} double
precision intervals, their integration results and error estimates.
@end deftypefun

@deftypefun void gsl_integration_workspace_free (gsl_integration_workspace * @var{w})
This function frees the memory associated with the workspace @var{w}.
@end deftypefun

@deftypefun int gsl_integration_qag (const gsl_function * @var{f}, double @var{a}, double @var{b}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, int @var{key}, gsl_integration_workspace * @var{workspace},  double * @var{result}, double * @var{abserr})

This function applies an integration rule adaptively until an estimate
of the integral of @math{f} over @math{(a,b)} is achieved within the
desired absolute and relative error limits, @var{epsabs} and
@var{epsrel}.  The function returns the final approximation,
@var{result}, and an estimate of the absolute error, @var{abserr}.  The
integration rule is determined by the value of @var{key}, which should
be chosen from the following symbolic names,

@example
GSL_INTEG_GAUSS15  (key = 1)
GSL_INTEG_GAUSS21  (key = 2)
GSL_INTEG_GAUSS31  (key = 3)
GSL_INTEG_GAUSS41  (key = 4)
GSL_INTEG_GAUSS51  (key = 5)
GSL_INTEG_GAUSS61  (key = 6)
@end example

@noindent
corresponding to the 15, 21, 31, 41, 51 and 61 point Gauss-Kronrod
rules.  The higher-order rules give better accuracy for smooth functions,
while lower-order rules save time when the function contains local
difficulties, such as discontinuities.

On each iteration the adaptive integration strategy bisects the interval
with the largest error estimate.  The subintervals and their results are
stored in the memory provided by @var{workspace}.  The maximum number of
subintervals is given by @var{limit}, which may not exceed the allocated
size of the workspace.
@end deftypefun


@node QAGS adaptive integration with singularities
@section QAGS adaptive integration with singularities
@cindex QAGS quadrature algorithm

The presence of an integrable singularity in the integration region
causes an adaptive routine to concentrate new subintervals around the
singularity.  As the subintervals decrease in size the successive
approximations to the integral converge in a limiting fashion.  This
approach to the limit can be accelerated using an extrapolation
procedure.  The QAGS algorithm combines adaptive bisection with the Wynn
epsilon-algorithm to speed up the integration of many types of
integrable singularities.

@deftypefun int gsl_integration_qags (const gsl_function * @var{f}, double @var{a}, double @var{b}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr})

This function applies the Gauss-Kronrod 21-point integration rule
adaptively until an estimate of the integral of @math{f} over
@math{(a,b)} is achieved within the desired absolute and relative error
limits, @var{epsabs} and @var{epsrel}.  The results are extrapolated
using the epsilon-algorithm, which accelerates the convergence of the
integral in the presence of discontinuities and integrable
singularities.  The function returns the final approximation from the
extrapolation, @var{result}, and an estimate of the absolute error,
@var{abserr}.  The subintervals and their results are stored in the
memory provided by @var{workspace}.  The maximum number of subintervals
is given by @var{limit}, which may not exceed the allocated size of the
workspace.

@end deftypefun

@node QAGP adaptive integration with known singular points
@section QAGP adaptive integration with known singular points
@cindex QAGP quadrature algorithm
@cindex singular points, specifying positions in quadrature
@deftypefun int gsl_integration_qagp (const gsl_function * @var{f}, double * @var{pts}, size_t @var{npts}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr})

This function applies the adaptive integration algorithm QAGS taking
account of the user-supplied locations of singular points.  The array
@var{pts} of length @var{npts} should contain the endpoints of the
integration ranges defined by the integration region and locations of
the singularities.  For example, to integrate over the region
@math{(a,b)} with break-points at @math{x_1, x_2, x_3} (where 
@math{a < x_1 < x_2 < x_3 < b}) the following @var{pts} array should be used

@example
pts[0] = a
pts[1] = x_1
pts[2] = x_2
pts[3] = x_3
pts[4] = b
@end example

@noindent
with @var{npts} = 5.

@noindent
If you know the locations of the singular points in the integration
region then this routine will be faster than @code{QAGS}.

