summaryrefslogtreecommitdiff
path: root/gsl-1.9/doc/gsl-ref.info-3
blob: d30fefa63801e399881f29743a715fac07cd8c52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
This is gsl-ref.info, produced by makeinfo version 4.8 from
gsl-ref.texi.

INFO-DIR-SECTION Scientific software
START-INFO-DIR-ENTRY
* gsl-ref: (gsl-ref).                   GNU Scientific Library - Reference
END-INFO-DIR-ENTRY

   Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
2005, 2006, 2007 The GSL Team.

   Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled "GNU Free Documentation
License".

   (a) The Back-Cover Text is: "You have freedom to copy and modify this
GNU Manual, like GNU software."


File: gsl-ref.info,  Node: Maximum and Minimum values,  Next: Median and Percentiles,  Prev: Weighted Samples,  Up: Statistics

20.7 Maximum and Minimum values
===============================

The following functions find the maximum and minimum values of a
dataset (or their indices).  If the data contains `NaN's then a `NaN'
will be returned, since the maximum or minimum value is undefined.  For
functions which return an index, the location of the first `NaN' in the
array is returned.

 -- Function: double gsl_stats_max (const double DATA[], size_t STRIDE,
          size_t N)
     This function returns the maximum value in DATA, a dataset of
     length N with stride STRIDE.  The maximum value is defined as the
     value of the element x_i which satisfies x_i >= x_j for all j.

     If you want instead to find the element with the largest absolute
     magnitude you will need to apply `fabs' or `abs' to your data
     before calling this function.

 -- Function: double gsl_stats_min (const double DATA[], size_t STRIDE,
          size_t N)
     This function returns the minimum value in DATA, a dataset of
     length N with stride STRIDE.  The minimum value is defined as the
     value of the element x_i which satisfies x_i <= x_j for all j.

     If you want instead to find the element with the smallest absolute
     magnitude you will need to apply `fabs' or `abs' to your data
     before calling this function.

 -- Function: void gsl_stats_minmax (double * MIN, double * MAX, const
          double DATA[], size_t STRIDE, size_t N)
     This function finds both the minimum and maximum values MIN, MAX
     in DATA in a single pass.

 -- Function: size_t gsl_stats_max_index (const double DATA[], size_t
          STRIDE, size_t N)
     This function returns the index of the maximum value in DATA, a
     dataset of length N with stride STRIDE.  The maximum value is
     defined as the value of the element x_i which satisfies x_i >= x_j
     for all j.  When there are several equal maximum elements then the
     first one is chosen.

 -- Function: size_t gsl_stats_min_index (const double DATA[], size_t
          STRIDE, size_t N)
     This function returns the index of the minimum value in DATA, a
     dataset of length N with stride STRIDE.  The minimum value is
     defined as the value of the element x_i which satisfies x_i >= x_j
     for all j.  When there are several equal minimum elements then the
     first one is chosen.

 -- Function: void gsl_stats_minmax_index (size_t * MIN_INDEX, size_t *
          MAX_INDEX, const double DATA[], size_t STRIDE, size_t N)
     This function returns the indexes MIN_INDEX, MAX_INDEX of the
     minimum and maximum values in DATA in a single pass.


File: gsl-ref.info,  Node: Median and Percentiles,  Next: Example statistical programs,  Prev: Maximum and Minimum values,  Up: Statistics

20.8 Median and Percentiles
===========================

The median and percentile functions described in this section operate on
sorted data.  For convenience we use "quantiles", measured on a scale
of 0 to 1, instead of percentiles (which use a scale of 0 to 100).

 -- Function: double gsl_stats_median_from_sorted_data (const double
          SORTED_DATA[], size_t STRIDE, size_t N)
     This function returns the median value of SORTED_DATA, a dataset
     of length N with stride STRIDE.  The elements of the array must be
     in ascending numerical order.  There are no checks to see whether
     the data are sorted, so the function `gsl_sort' should always be
     used first.

     When the dataset has an odd number of elements the median is the
     value of element (n-1)/2.  When the dataset has an even number of
     elements the median is the mean of the two nearest middle values,
     elements (n-1)/2 and n/2.  Since the algorithm for computing the
     median involves interpolation this function always returns a
     floating-point number, even for integer data types.

 -- Function: double gsl_stats_quantile_from_sorted_data (const double
          SORTED_DATA[], size_t STRIDE, size_t N, double F)
     This function returns a quantile value of SORTED_DATA, a
     double-precision array of length N with stride STRIDE.  The
     elements of the array must be in ascending numerical order.  The
     quantile is determined by the F, a fraction between 0 and 1.  For
     example, to compute the value of the 75th percentile F should have
     the value 0.75.

     There are no checks to see whether the data are sorted, so the
     function `gsl_sort' should always be used first.

     The quantile is found by interpolation, using the formula

          quantile = (1 - \delta) x_i + \delta x_{i+1}

     where i is `floor'((n - 1)f) and \delta is (n-1)f - i.

     Thus the minimum value of the array (`data[0*stride]') is given by
     F equal to zero, the maximum value (`data[(n-1)*stride]') is given
     by F equal to one and the median value is given by F equal to 0.5.
     Since the algorithm for computing quantiles involves
     interpolation this function always returns a floating-point
     number, even for integer data types.


File: gsl-ref.info,  Node: Example statistical programs,  Next: Statistics References and Further Reading,  Prev: Median and Percentiles,  Up: Statistics

20.9 Examples
=============

Here is a basic example of how to use the statistical functions:

     #include <stdio.h>
     #include <gsl/gsl_statistics.h>

     int
     main(void)
     {
       double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6};
       double mean, variance, largest, smallest;

       mean     = gsl_stats_mean(data, 1, 5);
       variance = gsl_stats_variance(data, 1, 5);
       largest  = gsl_stats_max(data, 1, 5);
       smallest = gsl_stats_min(data, 1, 5);

       printf ("The dataset is %g, %g, %g, %g, %g\n",
              data[0], data[1], data[2], data[3], data[4]);

       printf ("The sample mean is %g\n", mean);
       printf ("The estimated variance is %g\n", variance);
       printf ("The largest value is %g\n", largest);
       printf ("The smallest value is %g\n", smallest);
       return 0;
     }

   The program should produce the following output,

     The dataset is 17.2, 18.1, 16.5, 18.3, 12.6
     The sample mean is 16.54
     The estimated variance is 4.2984
     The largest value is 18.3
     The smallest value is 12.6

   Here is an example using sorted data,

     #include <stdio.h>
     #include <gsl/gsl_sort.h>
     #include <gsl/gsl_statistics.h>

     int
     main(void)
     {
       double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6};
       double median, upperq, lowerq;

       printf ("Original dataset:  %g, %g, %g, %g, %g\n",
              data[0], data[1], data[2], data[3], data[4]);

       gsl_sort (data, 1, 5);

       printf ("Sorted dataset: %g, %g, %g, %g, %g\n",
              data[0], data[1], data[2], data[3], data[4]);

       median
         = gsl_stats_median_from_sorted_data (data,
                                              1, 5);

       upperq
         = gsl_stats_quantile_from_sorted_data (data,
                                                1, 5,
                                                0.75);
       lowerq
         = gsl_stats_quantile_from_sorted_data (data,
                                                1, 5,
                                                0.25);

       printf ("The median is %g\n", median);
       printf ("The upper quartile is %g\n", upperq);
       printf ("The lower quartile is %g\n", lowerq);
       return 0;
     }

   This program should produce the following output,

     Original dataset: 17.2, 18.1, 16.5, 18.3, 12.6
     Sorted dataset: 12.6, 16.5, 17.2, 18.1, 18.3
     The median is 17.2
     The upper quartile is 18.1
     The lower quartile is 16.5


File: gsl-ref.info,  Node: Statistics References and Further Reading,  Prev: Example statistical programs,  Up: Statistics

20.10 References and Further Reading
====================================

The standard reference for almost any topic in statistics is the
multi-volume `Advanced Theory of Statistics' by Kendall and Stuart.

     Maurice Kendall, Alan Stuart, and J. Keith Ord.  `The Advanced
     Theory of Statistics' (multiple volumes) reprinted as `Kendall's
     Advanced Theory of Statistics'.  Wiley, ISBN 047023380X.

Many statistical concepts can be more easily understood by a Bayesian
approach.  The following book by Gelman, Carlin, Stern and Rubin gives a
comprehensive coverage of the subject.

     Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin.
     `Bayesian Data Analysis'.  Chapman & Hall, ISBN 0412039915.

For physicists the Particle Data Group provides useful reviews of
Probability and Statistics in the "Mathematical Tools" section of its
Annual Review of Particle Physics.

     `Review of Particle Properties' R.M. Barnett et al., Physical
     Review D54, 1 (1996)

The Review of Particle Physics is available online at the website
`http://pdg.lbl.gov/'.


File: gsl-ref.info,  Node: Histograms,  Next: N-tuples,  Prev: Statistics,  Up: Top

21 Histograms
*************

This chapter describes functions for creating histograms.  Histograms
provide a convenient way of summarizing the distribution of a set of
data. A histogram consists of a set of "bins" which count the number of
events falling into a given range of a continuous variable x.  In GSL
the bins of a histogram contain floating-point numbers, so they can be
used to record both integer and non-integer distributions.  The bins
can use arbitrary sets of ranges (uniformly spaced bins are the
default).  Both one and two-dimensional histograms are supported.

   Once a histogram has been created it can also be converted into a
probability distribution function.  The library provides efficient
routines for selecting random samples from probability distributions.
This can be useful for generating simulations based on real data.

   The functions are declared in the header files `gsl_histogram.h' and
`gsl_histogram2d.h'.

* Menu:

* The histogram struct::
* Histogram allocation::
* Copying Histograms::
* Updating and accessing histogram elements::
* Searching histogram ranges::
* Histogram Statistics::
* Histogram Operations::
* Reading and writing histograms::
* Resampling from histograms::
* The histogram probability distribution struct::
* Example programs for histograms::
* Two dimensional histograms::
* The 2D histogram struct::
* 2D Histogram allocation::
* Copying 2D Histograms::
* Updating and accessing 2D histogram elements::
* Searching 2D histogram ranges::
* 2D Histogram Statistics::
* 2D Histogram Operations::
* Reading and writing 2D histograms::
* Resampling from 2D histograms::
* Example programs for 2D histograms::


File: gsl-ref.info,  Node: The histogram struct,  Next: Histogram allocation,  Up: Histograms

21.1 The histogram struct
=========================

A histogram is defined by the following struct,

 -- Data Type: gsl_histogram
    `size_t n'
          This is the number of histogram bins

    `double * range'
          The ranges of the bins are stored in an array of N+1 elements
          pointed to by RANGE.

    `double * bin'
          The counts for each bin are stored in an array of N elements
          pointed to by BIN.  The bins are floating-point numbers, so
          you can increment them by non-integer values if necessary.

The range for BIN[i] is given by RANGE[i] to RANGE[i+1].  For n bins
there are n+1 entries in the array RANGE.  Each bin is inclusive at the
lower end and exclusive at the upper end.  Mathematically this means
that the bins are defined by the following inequality,
     bin[i] corresponds to range[i] <= x < range[i+1]

Here is a diagram of the correspondence between ranges and bins on the
number-line for x,


          [ bin[0] )[ bin[1] )[ bin[2] )[ bin[3] )[ bin[4] )
       ---|---------|---------|---------|---------|---------|---  x
        r[0]      r[1]      r[2]      r[3]      r[4]      r[5]

In this picture the values of the RANGE array are denoted by r.  On the
left-hand side of each bin the square bracket `[' denotes an inclusive
lower bound (r <= x), and the round parentheses `)' on the right-hand
side denote an exclusive upper bound (x < r).  Thus any samples which
fall on the upper end of the histogram are excluded.  If you want to
include this value for the last bin you will need to add an extra bin
to your histogram.

   The `gsl_histogram' struct and its associated functions are defined
in the header file `gsl_histogram.h'.


File: gsl-ref.info,  Node: Histogram allocation,  Next: Copying Histograms,  Prev: The histogram struct,  Up: Histograms

21.2 Histogram allocation
=========================

The functions for allocating memory to a histogram follow the style of
`malloc' and `free'.  In addition they also perform their own error
checking.  If there is insufficient memory available to allocate a
histogram then the functions call the error handler (with an error
number of `GSL_ENOMEM') in addition to returning a null pointer.  Thus
if you use the library error handler to abort your program then it
isn't necessary to check every histogram `alloc'.

 -- Function: gsl_histogram * gsl_histogram_alloc (size_t N)
     This function allocates memory for a histogram with N bins, and
     returns a pointer to a newly created `gsl_histogram' struct.  If
     insufficient memory is available a null pointer is returned and the
     error handler is invoked with an error code of `GSL_ENOMEM'. The
     bins and ranges are not initialized, and should be prepared using
     one of the range-setting functions below in order to make the
     histogram ready for use.