@end deftypefun

@node QAGI adaptive integration on infinite intervals
@section QAGI adaptive integration on infinite intervals
@cindex QAGI quadrature algorithm

@deftypefun int gsl_integration_qagi (gsl_function * @var{f}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr})

This function computes the integral of the function @var{f} over the
infinite interval @math{(-\infty,+\infty)}.  The integral is mapped onto the
semi-open interval @math{(0,1]} using the transformation @math{x = (1-t)/t},
@tex
\beforedisplay
$$
\int_{-\infty}^{+\infty} dx \, f(x) 
  = \int_0^1 dt \, (f((1-t)/t) + f(-(1-t)/t))/t^2.
$$
\afterdisplay
@end tex
@ifinfo

@example
\int_@{-\infty@}^@{+\infty@} dx f(x) = 
     \int_0^1 dt (f((1-t)/t) + f((-1+t)/t))/t^2.
@end example

@end ifinfo
@noindent
It is then integrated using the QAGS algorithm.  The normal 21-point
Gauss-Kronrod rule of QAGS is replaced by a 15-point rule, because the
transformation can generate an integrable singularity at the origin.  In
this case a lower-order rule is more efficient.
@end deftypefun

@deftypefun int gsl_integration_qagiu (gsl_function * @var{f}, double @var{a}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr})

This function computes the integral of the function @var{f} over the
semi-infinite interval @math{(a,+\infty)}.  The integral is mapped onto the
semi-open interval @math{(0,1]} using the transformation @math{x = a + (1-t)/t},
@tex
\beforedisplay
$$
\int_{a}^{+\infty} dx \, f(x) 
  = \int_0^1 dt \, f(a + (1-t)/t)/t^2
$$
\afterdisplay
@end tex
@ifinfo

@example
\int_@{a@}^@{+\infty@} dx f(x) = 
     \int_0^1 dt f(a + (1-t)/t)/t^2
@end example

@end ifinfo
@noindent
and then integrated using the QAGS algorithm.
@end deftypefun

@deftypefun int gsl_integration_qagil (gsl_function * @var{f}, double @var{b}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr})
This function computes the integral of the function @var{f} over the
semi-infinite interval @math{(-\infty,b)}.  The integral is mapped onto the
semi-open interval @math{(0,1]} using the transformation @math{x = b - (1-t)/t},
@tex
\beforedisplay
$$
\int_{-\infty}^{b} dx \, f(x) 
  = \int_0^1 dt \, f(b - (1-t)/t)/t^2
$$
\afterdisplay
@end tex
@ifinfo

@example
\int_@{+\infty@}^@{b@} dx f(x) = 
     \int_0^1 dt f(b - (1-t)/t)/t^2
@end example

@end ifinfo
@noindent
and then integrated using the QAGS algorithm.
@end deftypefun

@node  QAWC adaptive integration for Cauchy principal values
@section QAWC adaptive integration for Cauchy principal values
@cindex QAWC quadrature algorithm
@cindex Cauchy principal value, by numerical quadrature
@deftypefun int gsl_integration_qawc (gsl_function * @var{f}, double @var{a}, double @var{b}, double @var{c}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr})

This function computes the Cauchy principal value of the integral of
@math{f} over @math{(a,b)}, with a singularity at @var{c},
@tex
\beforedisplay
$$
I = \int_a^b dx\, {f(x) \over x - c}
  = \lim_{\epsilon \to 0} 
\left\{
\int_a^{c-\epsilon} dx\, {f(x) \over x - c}
+
\int_{c+\epsilon}^b dx\, {f(x) \over x - c}
\right\}
$$
\afterdisplay
@end tex
@ifinfo

@example
I = \int_a^b dx f(x) / (x - c)
@end example

@end ifinfo
@noindent
The adaptive bisection algorithm of QAG is used, with modifications to
ensure that subdivisions do not occur at the singular point @math{x = c}.
When a subinterval contains the point @math{x = c} or is close to
it then a special 25-point modified Clenshaw-Curtis rule is used to control
the singularity.  Further away from the
singularity the algorithm uses an ordinary 15-point Gauss-Kronrod
integration rule.

@end deftypefun

@node  QAWS adaptive integration for singular functions
@section QAWS adaptive integration for singular functions
@cindex QAWS quadrature algorithm
@cindex singular functions, numerical integration of
The QAWS algorithm is designed for integrands with algebraic-logarithmic
singularities at the end-points of an integration region.  In order to
work efficiently the algorithm requires a precomputed table of
Chebyshev moments.

@deftypefun {gsl_integration_qaws_table *} gsl_integration_qaws_table_alloc (double @var{alpha}, double @var{beta}, int @var{mu}, int @var{nu})

This function allocates space for a @code{gsl_integration_qaws_table}
struct describing a singular weight function
@math{W(x)} with the parameters @math{(\alpha, \beta, \mu, \nu)},
@tex
\beforedisplay
$$
W(x) = (x - a)^\alpha (b - x)^\beta \log^\mu (x - a) \log^\nu (b - x)
$$
\afterdisplay
@end tex
@ifinfo

@example
W(x) = (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x)
@end example

@end ifinfo
@noindent
where @math{\alpha > -1}, @math{\beta > -1}, and @math{\mu = 0, 1},
@math{\nu = 0, 1}.  The weight function can take four different forms
depending on the values of @math{\mu} and @math{\nu},
@tex
\beforedisplay
$$
\matrix{
W(x) = (x - a)^\alpha (b - x)^\beta  
                                                \hfill~ (\mu = 0, \nu = 0) \cr
W(x) = (x - a)^\alpha (b - x)^\beta \log(x - a) 
                                                \hfill~ (\mu = 1, \nu = 0) \cr
W(x) = (x - a)^\alpha (b - x)^\beta \log(b - x) 
                                                \hfill~ (\mu = 0, \nu = 1) \cr
W(x) = (x - a)^\alpha (b - x)^\beta \log(x - a) \log(b - x) 
                                                \hfill~ (\mu = 1, \nu = 1)
}
$$
\afterdisplay
@end tex
@ifinfo

@example
W(x) = (x-a)^alpha (b-x)^beta                   (mu = 0, nu = 0)
W(x) = (x-a)^alpha (b-x)^beta log(x-a)          (mu = 1, nu = 0)
W(x) = (x-a)^alpha (b-x)^beta log(b-x)          (mu = 0, nu = 1)
W(x) = (x-a)^alpha (b-x)^beta log(x-a) log(b-x) (mu = 1, nu = 1)
@end example

@end ifinfo
@noindent
The singular points @math{(a,b)} do not have to be specified until the
integral is computed, where they are the endpoints of the integration
range.

The function returns a pointer to the newly allocated table
@code{gsl_integration_qaws_table} if no errors were detected, and 0 in
the case of error.
@end deftypefun

@deftypefun int gsl_integration_qaws_table_set (gsl_integration_qaws_table * @var{t}, double @var{alpha}, double @var{beta}, int @var{mu}, int @var{nu})
This function modifies the parameters @math{(\alpha, \beta, \mu, \nu)} of
an existing @code{gsl_integration_qaws_table} struct @var{t}.
@end deftypefun

@deftypefun void gsl_integration_qaws_table_free (gsl_integration_qaws_table * @var{t})
This function frees all the memory associated with the
@code{gsl_integration_qaws_table} struct @var{t}.
@end deftypefun

@deftypefun int gsl_integration_qaws (gsl_function * @var{f}, const double @var{a}, const double @var{b}, gsl_integration_qaws_table * @var{t}, const double @var{epsabs}, const double @var{epsrel}, const size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr})

This function computes the integral of the function @math{f(x)} over the
interval @math{(a,b)} with the singular weight function
@math{(x-a)^\alpha (b-x)^\beta \log^\mu (x-a) \log^\nu (b-x)}.  The parameters 
of the weight function @math{(\alpha, \beta, \mu, \nu)} are taken from the
table @var{t}.  The integral is,
@tex
\beforedisplay
$$
I = \int_a^b dx\, f(x) (x - a)^\alpha (b - x)^\beta 
        \log^\mu (x - a) \log^\nu (b - x).
$$
\afterdisplay
@end tex
@ifinfo

@example
I = \int_a^b dx f(x) (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x).
@end example

@end ifinfo
@noindent
The adaptive bisection algorithm of QAG is used.  When a subinterval
contains one of the endpoints then a special 25-point modified
Clenshaw-Curtis rule is used to control the singularities.  For
subintervals which do not include the endpoints an ordinary 15-point
Gauss-Kronrod integration rule is used.

@end deftypefun

@node  QAWO adaptive integration for oscillatory functions
@section QAWO adaptive integration for oscillatory functions
@cindex QAWO quadrature algorithm
@cindex oscillatory functions, numerical integration of
The QAWO algorithm is designed for integrands with an oscillatory
factor, @math{\sin(\omega x)} or @math{\cos(\omega x)}.  In order to
work efficiently the algorithm requires a table of Chebyshev moments
which must be pre-computed with calls to the functions below.