 -- Function: int gsl_histogram_set_ranges (gsl_histogram * H, const
          double RANGE[], size_t SIZE)
     This function sets the ranges of the existing histogram H using
     the array RANGE of size SIZE.  The values of the histogram bins
     are reset to zero.  The `range' array should contain the desired
     bin limits.  The ranges can be arbitrary, subject to the
     restriction that they are monotonically increasing.

     The following example shows how to create a histogram with
     logarithmic bins with ranges [1,10), [10,100) and [100,1000).

          gsl_histogram * h = gsl_histogram_alloc (3);

          /* bin[0] covers the range 1 <= x < 10 */
          /* bin[1] covers the range 10 <= x < 100 */
          /* bin[2] covers the range 100 <= x < 1000 */

          double range[4] = { 1.0, 10.0, 100.0, 1000.0 };

          gsl_histogram_set_ranges (h, range, 4);

     Note that the size of the RANGE array should be defined to be one
     element bigger than the number of bins.  The additional element is
     required for the upper value of the final bin.

 -- Function: int gsl_histogram_set_ranges_uniform (gsl_histogram * H,
          double XMIN, double XMAX)
     This function sets the ranges of the existing histogram H to cover
     the range XMIN to XMAX uniformly.  The values of the histogram
     bins are reset to zero.  The bin ranges are shown in the table
     below,
          bin[0] corresponds to xmin <= x < xmin + d
          bin[1] corresponds to xmin + d <= x < xmin + 2 d
          ......
          bin[n-1] corresponds to xmin + (n-1)d <= x < xmax

     where d is the bin spacing, d = (xmax-xmin)/n.

 -- Function: void gsl_histogram_free (gsl_histogram * H)
     This function frees the histogram H and all of the memory
     associated with it.


File: gsl-ref.info,  Node: Copying Histograms,  Next: Updating and accessing histogram elements,  Prev: Histogram allocation,  Up: Histograms

21.3 Copying Histograms
=======================

 -- Function: int gsl_histogram_memcpy (gsl_histogram * DEST, const
          gsl_histogram * SRC)
     This function copies the histogram SRC into the pre-existing
     histogram DEST, making DEST into an exact copy of SRC.  The two
     histograms must be of the same size.

 -- Function: gsl_histogram * gsl_histogram_clone (const gsl_histogram
          * SRC)
     This function returns a pointer to a newly created histogram which
     is an exact copy of the histogram SRC.


File: gsl-ref.info,  Node: Updating and accessing histogram elements,  Next: Searching histogram ranges,  Prev: Copying Histograms,  Up: Histograms

21.4 Updating and accessing histogram elements
==============================================

There are two ways to access histogram bins, either by specifying an x
coordinate or by using the bin-index directly.  The functions for
accessing the histogram through x coordinates use a binary search to
identify the bin which covers the appropriate range.

 -- Function: int gsl_histogram_increment (gsl_histogram * H, double X)
     This function updates the histogram H by adding one (1.0) to the
     bin whose range contains the coordinate X.

     If X lies in the valid range of the histogram then the function
     returns zero to indicate success.  If X is less than the lower
     limit of the histogram then the function returns `GSL_EDOM', and
     none of bins are modified.  Similarly, if the value of X is greater
     than or equal to the upper limit of the histogram then the function
     returns `GSL_EDOM', and none of the bins are modified.  The error
     handler is not called, however, since it is often necessary to
     compute histograms for a small range of a larger dataset, ignoring
     the values outside the range of interest.

 -- Function: int gsl_histogram_accumulate (gsl_histogram * H, double
          X, double WEIGHT)
     This function is similar to `gsl_histogram_increment' but increases
     the value of the appropriate bin in the histogram H by the
     floating-point number WEIGHT.

 -- Function: double gsl_histogram_get (const gsl_histogram * H, size_t
          I)
     This function returns the contents of the I-th bin of the histogram
     H.  If I lies outside the valid range of indices for the histogram
     then the error handler is called with an error code of `GSL_EDOM'
     and the function returns 0.

 -- Function: int gsl_histogram_get_range (const gsl_histogram * H,
          size_t I, double * LOWER, double * UPPER)
     This function finds the upper and lower range limits of the I-th
     bin of the histogram H.  If the index I is valid then the
     corresponding range limits are stored in LOWER and UPPER.  The
     lower limit is inclusive (i.e. events with this coordinate are
     included in the bin) and the upper limit is exclusive (i.e. events
     with the coordinate of the upper limit are excluded and fall in the
     neighboring higher bin, if it exists).  The function returns 0 to
     indicate success.  If I lies outside the valid range of indices for
     the histogram then the error handler is called and the function
     returns an error code of `GSL_EDOM'.

 -- Function: double gsl_histogram_max (const gsl_histogram * H)
 -- Function: double gsl_histogram_min (const gsl_histogram * H)
 -- Function: size_t gsl_histogram_bins (const gsl_histogram * H)
     These functions return the maximum upper and minimum lower range
     limits and the number of bins of the histogram H.  They provide a
     way of determining these values without accessing the
     `gsl_histogram' struct directly.

 -- Function: void gsl_histogram_reset (gsl_histogram * H)
     This function resets all the bins in the histogram H to zero.


File: gsl-ref.info,  Node: Searching histogram ranges,  Next: Histogram Statistics,  Prev: Updating and accessing histogram elements,  Up: Histograms

21.5 Searching histogram ranges
===============================

The following functions are used by the access and update routines to
locate the bin which corresponds to a given x coordinate.

 -- Function: int gsl_histogram_find (const gsl_histogram * H, double
          X, size_t * I)
     This function finds and sets the index I to the bin number which
     covers the coordinate X in the histogram H.  The bin is located
     using a binary search. The search includes an optimization for
     histograms with uniform range, and will return the correct bin
     immediately in this case.  If X is found in the range of the
     histogram then the function sets the index I and returns
     `GSL_SUCCESS'.  If X lies outside the valid range of the histogram
     then the function returns `GSL_EDOM' and the error handler is
     invoked.


File: gsl-ref.info,  Node: Histogram Statistics,  Next: Histogram Operations,  Prev: Searching histogram ranges,  Up: Histograms

21.6 Histogram Statistics
=========================

 -- Function: double gsl_histogram_max_val (const gsl_histogram * H)
     This function returns the maximum value contained in the histogram
     bins.

 -- Function: size_t gsl_histogram_max_bin (const gsl_histogram * H)
     This function returns the index of the bin containing the maximum
     value. In the case where several bins contain the same maximum
     value the smallest index is returned.

 -- Function: double gsl_histogram_min_val (const gsl_histogram * H)
     This function returns the minimum value contained in the histogram
     bins.

 -- Function: size_t gsl_histogram_min_bin (const gsl_histogram * H)
     This function returns the index of the bin containing the minimum
     value. In the case where several bins contain the same maximum
     value the smallest index is returned.

 -- Function: double gsl_histogram_mean (const gsl_histogram * H)
     This function returns the mean of the histogrammed variable, where
     the histogram is regarded as a probability distribution. Negative
     bin values are ignored for the purposes of this calculation.  The
     accuracy of the result is limited by the bin width.

 -- Function: double gsl_histogram_sigma (const gsl_histogram * H)
     This function returns the standard deviation of the histogrammed
     variable, where the histogram is regarded as a probability
     distribution. Negative bin values are ignored for the purposes of
     this calculation. The accuracy of the result is limited by the bin
     width.

 -- Function: double gsl_histogram_sum (const gsl_histogram * H)
     This function returns the sum of all bin values. Negative bin
     values are included in the sum.


File: gsl-ref.info,  Node: Histogram Operations,  Next: Reading and writing histograms,  Prev: Histogram Statistics,  Up: Histograms

21.7 Histogram Operations
=========================

 -- Function: int gsl_histogram_equal_bins_p (const gsl_histogram * H1,
          const gsl_histogram * H2)
     This function returns 1 if the all of the individual bin ranges of
     the two histograms are identical, and 0 otherwise.

 -- Function: int gsl_histogram_add (gsl_histogram * H1, const
          gsl_histogram * H2)
     This function adds the contents of the bins in histogram H2 to the
     corresponding bins of histogram H1,  i.e. h'_1(i) = h_1(i) +
     h_2(i).  The two histograms must have identical bin ranges.

 -- Function: int gsl_histogram_sub (gsl_histogram * H1, const
          gsl_histogram * H2)
     This function subtracts the contents of the bins in histogram H2
     from the corresponding bins of histogram H1, i.e. h'_1(i) = h_1(i)
     - h_2(i).  The two histograms must have identical bin ranges.

 -- Function: int gsl_histogram_mul (gsl_histogram * H1, const
          gsl_histogram * H2)
     This function multiplies the contents of the bins of histogram H1
     by the contents of the corresponding bins in histogram H2, i.e.
     h'_1(i) = h_1(i) * h_2(i).  The two histograms must have identical
     bin ranges.

 -- Function: int gsl_histogram_div (gsl_histogram * H1, const
          gsl_histogram * H2)
     This function divides the contents of the bins of histogram H1 by
     the contents of the corresponding bins in histogram H2, i.e.
     h'_1(i) = h_1(i) / h_2(i).  The two histograms must have identical
     bin ranges.

 -- Function: int gsl_histogram_scale (gsl_histogram * H, double SCALE)
     This function multiplies the contents of the bins of histogram H
     by the constant SCALE, i.e. h'_1(i) = h_1(i) * scale.

 -- Function: int gsl_histogram_shift (gsl_histogram * H, double OFFSET)
     This function shifts the contents of the bins of histogram H by
     the constant OFFSET, i.e. h'_1(i) = h_1(i) + offset.


File: gsl-ref.info,  Node: Reading and writing histograms,  Next: Resampling from histograms,  Prev: Histogram Operations,  Up: Histograms

21.8 Reading and writing histograms
===================================

The library provides functions for reading and writing histograms to a
file as binary data or formatted text.

 -- Function: int gsl_histogram_fwrite (FILE * STREAM, const
          gsl_histogram * H)
     This function writes the ranges and bins of the histogram H to the
     stream STREAM in binary format.  The return value is 0 for success
     and `GSL_EFAILED' if there was a problem writing to the file.
     Since the data is written in the native binary format it may not
     be portable between different architectures.

 -- Function: int gsl_histogram_fread (FILE * STREAM, gsl_histogram * H)
     This function reads into the histogram H from the open stream
     STREAM in binary format.  The histogram H must be preallocated
     with the correct size since the function uses the number of bins
     in H to determine how many bytes to read.  The return value is 0
     for success and `GSL_EFAILED' if there was a problem reading from
     the file.  The data is assumed to have been written in the native
     binary format on the same architecture.

 -- Function: int gsl_histogram_fprintf (FILE * STREAM, const
          gsl_histogram * H, const char * RANGE_FORMAT, const char *
          BIN_FORMAT)
     This function writes the ranges and bins of the histogram H
     line-by-line to the stream STREAM using the format specifiers
     RANGE_FORMAT and BIN_FORMAT.  These should be one of the `%g',
     `%e' or `%f' formats for floating point numbers.  The function
     returns 0 for success and `GSL_EFAILED' if there was a problem
     writing to the file.  The histogram output is formatted in three
     columns, and the columns are separated by spaces, like this,

          range[0] range[1] bin[0]
          range[1] range[2] bin[1]
          range[2] range[3] bin[2]
          ....
          range[n-1] range[n] bin[n-1]

     The values of the ranges are formatted using RANGE_FORMAT and the
     value of the bins are formatted using BIN_FORMAT.  Each line
     contains the lower and upper limit of the range of the bins and the
     value of the bin itself.  Since the upper limit of one bin is the
     lower limit of the next there is duplication of these values
     between lines but this allows the histogram to be manipulated with
     line-oriented tools.

 -- Function: int gsl_histogram_fscanf (FILE * STREAM, gsl_histogram *
          H)
     This function reads formatted data from the stream STREAM into the
     histogram H.  The data is assumed to be in the three-column format
     used by `gsl_histogram_fprintf'.  The histogram H must be
     preallocated with the correct length since the function uses the
     size of H to determine how many numbers to read.  The function
     returns 0 for success and `GSL_EFAILED' if there was a problem
     reading from the file.


File: gsl-ref.info,  Node: Resampling from histograms,  Next: The histogram probability distribution struct,  Prev: Reading and writing histograms,  Up: Histograms

21.9 Resampling from histograms
===============================

A histogram made by counting events can be regarded as a measurement of
a probability distribution.  Allowing for statistical error, the height
of each bin represents the probability of an event where the value of x
falls in the range of that bin.  The probability distribution function
has the one-dimensional form p(x)dx where,

     p(x) = n_i/ (N w_i)

In this equation n_i is the number of events in the bin which contains
x, w_i is the width of the bin and N is the total number of events.
The distribution of events within each bin is assumed to be uniform.


File: gsl-ref.info,  Node: The histogram probability distribution struct,  Next: Example programs for histograms,  Prev: Resampling from histograms,  Up: Histograms

21.10 The histogram probability distribution struct
===================================================

The probability distribution function for a histogram consists of a set
of "bins" which measure the probability of an event falling into a
given range of a continuous variable x. A probability distribution
function is defined by the following struct, which actually stores the
cumulative probability distribution function.  This is the natural
quantity for generating samples via the inverse transform method,
because there is a one-to-one mapping between the cumulative
probability distribution and the range [0,1].  It can be shown that by
taking a uniform random number in this range and finding its
corresponding coordinate in the cumulative probability distribution we
obtain samples with the desired probability distribution.

 -- Data Type: gsl_histogram_pdf
    `size_t n'
          This is the number of bins used to approximate the probability
          distribution function.

    `double * range'
          The ranges of the bins are stored in an array of N+1 elements
          pointed to by RANGE.

    `double * sum'
          The cumulative probability for the bins is stored in an array
          of N elements pointed to by SUM.

The following functions allow you to create a `gsl_histogram_pdf'
struct which represents this probability distribution and generate
random samples from it.

 -- Function: gsl_histogram_pdf * gsl_histogram_pdf_alloc (size_t N)
     This function allocates memory for a probability distribution with
     N bins and returns a pointer to a newly initialized
     `gsl_histogram_pdf' struct. If insufficient memory is available a
     null pointer is returned and the error handler is invoked with an
     error code of `GSL_ENOMEM'.

 -- Function: int gsl_histogram_pdf_init (gsl_histogram_pdf * P, const
          gsl_histogram * H)
     This function initializes the probability distribution P with the
     contents of the histogram H. If any of the bins of H are negative
     then the error handler is invoked with an error code of `GSL_EDOM'
     because a probability distribution cannot contain negative values.

 -- Function: void gsl_histogram_pdf_free (gsl_histogram_pdf * P)
     This function frees the probability distribution function P and
     all of the memory associated with it.

 -- Function: double gsl_histogram_pdf_sample (const gsl_histogram_pdf
          * P, double R)
     This function uses R, a uniform random number between zero and
     one, to compute a single random sample from the probability
     distribution P.  The algorithm used to compute the sample s is
     given by the following formula,

          s = range[i] + delta * (range[i+1] - range[i])

     where i is the index which satisfies sum[i] <=  r < sum[i+1] and
     delta is (r - sum[i])/(sum[i+1] - sum[i]).


File: gsl-ref.info,  Node: Example programs for histograms,  Next: Two dimensional histograms,  Prev: The histogram probability distribution struct,  Up: Histograms

21.11 Example programs for histograms
=====================================

The following program shows how to make a simple histogram of a column
of numerical data supplied on `stdin'.  The program takes three
arguments, specifying the upper and lower bounds of the histogram and
the number of bins.  It then reads numbers from `stdin', one line at a
time, and adds them to the histogram.  When there is no more data to
read it prints out the accumulated histogram using
`gsl_histogram_fprintf'.

     #include <stdio.h>
     #include <stdlib.h>
     #include <gsl/gsl_histogram.h>

     int
     main (int argc, char **argv)
     {
       double a, b;
       size_t n;

       if (argc != 4)
         {
           printf ("Usage: gsl-histogram xmin xmax n\n"
                   "Computes a histogram of the data "
                   "on stdin using n bins from xmin "
                   "to xmax\n");
           exit (0);
         }

       a = atof (argv[1]);
       b = atof (argv[2]);
       n = atoi (argv[3]);

       {
         double x;
         gsl_histogram * h = gsl_histogram_alloc (n);
         gsl_histogram_set_ranges_uniform (h, a, b);

         while (fscanf (stdin, "%lg", &x) == 1)
           {
             gsl_histogram_increment (h, x);
           }
         gsl_histogram_fprintf (stdout, h, "%g", "%g");
         gsl_histogram_free (h);
       }
       exit (0);
     }

Here is an example of the program in use.  We generate 10000 random
samples from a Cauchy distribution with a width of 30 and histogram
them over the range -100 to 100, using 200 bins.

     $ gsl-randist 0 10000 cauchy 30
        | gsl-histogram -100 100 200 > histogram.dat

A plot of the resulting histogram shows the familiar shape of the
Cauchy distribution and the fluctuations caused by the finite sample
size.

     $ awk '{print $1, $3 ; print $2, $3}' histogram.dat
        | graph -T X


File: gsl-ref.info,  Node: Two dimensional histograms,  Next: The 2D histogram struct,  Prev: Example programs for histograms,  Up: Histograms

21.12 Two dimensional histograms
================================

A two dimensional histogram consists of a set of "bins" which count the
number of events falling in a given area of the (x,y) plane.  The
simplest way to use a two dimensional histogram is to record
two-dimensional position information, n(x,y).  Another possibility is
to form a "joint distribution" by recording related variables.  For
example a detector might record both the position of an event (x) and
the amount of energy it deposited E.  These could be histogrammed as
the joint distribution n(x,E).


File: gsl-ref.info,  Node: The 2D histogram struct,  Next: 2D Histogram allocation,  Prev: Two dimensional histograms,  Up: Histograms

21.13 The 2D histogram struct
=============================

Two dimensional histograms are defined by the following struct,

 -- Data Type: gsl_histogram2d
    `size_t nx, ny'
          This is the number of histogram bins in the x and y
          directions.

    `double * xrange'
          The ranges of the bins in the x-direction are stored in an
          array of NX + 1 elements pointed to by XRANGE.

    `double * yrange'
          The ranges of the bins in the y-direction are stored in an
          array of NY + 1 elements pointed to by YRANGE.

    `double * bin'
          The counts for each bin are stored in an array pointed to by
          BIN.  The bins are floating-point numbers, so you can
          increment them by non-integer values if necessary.  The array
          BIN stores the two dimensional array of bins in a single
          block of memory according to the mapping `bin(i,j)' = `bin[i
          * ny + j]'.

The range for `bin(i,j)' is given by `xrange[i]' to `xrange[i+1]' in
the x-direction and `yrange[j]' to `yrange[j+1]' in the y-direction.
Each bin is inclusive at the lower end and exclusive at the upper end.
Mathematically this means that the bins are defined by the following
inequality,
     bin(i,j) corresponds to xrange[i] <= x < xrange[i+1]
                         and yrange[j] <= y < yrange[j+1]

Note that any samples which fall on the upper sides of the histogram are
excluded.  If you want to include these values for the side bins you
will need to add an extra row or column to your histogram.

   The `gsl_histogram2d' struct and its associated functions are
defined in the header file `gsl_histogram2d.h'.


File: gsl-ref.info,  Node: 2D Histogram allocation,  Next: Copying 2D Histograms,  Prev: The 2D histogram struct,  Up: Histograms

21.14 2D Histogram allocation
=============================

The functions for allocating memory to a 2D histogram follow the style
of `malloc' and `free'.  In addition they also perform their own error
checking.  If there is insufficient memory available to allocate a
histogram then the functions call the error handler (with an error
number of `GSL_ENOMEM') in addition to returning a null pointer.  Thus
if you use the library error handler to abort your program then it
isn't necessary to check every 2D histogram `alloc'.

 -- Function: gsl_histogram2d * gsl_histogram2d_alloc (size_t NX,
          size_t NY)
     This function allocates memory for a two-dimensional histogram with
     NX bins in the x direction and NY bins in the y direction.  The
     function returns a pointer to a newly created `gsl_histogram2d'
     struct. If insufficient memory is available a null pointer is
     returned and the error handler is invoked with an error code of
     `GSL_ENOMEM'. The bins and ranges must be initialized with one of
     the functions below before the histogram is ready for use.

 -- Function: int gsl_histogram2d_set_ranges (gsl_histogram2d * H,
          const double XRANGE[], size_t XSIZE, const double YRANGE[],
          size_t YSIZE)
     This function sets the ranges of the existing histogram H using
     the arrays XRANGE and YRANGE of size XSIZE and YSIZE respectively.
     The values of the histogram bins are reset to zero.

 -- Function: int gsl_histogram2d_set_ranges_uniform (gsl_histogram2d *
          H, double XMIN, double XMAX, double YMIN, double YMAX)
     This function sets the ranges of the existing histogram H to cover
     the ranges XMIN to XMAX and YMIN to YMAX uniformly.  The values of
     the histogram bins are reset to zero.

 -- Function: void gsl_histogram2d_free (gsl_histogram2d * H)
     This function frees the 2D histogram H and all of the memory
     associated with it.


File: gsl-ref.info,  Node: Copying 2D Histograms,  Next: Updating and accessing 2D histogram elements,  Prev: 2D Histogram allocation,  Up: Histograms

21.15 Copying 2D Histograms
===========================

 -- Function: int gsl_histogram2d_memcpy (gsl_histogram2d * DEST, const
          gsl_histogram2d * SRC)
     This function copies the histogram SRC into the pre-existing
     histogram DEST, making DEST into an exact copy of SRC.  The two
     histograms must be of the same size.

 -- Function: gsl_histogram2d * gsl_histogram2d_clone (const
          gsl_histogram2d * SRC)
     This function returns a pointer to a newly created histogram which
     is an exact copy of the histogram SRC.


File: gsl-ref.info,  Node: Updating and accessing 2D histogram elements,  Next: Searching 2D histogram ranges,  Prev: Copying 2D Histograms,  Up: Histograms

21.16 Updating and accessing 2D histogram elements
==================================================

You can access the bins of a two-dimensional histogram either by
specifying a pair of (x,y) coordinates or by using the bin indices
(i,j) directly.  The functions for accessing the histogram through
(x,y) coordinates use binary searches in the x and y directions to
identify the bin which covers the appropriate range.

 -- Function: int gsl_histogram2d_increment (gsl_histogram2d * H,
          double X, double Y)
     This function updates the histogram H by adding one (1.0) to the
     bin whose x and y ranges contain the coordinates (X,Y).

     If the point (x,y) lies inside the valid ranges of the histogram
     then the function returns zero to indicate success.  If (x,y) lies
     outside the limits of the histogram then the function returns
     `GSL_EDOM', and none of the bins are modified.  The error handler
     is not called, since it is often necessary to compute histograms
     for a small range of a larger dataset, ignoring any coordinates
     outside the range of interest.

 -- Function: int gsl_histogram2d_accumulate (gsl_histogram2d * H,
          double X, double Y, double WEIGHT)
     This function is similar to `gsl_histogram2d_increment' but
     increases the value of the appropriate bin in the histogram H by
     the floating-point number WEIGHT.

 -- Function: double gsl_histogram2d_get (const gsl_histogram2d * H,
          size_t I, size_t J)
     This function returns the contents of the (I,J)-th bin of the
     histogram H.  If (I,J) lies outside the valid range of indices for
     the histogram then the error handler is called with an error code
     of `GSL_EDOM' and the function returns 0.

 -- Function: int gsl_histogram2d_get_xrange (const gsl_histogram2d *
          H, size_t I, double * XLOWER, double * XUPPER)
 -- Function: int gsl_histogram2d_get_yrange (const gsl_histogram2d *
          H, size_t J, double * YLOWER, double * YUPPER)
     These functions find the upper and lower range limits of the I-th
     and J-th bins in the x and y directions of the histogram H.  The
     range limits are stored in XLOWER and XUPPER or YLOWER and YUPPER.
     The lower limits are inclusive (i.e. events with these
     coordinates are included in the bin) and the upper limits are
     exclusive (i.e. events with the value of the upper limit are not
     included and fall in the neighboring higher bin, if it exists).
     The functions return 0 to indicate success.  If I or J lies
     outside the valid range of indices for the histogram then the
     error handler is called with an error code of `GSL_EDOM'.

 -- Function: double gsl_histogram2d_xmax (const gsl_histogram2d * H)
 -- Function: double gsl_histogram2d_xmin (const gsl_histogram2d * H)
 -- Function: size_t gsl_histogram2d_nx (const gsl_histogram2d * H)
 -- Function: double gsl_histogram2d_ymax (const gsl_histogram2d * H)
 -- Function: double gsl_histogram2d_ymin (const gsl_histogram2d * H)
 -- Function: size_t gsl_histogram2d_ny (const gsl_histogram2d * H)
     These functions return the maximum upper and minimum lower range
     limits and the number of bins for the x and y directions of the
     histogram H.  They provide a way of determining these values
     without accessing the `gsl_histogram2d' struct directly.

 -- Function: void gsl_histogram2d_reset (gsl_histogram2d * H)
     This function resets all the bins of the histogram H to zero.


File: gsl-ref.info,  Node: Searching 2D histogram ranges,  Next: 2D Histogram Statistics,  Prev: Updating and accessing 2D histogram elements,  Up: Histograms

21.17 Searching 2D histogram ranges
===================================

The following functions are used by the access and update routines to
locate the bin which corresponds to a given (x,y) coordinate.