@deftypefun {gsl_integration_qawo_table *} gsl_integration_qawo_table_alloc (double @var{omega}, double @var{L}, enum gsl_integration_qawo_enum @var{sine}, size_t @var{n})

This function allocates space for a @code{gsl_integration_qawo_table}
struct and its associated workspace describing a sine or cosine weight
function @math{W(x)} with the parameters @math{(\omega, L)},
@tex
\beforedisplay
$$
\eqalign{
W(x) & = \left\{\matrix{\sin(\omega x) \cr \cos(\omega x)} \right\}
}
$$
\afterdisplay
@end tex
@ifinfo

@example
W(x) = sin(omega x)
W(x) = cos(omega x)
@end example

@end ifinfo
@noindent
The parameter @var{L} must be the length of the interval over which the
function will be integrated @math{L = b - a}.  The choice of sine or
cosine is made with the parameter @var{sine} which should be chosen from
one of the two following symbolic values:

@example
GSL_INTEG_COSINE
GSL_INTEG_SINE
@end example

@noindent
The @code{gsl_integration_qawo_table} is a table of the trigonometric
coefficients required in the integration process.  The parameter @var{n}
determines the number of levels of coefficients that are computed.  Each
level corresponds to one bisection of the interval @math{L}, so that
@var{n} levels are sufficient for subintervals down to the length
@math{L/2^n}.  The integration routine @code{gsl_integration_qawo}
returns the error @code{GSL_ETABLE} if the number of levels is
insufficient for the requested accuracy.

@end deftypefun

@deftypefun int gsl_integration_qawo_table_set (gsl_integration_qawo_table * @var{t}, double @var{omega}, double @var{L}, enum gsl_integration_qawo_enum @var{sine})
This function changes the parameters @var{omega}, @var{L} and @var{sine}
of the existing workspace @var{t}.
@end deftypefun

@deftypefun int gsl_integration_qawo_table_set_length (gsl_integration_qawo_table * @var{t}, double @var{L})
This function allows the length parameter @var{L} of the workspace
@var{t} to be changed.
@end deftypefun

@deftypefun void gsl_integration_qawo_table_free (gsl_integration_qawo_table * @var{t})
This function frees all the memory associated with the workspace @var{t}.
@end deftypefun

@deftypefun int gsl_integration_qawo (gsl_function * @var{f}, const double @var{a}, const double @var{epsabs}, const double @var{epsrel}, const size_t @var{limit}, gsl_integration_workspace * @var{workspace}, gsl_integration_qawo_table * @var{wf}, double * @var{result}, double * @var{abserr})

This function uses an adaptive algorithm to compute the integral of
@math{f} over @math{(a,b)} with the weight function 
@math{\sin(\omega x)} or @math{\cos(\omega x)} defined 
by the table @var{wf},
@tex
\beforedisplay
$$
\eqalign{
I & = \int_a^b dx\, f(x) \left\{ \matrix{\sin(\omega x) \cr \cos(\omega x)}\right\}
}
$$
\afterdisplay
@end tex
@ifinfo

@example
I = \int_a^b dx f(x) sin(omega x)
I = \int_a^b dx f(x) cos(omega x)
@end example

@end ifinfo
@noindent
The results are extrapolated using the epsilon-algorithm to accelerate
the convergence of the integral.  The function returns the final
approximation from the extrapolation, @var{result}, and an estimate of
the absolute error, @var{abserr}.  The subintervals and their results are
stored in the memory provided by @var{workspace}.  The maximum number of
subintervals is given by @var{limit}, which may not exceed the allocated
size of the workspace.

Those subintervals with ``large'' widths @math{d} where @math{d\omega > 4} are
computed using a 25-point Clenshaw-Curtis integration rule, which handles the
oscillatory behavior.  Subintervals with a ``small'' widths where
@math{d\omega < 4} are computed using a 15-point Gauss-Kronrod integration.

@end deftypefun

@node  QAWF adaptive integration for Fourier integrals
@section QAWF adaptive integration for Fourier integrals
@cindex QAWF quadrature algorithm
@cindex Fourier integrals, numerical

@deftypefun int gsl_integration_qawf (gsl_function * @var{f}, const double @var{a}, const double @var{epsabs}, const size_t @var{limit}, gsl_integration_workspace * @var{workspace}, gsl_integration_workspace * @var{cycle_workspace}, gsl_integration_qawo_table * @var{wf}, double * @var{result}, double * @var{abserr})

This function attempts to compute a Fourier integral of the function
@var{f} over the semi-infinite interval @math{[a,+\infty)}.
@tex
\beforedisplay
$$
\eqalign{
I & = \int_a^{+\infty} dx\, f(x) \left\{ \matrix{ \sin(\omega x) \cr
                                                 \cos(\omega x) } \right\}
}
$$
\afterdisplay
@end tex
@ifinfo

@example
I = \int_a^@{+\infty@} dx f(x) sin(omega x)
I = \int_a^@{+\infty@} dx f(x) cos(omega x)
@end example
@end ifinfo