 -- Function: int gsl_histogram2d_find (const gsl_histogram2d * H,
          double X, double Y, size_t * I, size_t * J)
     This function finds and sets the indices I and J to the to the bin
     which covers the coordinates (X,Y). The bin is located using a
     binary search.  The search includes an optimization for histograms
     with uniform ranges, and will return the correct bin immediately
     in this case. If (x,y) is found then the function sets the indices
     (I,J) and returns `GSL_SUCCESS'.  If (x,y) lies outside the valid
     range of the histogram then the function returns `GSL_EDOM' and
     the error handler is invoked.


File: gsl-ref.info,  Node: 2D Histogram Statistics,  Next: 2D Histogram Operations,  Prev: Searching 2D histogram ranges,  Up: Histograms

21.18 2D Histogram Statistics
=============================

 -- Function: double gsl_histogram2d_max_val (const gsl_histogram2d * H)
     This function returns the maximum value contained in the histogram
     bins.

 -- Function: void gsl_histogram2d_max_bin (const gsl_histogram2d * H,
          size_t * I, size_t * J)
     This function finds the indices of the bin containing the maximum
     value in the histogram H and stores the result in (I,J). In the
     case where several bins contain the same maximum value the first
     bin found is returned.

 -- Function: double gsl_histogram2d_min_val (const gsl_histogram2d * H)
     This function returns the minimum value contained in the histogram
     bins.

 -- Function: void gsl_histogram2d_min_bin (const gsl_histogram2d * H,
          size_t * I, size_t * J)
     This function finds the indices of the bin containing the minimum
     value in the histogram H and stores the result in (I,J). In the
     case where several bins contain the same maximum value the first
     bin found is returned.

 -- Function: double gsl_histogram2d_xmean (const gsl_histogram2d * H)
     This function returns the mean of the histogrammed x variable,
     where the histogram is regarded as a probability distribution.
     Negative bin values are ignored for the purposes of this
     calculation.

 -- Function: double gsl_histogram2d_ymean (const gsl_histogram2d * H)
     This function returns the mean of the histogrammed y variable,
     where the histogram is regarded as a probability distribution.
     Negative bin values are ignored for the purposes of this
     calculation.

 -- Function: double gsl_histogram2d_xsigma (const gsl_histogram2d * H)
     This function returns the standard deviation of the histogrammed x
     variable, where the histogram is regarded as a probability
     distribution. Negative bin values are ignored for the purposes of
     this calculation.

 -- Function: double gsl_histogram2d_ysigma (const gsl_histogram2d * H)
     This function returns the standard deviation of the histogrammed y
     variable, where the histogram is regarded as a probability
     distribution. Negative bin values are ignored for the purposes of
     this calculation.

 -- Function: double gsl_histogram2d_cov (const gsl_histogram2d * H)
     This function returns the covariance of the histogrammed x and y
     variables, where the histogram is regarded as a probability
     distribution. Negative bin values are ignored for the purposes of
     this calculation.

 -- Function: double gsl_histogram2d_sum (const gsl_histogram2d * H)
     This function returns the sum of all bin values. Negative bin
     values are included in the sum.


File: gsl-ref.info,  Node: 2D Histogram Operations,  Next: Reading and writing 2D histograms,  Prev: 2D Histogram Statistics,  Up: Histograms

21.19 2D Histogram Operations
=============================

 -- Function: int gsl_histogram2d_equal_bins_p (const gsl_histogram2d *
          H1, const gsl_histogram2d * H2)
     This function returns 1 if all the individual bin ranges of the two
     histograms are identical, and 0 otherwise.

 -- Function: int gsl_histogram2d_add (gsl_histogram2d * H1, const
          gsl_histogram2d * H2)
     This function adds the contents of the bins in histogram H2 to the
     corresponding bins of histogram H1, i.e. h'_1(i,j) = h_1(i,j) +
     h_2(i,j).  The two histograms must have identical bin ranges.

 -- Function: int gsl_histogram2d_sub (gsl_histogram2d * H1, const
          gsl_histogram2d * H2)
     This function subtracts the contents of the bins in histogram H2
     from the corresponding bins of histogram H1, i.e. h'_1(i,j) =
     h_1(i,j) - h_2(i,j).  The two histograms must have identical bin
     ranges.

 -- Function: int gsl_histogram2d_mul (gsl_histogram2d * H1, const
          gsl_histogram2d * H2)
     This function multiplies the contents of the bins of histogram H1
     by the contents of the corresponding bins in histogram H2, i.e.
     h'_1(i,j) = h_1(i,j) * h_2(i,j).  The two histograms must have
     identical bin ranges.

 -- Function: int gsl_histogram2d_div (gsl_histogram2d * H1, const
          gsl_histogram2d * H2)
     This function divides the contents of the bins of histogram H1 by
     the contents of the corresponding bins in histogram H2, i.e.
     h'_1(i,j) = h_1(i,j) / h_2(i,j).  The two histograms must have
     identical bin ranges.

 -- Function: int gsl_histogram2d_scale (gsl_histogram2d * H, double
          SCALE)
     This function multiplies the contents of the bins of histogram H
     by the constant SCALE, i.e. h'_1(i,j) = h_1(i,j) scale.

 -- Function: int gsl_histogram2d_shift (gsl_histogram2d * H, double
          OFFSET)
     This function shifts the contents of the bins of histogram H by
     the constant OFFSET, i.e. h'_1(i,j) = h_1(i,j) + offset.


File: gsl-ref.info,  Node: Reading and writing 2D histograms,  Next: Resampling from 2D histograms,  Prev: 2D Histogram Operations,  Up: Histograms

21.20 Reading and writing 2D histograms
=======================================

The library provides functions for reading and writing two dimensional
histograms to a file as binary data or formatted text.

 -- Function: int gsl_histogram2d_fwrite (FILE * STREAM, const
          gsl_histogram2d * H)
     This function writes the ranges and bins of the histogram H to the
     stream STREAM in binary format.  The return value is 0 for success
     and `GSL_EFAILED' if there was a problem writing to the file.
     Since the data is written in the native binary format it may not
     be portable between different architectures.

 -- Function: int gsl_histogram2d_fread (FILE * STREAM, gsl_histogram2d
          * H)
     This function reads into the histogram H from the stream STREAM in
     binary format.  The histogram H must be preallocated with the
     correct size since the function uses the number of x and y bins in
     H to determine how many bytes to read.  The return value is 0 for
     success and `GSL_EFAILED' if there was a problem reading from the
     file.  The data is assumed to have been written in the native
     binary format on the same architecture.

 -- Function: int gsl_histogram2d_fprintf (FILE * STREAM, const
          gsl_histogram2d * H, const char * RANGE_FORMAT, const char *
          BIN_FORMAT)
     This function writes the ranges and bins of the histogram H
     line-by-line to the stream STREAM using the format specifiers
     RANGE_FORMAT and BIN_FORMAT.  These should be one of the `%g',
     `%e' or `%f' formats for floating point numbers.  The function
     returns 0 for success and `GSL_EFAILED' if there was a problem
     writing to the file.  The histogram output is formatted in five
     columns, and the columns are separated by spaces, like this,

          xrange[0] xrange[1] yrange[0] yrange[1] bin(0,0)
          xrange[0] xrange[1] yrange[1] yrange[2] bin(0,1)
          xrange[0] xrange[1] yrange[2] yrange[3] bin(0,2)
          ....
          xrange[0] xrange[1] yrange[ny-1] yrange[ny] bin(0,ny-1)

          xrange[1] xrange[2] yrange[0] yrange[1] bin(1,0)
          xrange[1] xrange[2] yrange[1] yrange[2] bin(1,1)
          xrange[1] xrange[2] yrange[1] yrange[2] bin(1,2)
          ....
          xrange[1] xrange[2] yrange[ny-1] yrange[ny] bin(1,ny-1)

          ....

          xrange[nx-1] xrange[nx] yrange[0] yrange[1] bin(nx-1,0)
          xrange[nx-1] xrange[nx] yrange[1] yrange[2] bin(nx-1,1)
          xrange[nx-1] xrange[nx] yrange[1] yrange[2] bin(nx-1,2)
          ....
          xrange[nx-1] xrange[nx] yrange[ny-1] yrange[ny] bin(nx-1,ny-1)

     Each line contains the lower and upper limits of the bin and the
     contents of the bin.  Since the upper limits of the each bin are
     the lower limits of the neighboring bins there is duplication of
     these values but this allows the histogram to be manipulated with
     line-oriented tools.

 -- Function: int gsl_histogram2d_fscanf (FILE * STREAM,
          gsl_histogram2d * H)
     This function reads formatted data from the stream STREAM into the
     histogram H.  The data is assumed to be in the five-column format
     used by `gsl_histogram_fprintf'.  The histogram H must be
     preallocated with the correct lengths since the function uses the
     sizes of H to determine how many numbers to read.  The function
     returns 0 for success and `GSL_EFAILED' if there was a problem
     reading from the file.


File: gsl-ref.info,  Node: Resampling from 2D histograms,  Next: Example programs for 2D histograms,  Prev: Reading and writing 2D histograms,  Up: Histograms

21.21 Resampling from 2D histograms
===================================

As in the one-dimensional case, a two-dimensional histogram made by
counting events can be regarded as a measurement of a probability
distribution.  Allowing for statistical error, the height of each bin
represents the probability of an event where (x,y) falls in the range
of that bin.  For a two-dimensional histogram the probability
distribution takes the form p(x,y) dx dy where,

     p(x,y) = n_{ij}/ (N A_{ij})

In this equation n_{ij} is the number of events in the bin which
contains (x,y), A_{ij} is the area of the bin and N is the total number
of events.  The distribution of events within each bin is assumed to be
uniform.

 -- Data Type: gsl_histogram2d_pdf
    `size_t nx, ny'
          This is the number of histogram bins used to approximate the
          probability distribution function in the x and y directions.

    `double * xrange'
          The ranges of the bins in the x-direction are stored in an
          array of NX + 1 elements pointed to by XRANGE.

    `double * yrange'
          The ranges of the bins in the y-direction are stored in an
          array of NY + 1 pointed to by YRANGE.

    `double * sum'
          The cumulative probability for the bins is stored in an array
          of NX*NY elements pointed to by SUM.

The following functions allow you to create a `gsl_histogram2d_pdf'
struct which represents a two dimensional probability distribution and
generate random samples from it.

 -- Function: gsl_histogram2d_pdf * gsl_histogram2d_pdf_alloc (size_t
          NX, size_t NY)
     This function allocates memory for a two-dimensional probability
     distribution of size NX-by-NY and returns a pointer to a newly
     initialized `gsl_histogram2d_pdf' struct. If insufficient memory
     is available a null pointer is returned and the error handler is
     invoked with an error code of `GSL_ENOMEM'.

 -- Function: int gsl_histogram2d_pdf_init (gsl_histogram2d_pdf * P,
          const gsl_histogram2d * H)
     This function initializes the two-dimensional probability
     distribution calculated P from the histogram H.  If any of the
     bins of H are negative then the error handler is invoked with an
     error code of `GSL_EDOM' because a probability distribution cannot
     contain negative values.

 -- Function: void gsl_histogram2d_pdf_free (gsl_histogram2d_pdf * P)
     This function frees the two-dimensional probability distribution
     function P and all of the memory associated with it.

 -- Function: int gsl_histogram2d_pdf_sample (const gsl_histogram2d_pdf
          * P, double R1, double R2, double * X, double * Y)
     This function uses two uniform random numbers between zero and one,
     R1 and R2, to compute a single random sample from the
     two-dimensional probability distribution P.


File: gsl-ref.info,  Node: Example programs for 2D histograms,  Prev: Resampling from 2D histograms,  Up: Histograms

21.22 Example programs for 2D histograms
========================================

This program demonstrates two features of two-dimensional histograms.
First a 10-by-10 two-dimensional histogram is created with x and y
running from 0 to 1.  Then a few sample points are added to the
histogram, at (0.3,0.3) with a height of 1, at (0.8,0.1) with a height
of 5 and at (0.7,0.9) with a height of 0.5.  This histogram with three
events is used to generate a random sample of 1000 simulated events,
which are printed out.

     #include <stdio.h>
     #include <gsl/gsl_rng.h>
     #include <gsl/gsl_histogram2d.h>

     int
     main (void)
     {
       const gsl_rng_type * T;
       gsl_rng * r;

       gsl_histogram2d * h = gsl_histogram2d_alloc (10, 10);

       gsl_histogram2d_set_ranges_uniform (h,
                                           0.0, 1.0,
                                           0.0, 1.0);

       gsl_histogram2d_accumulate (h, 0.3, 0.3, 1);
       gsl_histogram2d_accumulate (h, 0.8, 0.1, 5);
       gsl_histogram2d_accumulate (h, 0.7, 0.9, 0.5);

       gsl_rng_env_setup ();

       T = gsl_rng_default;
       r = gsl_rng_alloc (T);

       {
         int i;
         gsl_histogram2d_pdf * p
           = gsl_histogram2d_pdf_alloc (h->nx, h->ny);

         gsl_histogram2d_pdf_init (p, h);

         for (i = 0; i < 1000; i++) {
           double x, y;
           double u = gsl_rng_uniform (r);
           double v = gsl_rng_uniform (r);

           gsl_histogram2d_pdf_sample (p, u, v, &x, &y);

           printf ("%g %g\n", x, y);
         }

         gsl_histogram2d_pdf_free (p);
       }

       gsl_histogram2d_free (h);
       gsl_rng_free (r);

       return 0;
     }



File: gsl-ref.info,  Node: N-tuples,  Next: Monte Carlo Integration,  Prev: Histograms,  Up: Top

22 N-tuples
***********

This chapter describes functions for creating and manipulating
"ntuples", sets of values associated with events.  The ntuples are
stored in files. Their values can be extracted in any combination and
"booked" in a histogram using a selection function.

   The values to be stored are held in a user-defined data structure,
and an ntuple is created associating this data structure with a file.
The values are then written to the file (normally inside a loop) using
the ntuple functions described below.

   A histogram can be created from ntuple data by providing a selection
function and a value function.  The selection function specifies whether
an event should be included in the subset to be analyzed or not. The
value function computes the entry to be added to the histogram for each
event.

   All the ntuple functions are defined in the header file
`gsl_ntuple.h'

* Menu:

* The ntuple struct::
* Creating ntuples::
* Opening an existing ntuple file::
* Writing ntuples::
* Reading ntuples ::
* Closing an ntuple file::
* Histogramming ntuple values::
* Example ntuple programs::
* Ntuple References and Further Reading::


File: gsl-ref.info,  Node: The ntuple struct,  Next: Creating ntuples,  Up: N-tuples

22.1 The ntuple struct
======================

Ntuples are manipulated using the `gsl_ntuple' struct. This struct
contains information on the file where the ntuple data is stored, a
pointer to the current ntuple data row and the size of the user-defined
ntuple data struct.

     typedef struct {
         FILE * file;
         void * ntuple_data;
         size_t size;
     } gsl_ntuple;


File: gsl-ref.info,  Node: Creating ntuples,  Next: Opening an existing ntuple file,  Prev: The ntuple struct,  Up: N-tuples

22.2 Creating ntuples
=====================

 -- Function: gsl_ntuple * gsl_ntuple_create (char * FILENAME, void *
          NTUPLE_DATA, size_t SIZE)
     This function creates a new write-only ntuple file FILENAME for
     ntuples of size SIZE and returns a pointer to the newly created
     ntuple struct.  Any existing file with the same name is truncated
     to zero length and overwritten.  A pointer to memory for the
     current ntuple row NTUPLE_DATA must be supplied--this is used to
     copy ntuples in and out of the file.


File: gsl-ref.info,  Node: Opening an existing ntuple file,  Next: Writing ntuples,  Prev: Creating ntuples,  Up: N-tuples

22.3 Opening an existing ntuple file
====================================

 -- Function: gsl_ntuple * gsl_ntuple_open (char * FILENAME, void *
          NTUPLE_DATA, size_t SIZE)
     This function opens an existing ntuple file FILENAME for reading
     and returns a pointer to a corresponding ntuple struct. The
     ntuples in the file must have size SIZE.  A pointer to memory for
     the current ntuple row NTUPLE_DATA must be supplied--this is used
     to copy ntuples in and out of the file.


File: gsl-ref.info,  Node: Writing ntuples,  Next: Reading ntuples,  Prev: Opening an existing ntuple file,  Up: N-tuples

22.4 Writing ntuples
====================

 -- Function: int gsl_ntuple_write (gsl_ntuple * NTUPLE)
     This function writes the current ntuple NTUPLE->NTUPLE_DATA of
     size NTUPLE->SIZE to the corresponding file.

 -- Function: int gsl_ntuple_bookdata (gsl_ntuple * NTUPLE)
     This function is a synonym for `gsl_ntuple_write'.


File: gsl-ref.info,  Node: Reading ntuples,  Next: Closing an ntuple file,  Prev: Writing ntuples,  Up: N-tuples

22.5 Reading ntuples
====================

 -- Function: int gsl_ntuple_read (gsl_ntuple * NTUPLE)
     This function reads the current row of the ntuple file for NTUPLE
     and stores the values in NTUPLE->DATA.


File: gsl-ref.info,  Node: Closing an ntuple file,  Next: Histogramming ntuple values,  Prev: Reading ntuples,  Up: N-tuples

22.6 Closing an ntuple file
===========================

 -- Function: int gsl_ntuple_close (gsl_ntuple * NTUPLE)
     This function closes the ntuple file NTUPLE and frees its
     associated allocated memory.


File: gsl-ref.info,  Node: Histogramming ntuple values,  Next: Example ntuple programs,  Prev: Closing an ntuple file,  Up: N-tuples

22.7 Histogramming ntuple values
================================

Once an ntuple has been created its contents can be histogrammed in
various ways using the function `gsl_ntuple_project'.  Two user-defined
functions must be provided, a function to select events and a function
to compute scalar values. The selection function and the value function
both accept the ntuple row as a first argument and other parameters as
a second argument.

   The "selection function" determines which ntuple rows are selected
for histogramming.  It is defined by the following struct,
     typedef struct {
       int (* function) (void * ntuple_data, void * params);
       void * params;
     } gsl_ntuple_select_fn;

The struct component FUNCTION should return a non-zero value for each
ntuple row that is to be included in the histogram.

   The "value function" computes scalar values for those ntuple rows
selected by the selection function,
     typedef struct {
       double (* function) (void * ntuple_data, void * params);
       void * params;
     } gsl_ntuple_value_fn;

In this case the struct component FUNCTION should return the value to
be added to the histogram for the ntuple row.

 -- Function: int gsl_ntuple_project (gsl_histogram * H, gsl_ntuple *
          NTUPLE, gsl_ntuple_value_fn * VALUE_FUNC,
          gsl_ntuple_select_fn * SELECT_FUNC)
     This function updates the histogram H from the ntuple NTUPLE using
     the functions VALUE_FUNC and SELECT_FUNC. For each ntuple row
     where the selection function SELECT_FUNC is non-zero the
     corresponding value of that row is computed using the function
     VALUE_FUNC and added to the histogram.  Those ntuple rows where
     SELECT_FUNC returns zero are ignored.  New entries are added to
     the histogram, so subsequent calls can be used to accumulate
     further data in the same histogram.


File: gsl-ref.info,  Node: Example ntuple programs,  Next: Ntuple References and Further Reading,  Prev: Histogramming ntuple values,  Up: N-tuples

22.8 Examples
=============

The following example programs demonstrate the use of ntuples in
managing a large dataset.  The first program creates a set of 10,000
simulated "events", each with 3 associated values (x,y,z).  These are
generated from a gaussian distribution with unit variance, for
demonstration purposes, and written to the ntuple file `test.dat'.

     #include <gsl/gsl_ntuple.h>
     #include <gsl/gsl_rng.h>
     #include <gsl/gsl_randist.h>

     struct data
     {
       double x;
       double y;
       double z;
     };

     int
     main (void)
     {
       const gsl_rng_type * T;
       gsl_rng * r;

       struct data ntuple_row;
       int i;

       gsl_ntuple *ntuple
         = gsl_ntuple_create ("test.dat", &ntuple_row,
                              sizeof (ntuple_row));

       gsl_rng_env_setup ();

       T = gsl_rng_default;
       r = gsl_rng_alloc (T);

       for (i = 0; i < 10000; i++)
         {
           ntuple_row.x = gsl_ran_ugaussian (r);
           ntuple_row.y = gsl_ran_ugaussian (r);
           ntuple_row.z = gsl_ran_ugaussian (r);

           gsl_ntuple_write (ntuple);
         }

       gsl_ntuple_close (ntuple);
       gsl_rng_free (r);

       return 0;
     }

The next program analyses the ntuple data in the file `test.dat'.  The
analysis procedure is to compute the squared-magnitude of each event,
E^2=x^2+y^2+z^2, and select only those which exceed a lower limit of
1.5.  The selected events are then histogrammed using their E^2 values.

     #include <math.h>
     #include <gsl/gsl_ntuple.h>
     #include <gsl/gsl_histogram.h>

     struct data
     {
       double x;
       double y;
       double z;
     };

     int sel_func (void *ntuple_data, void *params);
     double val_func (void *ntuple_data, void *params);

     int
     main (void)
     {
       struct data ntuple_row;

       gsl_ntuple *ntuple
         = gsl_ntuple_open ("test.dat", &ntuple_row,
                            sizeof (ntuple_row));
       double lower = 1.5;

       gsl_ntuple_select_fn S;
       gsl_ntuple_value_fn V;

       gsl_histogram *h = gsl_histogram_alloc (100);
       gsl_histogram_set_ranges_uniform(h, 0.0, 10.0);

       S.function = &sel_func;
       S.params = &lower;

       V.function = &val_func;
       V.params = 0;

       gsl_ntuple_project (h, ntuple, &V, &S);
       gsl_histogram_fprintf (stdout, h, "%f", "%f");
       gsl_histogram_free (h);
       gsl_ntuple_close (ntuple);

       return 0;
     }

     int
     sel_func (void *ntuple_data, void *params)
     {
       struct data * data = (struct data *) ntuple_data;
       double x, y, z, E2, scale;
       scale = *(double *) params;

       x = data->x;
       y = data->y;
       z = data->z;

       E2 = x * x + y * y + z * z;

       return E2 > scale;
     }

     double
     val_func (void *ntuple_data, void *params)
     {
       struct data * data = (struct data *) ntuple_data;
       double x, y, z;

       x = data->x;
       y = data->y;
       z = data->z;

       return x * x + y * y + z * z;
     }

   The following plot shows the distribution of the selected events.
Note the cut-off at the lower bound.


File: gsl-ref.info,  Node: Ntuple References and Further Reading,  Prev: Example ntuple programs,  Up: N-tuples

22.9 References and Further Reading
===================================

Further information on the use of ntuples can be found in the
documentation for the CERN packages PAW and HBOOK (available online).


File: gsl-ref.info,  Node: Monte Carlo Integration,  Next: Simulated Annealing,  Prev: N-tuples,  Up: Top

23 Monte Carlo Integration
**************************

This chapter describes routines for multidimensional Monte Carlo
integration.  These include the traditional Monte Carlo method and
adaptive algorithms such as VEGAS and MISER which use importance
sampling and stratified sampling techniques. Each algorithm computes an
estimate of a multidimensional definite integral of the form,

     I = \int_xl^xu dx \int_yl^yu  dy ...  f(x, y, ...)

over a hypercubic region ((x_l,x_u), (y_l,y_u), ...) using a fixed
number of function calls.  The routines also provide a statistical
estimate of the error on the result.  This error estimate should be
taken as a guide rather than as a strict error bound--random sampling
of the region may not uncover all the important features of the
function, resulting in an underestimate of the error.

   The functions are defined in separate header files for each routine,
`gsl_monte_plain.h', `gsl_monte_miser.h' and `gsl_monte_vegas.h'.

* Menu:

* Monte Carlo Interface::
* PLAIN Monte Carlo::
* MISER::
* VEGAS::
* Monte Carlo Examples::
* Monte Carlo Integration References and Further Reading::


File: gsl-ref.info,  Node: Monte Carlo Interface,  Next: PLAIN Monte Carlo,  Up: Monte Carlo Integration

23.1 Interface
==============

All of the Monte Carlo integration routines use the same general form of
interface.  There is an allocator to allocate memory for control
variables and workspace, a routine to initialize those control
variables, the integrator itself, and a function to free the space when
done.

   Each integration function requires a random number generator to be
supplied, and returns an estimate of the integral and its standard
deviation.  The accuracy of the result is determined by the number of
function calls specified by the user.  If a known level of accuracy is
required this can be achieved by calling the integrator several times
and averaging the individual results until the desired accuracy is
obtained.

   Random sample points used within the Monte Carlo routines are always
chosen strictly within the integration region, so that endpoint
singularities are automatically avoided.

   The function to be integrated has its own datatype, defined in the
header file `gsl_monte.h'.

 -- Data Type: gsl_monte_function
     This data type defines a general function with parameters for Monte
     Carlo integration.

    `double (* f) (double * X, size_t DIM, void * PARAMS)'
          this function should return the value f(x,params) for the
          argument X and parameters PARAMS, where X is an array of size
          DIM giving the coordinates of the point where the function is
          to be evaluated.

    `size_t dim'
          the number of dimensions for X.

    `void * params'
          a pointer to the parameters of the function.