The parameter @math{\omega} and choice of @math{\sin} or @math{\cos} is
taken from the table @var{wf} (the length @var{L} can take any value,
since it is overridden by this function to a value appropriate for the
fourier integration).  The integral is computed using the QAWO algorithm
over each of the subintervals,
@tex
\beforedisplay
$$
\eqalign{
C_1 & = [a, a + c] \cr
C_2 & = [a + c, a + 2c] \cr
\dots & = \dots \cr
C_k & = [a + (k-1) c, a + k c]
}
$$
\afterdisplay
@end tex
@ifinfo

@example
C_1 = [a, a + c]
C_2 = [a + c, a + 2 c]
... = ...
C_k = [a + (k-1) c, a + k c]
@end example

@end ifinfo
@noindent
where 
@c{$c = (2 \,\hbox{floor}(|\omega|) + 1) \pi/|\omega|$}
@math{c = (2 floor(|\omega|) + 1) \pi/|\omega|}.  The width @math{c} is
chosen to cover an odd number of periods so that the contributions from
the intervals alternate in sign and are monotonically decreasing when
@var{f} is positive and monotonically decreasing.  The sum of this
sequence of contributions is accelerated using the epsilon-algorithm.

This function works to an overall absolute tolerance of
@var{abserr}.  The following strategy is used: on each interval
@math{C_k} the algorithm tries to achieve the tolerance
@tex
\beforedisplay
$$
TOL_k = u_k \hbox{\it abserr}
$$
\afterdisplay
@end tex
@ifinfo

@example
TOL_k = u_k abserr
@end example

@end ifinfo
@noindent
where 
@c{$u_k = (1 - p)p^{k-1}$}
@math{u_k = (1 - p)p^@{k-1@}} and @math{p = 9/10}.  
The sum of the geometric series of contributions from each interval
gives an overall tolerance of @var{abserr}.

If the integration of a subinterval leads to difficulties then the
accuracy requirement for subsequent intervals is relaxed,
@tex
\beforedisplay
$$
TOL_k = u_k \max(\hbox{\it abserr}, \max_{i<k}\{E_i\})
$$
\afterdisplay
@end tex
@ifinfo

@example
TOL_k = u_k max(abserr, max_@{i<k@}@{E_i@})
@end example

@end ifinfo
@noindent
where @math{E_k} is the estimated error on the interval @math{C_k}.

The subintervals and their results are stored in the memory provided by
@var{workspace}.  The maximum number of subintervals is given by
@var{limit}, which may not exceed the allocated size of the workspace.
The integration over each subinterval uses the memory provided by
@var{cycle_workspace} as workspace for the QAWO algorithm.

@end deftypefun

@node Numerical integration error codes
@section Error codes

In addition to the standard error codes for invalid arguments the
functions can return the following values,

@table @code
@item GSL_EMAXITER
the maximum number of subdivisions was exceeded.
@item GSL_EROUND
cannot reach tolerance because of roundoff error,
or roundoff error was detected in the extrapolation table.
@item GSL_ESING  
a non-integrable singularity or other bad integrand behavior was found
in the integration interval.
@item GSL_EDIVERGE
the integral is divergent, or too slowly convergent to be integrated
numerically.
@end table

@node Numerical integration examples
@section Examples

The integrator @code{QAGS} will handle a large class of definite
integrals.  For example, consider the following integral, which has a
algebraic-logarithmic singularity at the origin,
@tex
\beforedisplay
$$
\int_0^1 x^{-1/2} \log(x) \,dx = -4
$$
\afterdisplay
@end tex
@ifinfo

@example
\int_0^1 x^@{-1/2@} log(x) dx = -4
@end example

@end ifinfo
@noindent
The program below computes this integral to a relative accuracy bound of
@code{1e-7}.

@example
@verbatiminclude examples/integration.c
@end example

@noindent
The results below show that the desired accuracy is achieved after 8
subdivisions. 

@example
$ ./a.out 
@verbatiminclude examples/integration.out
@end example

@noindent
In fact, the extrapolation procedure used by @code{QAGS} produces an
accuracy of almost twice as many digits.  The error estimate returned by
the extrapolation procedure is larger than the actual error, giving a
margin of safety of one order of magnitude.


@node Numerical integration References and Further Reading
@section References and Further Reading

The following book is the definitive reference for @sc{quadpack}, and was
written by the original authors.  It provides descriptions of the
algorithms, program listings, test programs and examples.  It also
includes useful advice on numerical integration and many references to
the numerical integration literature used in developing @sc{quadpack}.

@itemize @asis
@item
R. Piessens, E. de Doncker-Kapenga, C.W. Uberhuber, D.K. Kahaner.
@cite{@sc{quadpack} A subroutine package for automatic integration}
Springer Verlag, 1983.
@end itemize

@noindent