Here is an example for a quadratic function in two dimensions,

     f(x,y) = a x^2 + b x y + c y^2

with a = 3, b = 2, c = 1.  The following code defines a
`gsl_monte_function' `F' which you could pass to an integrator:

     struct my_f_params { double a; double b; double c; };

     double
     my_f (double x[], size_t dim, void * p) {
        struct my_f_params * fp = (struct my_f_params *)p;

        if (dim != 2)
           {
             fprintf (stderr, "error: dim != 2");
             abort ();
           }

        return  fp->a * x[0] * x[0]
                  + fp->b * x[0] * x[1]
                    + fp->c * x[1] * x[1];
     }

     gsl_monte_function F;
     struct my_f_params params = { 3.0, 2.0, 1.0 };

     F.f = &my_f;
     F.dim = 2;
     F.params = &params;

The function f(x) can be evaluated using the following macro,

     #define GSL_MONTE_FN_EVAL(F,x)
         (*((F)->f))(x,(F)->dim,(F)->params)


File: gsl-ref.info,  Node: PLAIN Monte Carlo,  Next: MISER,  Prev: Monte Carlo Interface,  Up: Monte Carlo Integration

23.2 PLAIN Monte Carlo
======================

The plain Monte Carlo algorithm samples points randomly from the
integration region to estimate the integral and its error.  Using this
algorithm the estimate of the integral E(f; N) for N randomly
distributed points x_i is given by,

     E(f; N) = =  V <f> = (V / N) \sum_i^N f(x_i)

where V is the volume of the integration region.  The error on this
estimate \sigma(E;N) is calculated from the estimated variance of the
mean,

     \sigma^2 (E; N) = (V / N) \sum_i^N (f(x_i) -  <f>)^2.

For large N this variance decreases asymptotically as \Var(f)/N, where
\Var(f) is the true variance of the function over the integration
region.  The error estimate itself should decrease as
\sigma(f)/\sqrt{N}.  The familiar law of errors decreasing as
1/\sqrt{N} applies--to reduce the error by a factor of 10 requires a
100-fold increase in the number of sample points.

   The functions described in this section are declared in the header
file `gsl_monte_plain.h'.

 -- Function: gsl_monte_plain_state * gsl_monte_plain_alloc (size_t DIM)
     This function allocates and initializes a workspace for Monte Carlo
     integration in DIM dimensions.

 -- Function: int gsl_monte_plain_init (gsl_monte_plain_state* S)
     This function initializes a previously allocated integration state.
     This allows an existing workspace to be reused for different
     integrations.

 -- Function: int gsl_monte_plain_integrate (gsl_monte_function * F,
          double * XL, double * XU, size_t DIM, size_t CALLS, gsl_rng *
          R, gsl_monte_plain_state * S, double * RESULT, double *
          ABSERR)
     This routines uses the plain Monte Carlo algorithm to integrate the
     function F over the DIM-dimensional hypercubic region defined by
     the lower and upper limits in the arrays XL and XU, each of size
     DIM.  The integration uses a fixed number of function calls CALLS,
     and obtains random sampling points using the random number
     generator R. A previously allocated workspace S must be supplied.
     The result of the integration is returned in RESULT, with an
     estimated absolute error ABSERR.

 -- Function: void gsl_monte_plain_free (gsl_monte_plain_state * S)
     This function frees the memory associated with the integrator state
     S.


File: gsl-ref.info,  Node: MISER,  Next: VEGAS,  Prev: PLAIN Monte Carlo,  Up: Monte Carlo Integration

23.3 MISER
==========

The MISER algorithm of Press and Farrar is based on recursive
stratified sampling.  This technique aims to reduce the overall
integration error by concentrating integration points in the regions of
highest variance.

   The idea of stratified sampling begins with the observation that for
two disjoint regions a and b with Monte Carlo estimates of the integral
E_a(f) and E_b(f) and variances \sigma_a^2(f) and \sigma_b^2(f), the
variance \Var(f) of the combined estimate E(f) = (1/2) (E_a(f) + E_b(f))
is given by,

     \Var(f) = (\sigma_a^2(f) / 4 N_a) + (\sigma_b^2(f) / 4 N_b).

It can be shown that this variance is minimized by distributing the
points such that,

     N_a / (N_a + N_b) = \sigma_a / (\sigma_a + \sigma_b).

Hence the smallest error estimate is obtained by allocating sample
points in proportion to the standard deviation of the function in each
sub-region.

   The MISER algorithm proceeds by bisecting the integration region
along one coordinate axis to give two sub-regions at each step.  The
direction is chosen by examining all d possible bisections and
selecting the one which will minimize the combined variance of the two
sub-regions.  The variance in the sub-regions is estimated by sampling
with a fraction of the total number of points available to the current
step.  The same procedure is then repeated recursively for each of the
two half-spaces from the best bisection. The remaining sample points are
allocated to the sub-regions using the formula for N_a and N_b.  This
recursive allocation of integration points continues down to a
user-specified depth where each sub-region is integrated using a plain
Monte Carlo estimate.  These individual values and their error
estimates are then combined upwards to give an overall result and an
estimate of its error.

   The functions described in this section are declared in the header
file `gsl_monte_miser.h'.

 -- Function: gsl_monte_miser_state * gsl_monte_miser_alloc (size_t DIM)
     This function allocates and initializes a workspace for Monte Carlo
     integration in DIM dimensions.  The workspace is used to maintain
     the state of the integration.

 -- Function: int gsl_monte_miser_init (gsl_monte_miser_state* S)
     This function initializes a previously allocated integration state.
     This allows an existing workspace to be reused for different
     integrations.

 -- Function: int gsl_monte_miser_integrate (gsl_monte_function * F,
          double * XL, double * XU, size_t DIM, size_t CALLS, gsl_rng *
          R, gsl_monte_miser_state * S, double * RESULT, double *
          ABSERR)
     This routines uses the MISER Monte Carlo algorithm to integrate the
     function F over the DIM-dimensional hypercubic region defined by
     the lower and upper limits in the arrays XL and XU, each of size
     DIM.  The integration uses a fixed number of function calls CALLS,
     and obtains random sampling points using the random number
     generator R. A previously allocated workspace S must be supplied.
     The result of the integration is returned in RESULT, with an
     estimated absolute error ABSERR.

 -- Function: void gsl_monte_miser_free (gsl_monte_miser_state * S)
     This function frees the memory associated with the integrator state
     S.

   The MISER algorithm has several configurable parameters. The
following variables can be accessed through the `gsl_monte_miser_state'
struct,

 -- Variable: double estimate_frac
     This parameter specifies the fraction of the currently available
     number of function calls which are allocated to estimating the
     variance at each recursive step. The default value is 0.1.

 -- Variable: size_t min_calls
     This parameter specifies the minimum number of function calls
     required for each estimate of the variance. If the number of
     function calls allocated to the estimate using ESTIMATE_FRAC falls
     below MIN_CALLS then MIN_CALLS are used instead.  This ensures
     that each estimate maintains a reasonable level of accuracy.  The
     default value of MIN_CALLS is `16 * dim'.

 -- Variable: size_t min_calls_per_bisection
     This parameter specifies the minimum number of function calls
     required to proceed with a bisection step.  When a recursive step
     has fewer calls available than MIN_CALLS_PER_BISECTION it performs
     a plain Monte Carlo estimate of the current sub-region and
     terminates its branch of the recursion.  The default value of this
     parameter is `32 * min_calls'.

 -- Variable: double alpha
     This parameter controls how the estimated variances for the two
     sub-regions of a bisection are combined when allocating points.
     With recursive sampling the overall variance should scale better
     than 1/N, since the values from the sub-regions will be obtained
     using a procedure which explicitly minimizes their variance.  To
     accommodate this behavior the MISER algorithm allows the total
     variance to depend on a scaling parameter \alpha,

          \Var(f) = {\sigma_a \over N_a^\alpha} + {\sigma_b \over N_b^\alpha}.

     The authors of the original paper describing MISER recommend the
     value \alpha = 2 as a good choice, obtained from numerical
     experiments, and this is used as the default value in this
     implementation.

 -- Variable: double dither
     This parameter introduces a random fractional variation of size
     DITHER into each bisection, which can be used to break the
     symmetry of integrands which are concentrated near the exact
     center of the hypercubic integration region.  The default value of
     dither is zero, so no variation is introduced. If needed, a
     typical value of DITHER is 0.1.


File: gsl-ref.info,  Node: VEGAS,  Next: Monte Carlo Examples,  Prev: MISER,  Up: Monte Carlo Integration

23.4 VEGAS
==========

The VEGAS algorithm of Lepage is based on importance sampling.  It
samples points from the probability distribution described by the
function |f|, so that the points are concentrated in the regions that
make the largest contribution to the integral.

   In general, if the Monte Carlo integral of f is sampled with points
distributed according to a probability distribution described by the
function g, we obtain an estimate E_g(f; N),

     E_g(f; N) = E(f/g; N)

with a corresponding variance,

     \Var_g(f; N) = \Var(f/g; N).

If the probability distribution is chosen as g = |f|/I(|f|) then it can
be shown that the variance V_g(f; N) vanishes, and the error in the
estimate will be zero.  In practice it is not possible to sample from
the exact distribution g for an arbitrary function, so importance
sampling algorithms aim to produce efficient approximations to the
desired distribution.

   The VEGAS algorithm approximates the exact distribution by making a
number of passes over the integration region while histogramming the
function f. Each histogram is used to define a sampling distribution
for the next pass.  Asymptotically this procedure converges to the
desired distribution. In order to avoid the number of histogram bins
growing like K^d the probability distribution is approximated by a
separable function: g(x_1, x_2, ...) = g_1(x_1) g_2(x_2) ...  so that
the number of bins required is only Kd.  This is equivalent to locating
the peaks of the function from the projections of the integrand onto
the coordinate axes.  The efficiency of VEGAS depends on the validity
of this assumption.  It is most efficient when the peaks of the
integrand are well-localized.  If an integrand can be rewritten in a
form which is approximately separable this will increase the efficiency
of integration with VEGAS.

   VEGAS incorporates a number of additional features, and combines both
stratified sampling and importance sampling.  The integration region is
divided into a number of "boxes", with each box getting a fixed number
of points (the goal is 2).  Each box can then have a fractional number
of bins, but if the ratio of bins-per-box is less than two, Vegas
switches to a kind variance reduction (rather than importance sampling).

 -- Function: gsl_monte_vegas_state * gsl_monte_vegas_alloc (size_t DIM)
     This function allocates and initializes a workspace for Monte Carlo
     integration in DIM dimensions.  The workspace is used to maintain
     the state of the integration.

 -- Function: int gsl_monte_vegas_init (gsl_monte_vegas_state* S)
     This function initializes a previously allocated integration state.
     This allows an existing workspace to be reused for different
     integrations.

 -- Function: int gsl_monte_vegas_integrate (gsl_monte_function * F,
          double * XL, double * XU, size_t DIM, size_t CALLS, gsl_rng *
          R, gsl_monte_vegas_state * S, double * RESULT, double *
          ABSERR)
     This routines uses the VEGAS Monte Carlo algorithm to integrate the
     function F over the DIM-dimensional hypercubic region defined by
     the lower and upper limits in the arrays XL and XU, each of size
     DIM.  The integration uses a fixed number of function calls CALLS,
     and obtains random sampling points using the random number
     generator R. A previously allocated workspace S must be supplied.
     The result of the integration is returned in RESULT, with an
     estimated absolute error ABSERR.  The result and its error
     estimate are based on a weighted average of independent samples.
     The chi-squared per degree of freedom for the weighted average is
     returned via the state struct component, S->CHISQ, and must be
     consistent with 1 for the weighted average to be reliable.

 -- Function: void gsl_monte_vegas_free (gsl_monte_vegas_state * S)
     This function frees the memory associated with the integrator state
     S.

   The VEGAS algorithm computes a number of independent estimates of the
integral internally, according to the `iterations' parameter described
below, and returns their weighted average.  Random sampling of the
integrand can occasionally produce an estimate where the error is zero,
particularly if the function is constant in some regions. An estimate
with zero error causes the weighted average to break down and must be
handled separately. In the original Fortran implementations of VEGAS
the error estimate is made non-zero by substituting a small value
(typically `1e-30').  The implementation in GSL differs from this and
avoids the use of an arbitrary constant--it either assigns the value a
weight which is the average weight of the preceding estimates or
discards it according to the following procedure,

current estimate has zero error, weighted average has finite error
     The current estimate is assigned a weight which is the average
     weight of the preceding estimates.

current estimate has finite error, previous estimates had zero error
     The previous estimates are discarded and the weighted averaging
     procedure begins with the current estimate.

current estimate has zero error, previous estimates had zero error
     The estimates are averaged using the arithmetic mean, but no error
     is computed.

   The VEGAS algorithm is highly configurable. The following variables
can be accessed through the `gsl_monte_vegas_state' struct,

 -- Variable: double result
 -- Variable: double sigma
     These parameters contain the raw value of the integral RESULT and
     its error SIGMA from the last iteration of the algorithm.

 -- Variable: double chisq
     This parameter gives the chi-squared per degree of freedom for the
     weighted estimate of the integral.  The value of CHISQ should be
     close to 1.  A value of CHISQ which differs significantly from 1
     indicates that the values from different iterations are
     inconsistent.  In this case the weighted error will be
     under-estimated, and further iterations of the algorithm are
     needed to obtain reliable results.

 -- Variable: double alpha
     The parameter `alpha' controls the stiffness of the rebinning
     algorithm.  It is typically set between one and two. A value of
     zero prevents rebinning of the grid.  The default value is 1.5.

 -- Variable: size_t iterations
     The number of iterations to perform for each call to the routine.
     The default value is 5 iterations.

 -- Variable: int stage
     Setting this determines the "stage" of the calculation.  Normally,
     `stage = 0' which begins with a new uniform grid and empty weighted
     average.  Calling vegas with `stage = 1' retains the grid from the
     previous run but discards the weighted average, so that one can
     "tune" the grid using a relatively small number of points and then
     do a large run with `stage = 1' on the optimized grid.  Setting
     `stage = 2' keeps the grid and the weighted average from the
     previous run, but may increase (or decrease) the number of
     histogram bins in the grid depending on the number of calls
     available.  Choosing `stage = 3' enters at the main loop, so that
     nothing is changed, and is equivalent to performing additional
     iterations in a previous call.

 -- Variable: int mode
     The possible choices are `GSL_VEGAS_MODE_IMPORTANCE',
     `GSL_VEGAS_MODE_STRATIFIED', `GSL_VEGAS_MODE_IMPORTANCE_ONLY'.
     This determines whether VEGAS will use importance sampling or
     stratified sampling, or whether it can pick on its own.  In low
     dimensions VEGAS uses strict stratified sampling (more precisely,
     stratified sampling is chosen if there are fewer than 2 bins per
     box).

 -- Variable: int verbose
 -- Variable: FILE * ostream
     These parameters set the level of information printed by VEGAS. All
     information is written to the stream OSTREAM.  The default setting
     of VERBOSE is `-1', which turns off all output.  A VERBOSE value
     of `0' prints summary information about the weighted average and
     final result, while a value of `1' also displays the grid
     coordinates.  A value of `2' prints information from the rebinning
     procedure for each iteration.


File: gsl-ref.info,  Node: Monte Carlo Examples,  Next: Monte Carlo Integration References and Further Reading,  Prev: VEGAS,  Up: Monte Carlo Integration

23.5 Examples
=============

The example program below uses the Monte Carlo routines to estimate the
value of the following 3-dimensional integral from the theory of random
walks,

     I = \int_{-pi}^{+pi} {dk_x/(2 pi)}
         \int_{-pi}^{+pi} {dk_y/(2 pi)}
         \int_{-pi}^{+pi} {dk_z/(2 pi)}
          1 / (1 - cos(k_x)cos(k_y)cos(k_z)).

The analytic value of this integral can be shown to be I =
\Gamma(1/4)^4/(4 \pi^3) = 1.393203929685676859....  The integral gives
the mean time spent at the origin by a random walk on a body-centered
cubic lattice in three dimensions.

   For simplicity we will compute the integral over the region (0,0,0)
to (\pi,\pi,\pi) and multiply by 8 to obtain the full result.  The
integral is slowly varying in the middle of the region but has
integrable singularities at the corners (0,0,0), (0,\pi,\pi),
(\pi,0,\pi) and (\pi,\pi,0).  The Monte Carlo routines only select
points which are strictly within the integration region and so no
special measures are needed to avoid these singularities.

     #include <stdlib.h>
     #include <gsl/gsl_math.h>
     #include <gsl/gsl_monte.h>
     #include <gsl/gsl_monte_plain.h>
     #include <gsl/gsl_monte_miser.h>
     #include <gsl/gsl_monte_vegas.h>

     /* Computation of the integral,

           I = int (dx dy dz)/(2pi)^3  1/(1-cos(x)cos(y)cos(z))

        over (-pi,-pi,-pi) to (+pi, +pi, +pi).  The exact answer
        is Gamma(1/4)^4/(4 pi^3).  This example is taken from
        C.Itzykson, J.M.Drouffe, "Statistical Field Theory -
        Volume 1", Section 1.1, p21, which cites the original
        paper M.L.Glasser, I.J.Zucker, Proc.Natl.Acad.Sci.USA 74
        1800 (1977) */

     /* For simplicity we compute the integral over the region
        (0,0,0) -> (pi,pi,pi) and multiply by 8 */

     double exact = 1.3932039296856768591842462603255;

     double
     g (double *k, size_t dim, void *params)
     {
       double A = 1.0 / (M_PI * M_PI * M_PI);
       return A / (1.0 - cos (k[0]) * cos (k[1]) * cos (k[2]));
     }

     void
     display_results (char *title, double result, double error)
     {
       printf ("%s ==================\n", title);
       printf ("result = % .6f\n", result);
       printf ("sigma  = % .6f\n", error);
       printf ("exact  = % .6f\n", exact);
       printf ("error  = % .6f = %.1g sigma\n", result - exact,
               fabs (result - exact) / error);
     }

     int
     main (void)
     {
       double res, err;

       double xl[3] = { 0, 0, 0 };
       double xu[3] = { M_PI, M_PI, M_PI };

       const gsl_rng_type *T;
       gsl_rng *r;

       gsl_monte_function G = { &g, 3, 0 };

       size_t calls = 500000;

       gsl_rng_env_setup ();

       T = gsl_rng_default;
       r = gsl_rng_alloc (T);

       {
         gsl_monte_plain_state *s = gsl_monte_plain_alloc (3);
         gsl_monte_plain_integrate (&G, xl, xu, 3, calls, r, s,
                                    &res, &err);
         gsl_monte_plain_free (s);

         display_results ("plain", res, err);
       }

       {
         gsl_monte_miser_state *s = gsl_monte_miser_alloc (3);
         gsl_monte_miser_integrate (&G, xl, xu, 3, calls, r, s,
                                    &res, &err);
         gsl_monte_miser_free (s);

         display_results ("miser", res, err);
       }

       {
         gsl_monte_vegas_state *s = gsl_monte_vegas_alloc (3);

         gsl_monte_vegas_integrate (&G, xl, xu, 3, 10000, r, s,
                                    &res, &err);
         display_results ("vegas warm-up", res, err);

         printf ("converging...\n");

         do
           {
             gsl_monte_vegas_integrate (&G, xl, xu, 3, calls/5, r, s,
                                        &res, &err);
             printf ("result = % .6f sigma = % .6f "
                     "chisq/dof = %.1f\n", res, err, s->chisq);
           }
         while (fabs (s->chisq - 1.0) > 0.5);

         display_results ("vegas final", res, err);

         gsl_monte_vegas_free (s);
       }

       gsl_rng_free (r);

       return 0;
     }

With 500,000 function calls the plain Monte Carlo algorithm achieves a
fractional error of 0.6%.  The estimated error `sigma' is consistent
with the actual error, and the computed result differs from the true
result by about one standard deviation,

     plain ==================
     result =  1.385867
     sigma  =  0.007938
     exact  =  1.393204
     error  = -0.007337 = 0.9 sigma

The MISER algorithm reduces the error by a factor of two, and also
correctly estimates the error,

     miser ==================
     result =  1.390656
     sigma  =  0.003743
     exact  =  1.393204
     error  = -0.002548 = 0.7 sigma

In the case of the VEGAS algorithm the program uses an initial warm-up
run of 10,000 function calls to prepare, or "warm up", the grid.  This
is followed by a main run with five iterations of 100,000 function
calls. The chi-squared per degree of freedom for the five iterations are
checked for consistency with 1, and the run is repeated if the results
have not converged. In this case the estimates are consistent on the
first pass.

     vegas warm-up ==================
     result =  1.386925
     sigma  =  0.002651
     exact  =  1.393204
     error  = -0.006278 = 2 sigma
     converging...
     result =  1.392957 sigma =  0.000452 chisq/dof = 1.1
     vegas final ==================
     result =  1.392957
     sigma  =  0.000452
     exact  =  1.393204
     error  = -0.000247 = 0.5 sigma

If the value of `chisq' had differed significantly from 1 it would
indicate inconsistent results, with a correspondingly underestimated
error.  The final estimate from VEGAS (using a similar number of
function calls) is significantly more accurate than the other two
algorithms.


File: gsl-ref.info,  Node: Monte Carlo Integration References and Further Reading,  Prev: Monte Carlo Examples,  Up: Monte Carlo Integration

23.6 References and Further Reading
===================================

The MISER algorithm is described in the following article by Press and
Farrar,

     W.H. Press, G.R. Farrar, `Recursive Stratified Sampling for
     Multidimensional Monte Carlo Integration', Computers in Physics,
     v4 (1990), pp190-195.

The VEGAS algorithm is described in the following papers,

     G.P. Lepage, `A New Algorithm for Adaptive Multidimensional
     Integration', Journal of Computational Physics 27, 192-203, (1978)

     G.P. Lepage, `VEGAS: An Adaptive Multi-dimensional Integration
     Program', Cornell preprint CLNS 80-447, March 1980


File: gsl-ref.info,  Node: Simulated Annealing,  Next: Ordinary Differential Equations,  Prev: Monte Carlo Integration,  Up: Top

24 Simulated Annealing
**********************

Stochastic search techniques are used when the structure of a space is
not well understood or is not smooth, so that techniques like Newton's
method (which requires calculating Jacobian derivative matrices) cannot
be used. In particular, these techniques are frequently used to solve
combinatorial optimization problems, such as the traveling salesman
problem.

   The goal is to find a point in the space at which a real valued
"energy function" (or "cost function") is minimized.  Simulated
annealing is a minimization technique which has given good results in
avoiding local minima; it is based on the idea of taking a random walk
through the space at successively lower temperatures, where the
probability of taking a step is given by a Boltzmann distribution.

   The functions described in this chapter are declared in the header
file `gsl_siman.h'.

* Menu:

* Simulated Annealing algorithm::
* Simulated Annealing functions::
* Examples with Simulated Annealing::
* Simulated Annealing References and Further Reading::


File: gsl-ref.info,  Node: Simulated Annealing algorithm,  Next: Simulated Annealing functions,  Up: Simulated Annealing

24.1 Simulated Annealing algorithm
==================================

The simulated annealing algorithm takes random walks through the problem
space, looking for points with low energies; in these random walks, the
probability of taking a step is determined by the Boltzmann
distribution,

     p = e^{-(E_{i+1} - E_i)/(kT)}

if E_{i+1} > E_i, and p = 1 when E_{i+1} <= E_i.

   In other words, a step will occur if the new energy is lower.  If
the new energy is higher, the transition can still occur, and its
likelihood is proportional to the temperature T and inversely
proportional to the energy difference E_{i+1} - E_i.

   The temperature T is initially set to a high value, and a random
walk is carried out at that temperature.  Then the temperature is
lowered very slightly according to a "cooling schedule", for example: T
-> T/mu_T where \mu_T is slightly greater than 1.  

   The slight probability of taking a step that gives higher energy is
what allows simulated annealing to frequently get out of local minima.


File: gsl-ref.info,  Node: Simulated Annealing functions,  Next: Examples with Simulated Annealing,  Prev: Simulated Annealing algorithm,  Up: Simulated Annealing

24.2 Simulated Annealing functions
==================================

 -- Function: void gsl_siman_solve (const gsl_rng * R, void * X0_P,
          gsl_siman_Efunc_t EF, gsl_siman_step_t TAKE_STEP,
          gsl_siman_metric_t DISTANCE, gsl_siman_print_t
          PRINT_POSITION, gsl_siman_copy_t COPYFUNC,
          gsl_siman_copy_construct_t COPY_CONSTRUCTOR,
          gsl_siman_destroy_t DESTRUCTOR, size_t ELEMENT_SIZE,
          gsl_siman_params_t PARAMS)
     This function performs a simulated annealing search through a given
     space.  The space is specified by providing the functions EF and
     DISTANCE.  The simulated annealing steps are generated using the
     random number generator R and the function TAKE_STEP.

     The starting configuration of the system should be given by X0_P.
     The routine offers two modes for updating configurations, a
     fixed-size mode and a variable-size mode.  In the fixed-size mode
     the configuration is stored as a single block of memory of size
     ELEMENT_SIZE.  Copies of this configuration are created, copied
     and destroyed internally using the standard library functions
     `malloc', `memcpy' and `free'.  The function pointers COPYFUNC,
     COPY_CONSTRUCTOR and DESTRUCTOR should be null pointers in
     fixed-size mode.  In the variable-size mode the functions
     COPYFUNC, COPY_CONSTRUCTOR and DESTRUCTOR are used to create, copy
     and destroy configurations internally.  The variable ELEMENT_SIZE
     should be zero in the variable-size mode.

     The PARAMS structure (described below) controls the run by
     providing the temperature schedule and other tunable parameters to
     the algorithm.

     On exit the best result achieved during the search is placed in
     `*X0_P'.  If the annealing process has been successful this should
     be a good approximation to the optimal point in the space.

     If the function pointer PRINT_POSITION is not null, a debugging
     log will be printed to `stdout' with the following columns:

          number_of_iterations temperature x x-(*x0_p) Ef(x)

     and the output of the function PRINT_POSITION itself.  If
     PRINT_POSITION is null then no information is printed.

The simulated annealing routines require several user-specified
functions to define the configuration space and energy function.  The
prototypes for these functions are given below.

 -- Data Type: gsl_siman_Efunc_t
     This function type should return the energy of a configuration XP.

          double (*gsl_siman_Efunc_t) (void *xp)

 -- Data Type: gsl_siman_step_t
     This function type should modify the configuration XP using a
     random step taken from the generator R, up to a maximum distance of
     STEP_SIZE.

          void (*gsl_siman_step_t) (const gsl_rng *r, void *xp,
                                    double step_size)

 -- Data Type: gsl_siman_metric_t
     This function type should return the distance between two
     configurations XP and YP.

          double (*gsl_siman_metric_t) (void *xp, void *yp)

 -- Data Type: gsl_siman_print_t
     This function type should print the contents of the configuration
     XP.

          void (*gsl_siman_print_t) (void *xp)

 -- Data Type: gsl_siman_copy_t
     This function type should copy the configuration SOURCE into DEST.

          void (*gsl_siman_copy_t) (void *source, void *dest)

 -- Data Type: gsl_siman_copy_construct_t
     This function type should create a new copy of the configuration
     XP.

          void * (*gsl_siman_copy_construct_t) (void *xp)

 -- Data Type: gsl_siman_destroy_t
     This function type should destroy the configuration XP, freeing its
     memory.

          void (*gsl_siman_destroy_t) (void *xp)

 -- Data Type: gsl_siman_params_t
     These are the parameters that control a run of `gsl_siman_solve'.
     This structure contains all the information needed to control the
     search, beyond the energy function, the step function and the
     initial guess.

    `int n_tries'
          The number of points to try for each step.

    `int iters_fixed_T'
          The number of iterations at each temperature.

    `double step_size'
          The maximum step size in the random walk.

    `double k, t_initial, mu_t, t_min'
          The parameters of the Boltzmann distribution and cooling
          schedule.


File: gsl-ref.info,  Node: Examples with Simulated Annealing,  Next: Simulated Annealing References and Further Reading,  Prev: Simulated Annealing functions,  Up: Simulated Annealing

24.3 Examples
=============

The simulated annealing package is clumsy, and it has to be because it
is written in C, for C callers, and tries to be polymorphic at the same
time.  But here we provide some examples which can be pasted into your
application with little change and should make things easier.

* Menu:

* Trivial example::
* Traveling Salesman Problem::


File: gsl-ref.info,  Node: Trivial example,  Next: Traveling Salesman Problem,  Up: Examples with Simulated Annealing

24.3.1 Trivial example
----------------------

The first example, in one dimensional cartesian space, sets up an energy
function which is a damped sine wave; this has many local minima, but
only one global minimum, somewhere between 1.0 and 1.5.  The initial
guess given is 15.5, which is several local minima away from the global
minimum.

     #include <math.h>
     #include <stdlib.h>
     #include <string.h>
     #include <gsl/gsl_siman.h>

     /* set up parameters for this simulated annealing run */

     /* how many points do we try before stepping */
     #define N_TRIES 200

     /* how many iterations for each T? */
     #define ITERS_FIXED_T 1000

     /* max step size in random walk */
     #define STEP_SIZE 1.0

     /* Boltzmann constant */
     #define K 1.0

     /* initial temperature */
     #define T_INITIAL 0.008

     /* damping factor for temperature */
     #define MU_T 1.003
     #define T_MIN 2.0e-6

     gsl_siman_params_t params
       = {N_TRIES, ITERS_FIXED_T, STEP_SIZE,
          K, T_INITIAL, MU_T, T_MIN};

     /* now some functions to test in one dimension */
     double E1(void *xp)
     {
       double x = * ((double *) xp);

       return exp(-pow((x-1.0),2.0))*sin(8*x);
     }

     double M1(void *xp, void *yp)
     {
       double x = *((double *) xp);
       double y = *((double *) yp);

       return fabs(x - y);
     }

     void S1(const gsl_rng * r, void *xp, double step_size)
     {
       double old_x = *((double *) xp);
       double new_x;

       double u = gsl_rng_uniform(r);
       new_x = u * 2 * step_size - step_size + old_x;

       memcpy(xp, &new_x, sizeof(new_x));
     }

     void P1(void *xp)
     {
       printf ("%12g", *((double *) xp));
     }

     int
     main(int argc, char *argv[])
     {
       const gsl_rng_type * T;
       gsl_rng * r;

       double x_initial = 15.5;

       gsl_rng_env_setup();

       T = gsl_rng_default;
       r = gsl_rng_alloc(T);

       gsl_siman_solve(r, &x_initial, E1, S1, M1, P1,
                       NULL, NULL, NULL,
                       sizeof(double), params);

       gsl_rng_free (r);
       return 0;
     }

   Here are a couple of plots that are generated by running
`siman_test' in the following way:

     $ ./siman_test | awk '!/^#/ {print $1, $4}'
      | graph -y 1.34 1.4 -W0 -X generation -Y position
      | plot -Tps > siman-test.eps
     $ ./siman_test | awk '!/^#/ {print $1, $4}'
      | graph -y -0.88 -0.83 -W0 -X generation -Y energy
      | plot -Tps > siman-energy.eps


File: gsl-ref.info,  Node: Traveling Salesman Problem,  Prev: Trivial example,  Up: Examples with Simulated Annealing

24.3.2 Traveling Salesman Problem
---------------------------------

The TSP ("Traveling Salesman Problem") is the classic combinatorial
optimization problem.  I have provided a very simple version of it,
based on the coordinates of twelve cities in the southwestern United
States.  This should maybe be called the "Flying Salesman Problem",
since I am using the great-circle distance between cities, rather than
the driving distance.  Also: I assume the earth is a sphere, so I don't
use geoid distances.

   The `gsl_siman_solve' routine finds a route which is 3490.62
Kilometers long; this is confirmed by an exhaustive search of all
possible routes with the same initial city.

   The full code can be found in `siman/siman_tsp.c', but I include
here some plots generated in the following way:

     $ ./siman_tsp > tsp.output
     $ grep -v "^#" tsp.output
      | awk '{print $1, $NF}'
      | graph -y 3300 6500 -W0 -X generation -Y distance
         -L "TSP - 12 southwest cities"
      | plot -Tps > 12-cities.eps
     $ grep initial_city_coord tsp.output
       | awk '{print $2, $3}'
       | graph -X "longitude (- means west)" -Y "latitude"
          -L "TSP - initial-order" -f 0.03 -S 1 0.1
       | plot -Tps > initial-route.eps
     $ grep final_city_coord tsp.output
       | awk '{print $2, $3}'
       | graph -X "longitude (- means west)" -Y "latitude"
          -L "TSP - final-order" -f 0.03 -S 1 0.1
       | plot -Tps > final-route.eps

This is the output showing the initial order of the cities; longitude is
negative, since it is west and I want the plot to look like a map.

     # initial coordinates of cities (longitude and latitude)
     ###initial_city_coord: -105.95 35.68 Santa Fe
     ###initial_city_coord: -112.07 33.54 Phoenix
     ###initial_city_coord: -106.62 35.12 Albuquerque
     ###initial_city_coord: -103.2 34.41 Clovis
     ###initial_city_coord: -107.87 37.29 Durango
     ###initial_city_coord: -96.77 32.79 Dallas
     ###initial_city_coord: -105.92 35.77 Tesuque
     ###initial_city_coord: -107.84 35.15 Grants
     ###initial_city_coord: -106.28 35.89 Los Alamos
     ###initial_city_coord: -106.76 32.34 Las Cruces
     ###initial_city_coord: -108.58 37.35 Cortez
     ###initial_city_coord: -108.74 35.52 Gallup
     ###initial_city_coord: -105.95 35.68 Santa Fe

   The optimal route turns out to be:

     # final coordinates of cities (longitude and latitude)
     ###final_city_coord: -105.95 35.68 Santa Fe
     ###final_city_coord: -106.28 35.89 Los Alamos
     ###final_city_coord: -106.62 35.12 Albuquerque
     ###final_city_coord: -107.84 35.15 Grants
     ###final_city_coord: -107.87 37.29 Durango
     ###final_city_coord: -108.58 37.35 Cortez
     ###final_city_coord: -108.74 35.52 Gallup
     ###final_city_coord: -112.07 33.54 Phoenix
     ###final_city_coord: -106.76 32.34 Las Cruces
     ###final_city_coord: -96.77 32.79 Dallas
     ###final_city_coord: -103.2 34.41 Clovis
     ###final_city_coord: -105.92 35.77 Tesuque
     ###final_city_coord: -105.95 35.68 Santa Fe

Here's a plot of the cost function (energy) versus generation (point in
the calculation at which a new temperature is set) for this problem:


File: gsl-ref.info,  Node: Simulated Annealing References and Further Reading,  Prev: Examples with Simulated Annealing,  Up: Simulated Annealing

24.4 References and Further Reading
===================================

Further information is available in the following book,

     `Modern Heuristic Techniques for Combinatorial Problems', Colin R.
     Reeves (ed.), McGraw-Hill, 1995 (ISBN 0-07-709239-2).


File: gsl-ref.info,  Node: Ordinary Differential Equations,  Next: Interpolation,  Prev: Simulated Annealing,  Up: Top

25 Ordinary Differential Equations
**********************************

This chapter describes functions for solving ordinary differential
equation (ODE) initial value problems.  The library provides a variety
of low-level methods, such as Runge-Kutta and Bulirsch-Stoer routines,
and higher-level components for adaptive step-size control.  The
components can be combined by the user to achieve the desired solution,
with full access to any intermediate steps.

   These functions are declared in the header file `gsl_odeiv.h'.

* Menu:

* Defining the ODE System::
* Stepping Functions::
* Adaptive Step-size Control::
* Evolution::
* ODE Example programs::
* ODE References and Further Reading::


File: gsl-ref.info,  Node: Defining the ODE System,  Next: Stepping Functions,  Up: Ordinary Differential Equations

25.1 Defining the ODE System
============================

The routines solve the general n-dimensional first-order system,

     dy_i(t)/dt = f_i(t, y_1(t), ..., y_n(t))

for i = 1, \dots, n.  The stepping functions rely on the vector of
derivatives f_i and the Jacobian matrix, J_{ij} = df_i(t,y(t)) / dy_j.
A system of equations is defined using the `gsl_odeiv_system' datatype.

 -- Data Type: gsl_odeiv_system
     This data type defines a general ODE system with arbitrary
     parameters.

    `int (* function) (double t, const double y[], double dydt[], void * params)'
          This function should store the vector elements
          f_i(t,y,params) in the array DYDT, for arguments (T,Y) and
          parameters PARAMS.  The function should return `GSL_SUCCESS'
          if the calculation was completed successfully. Any other
          return value indicates an error.

    `int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params);'
          This function should store the vector of derivative elements
          df_i(t,y,params)/dt in the array DFDT and the Jacobian matrix
          J_{ij} in the array DFDY, regarded as a row-ordered matrix
          `J(i,j) = dfdy[i * dimension + j]' where `dimension' is the
          dimension of the system.  The function should return
          `GSL_SUCCESS' if the calculation was completed successfully.
          Any other return value indicates an error.

          Some of the simpler solver algorithms do not make use of the
          Jacobian matrix, so it is not always strictly necessary to
          provide it (the `jacobian' element of the struct can be
          replaced by a null pointer for those algorithms).  However,
          it is useful to provide the Jacobian to allow the solver
          algorithms to be interchanged--the best algorithms make use
          of the Jacobian.

    `size_t dimension;'
          This is the dimension of the system of equations.

    `void * params'
          This is a pointer to the arbitrary parameters of the system.


File: gsl-ref.info,  Node: Stepping Functions,  Next: Adaptive Step-size Control,  Prev: Defining the ODE System,  Up: Ordinary Differential Equations

25.2 Stepping Functions
=======================

The lowest level components are the "stepping functions" which advance
a solution from time t to t+h for a fixed step-size h and estimate the
resulting local error.

 -- Function: gsl_odeiv_step * gsl_odeiv_step_alloc (const
          gsl_odeiv_step_type * T, size_t DIM)
     This function returns a pointer to a newly allocated instance of a
     stepping function of type T for a system of DIM dimensions.

 -- Function: int gsl_odeiv_step_reset (gsl_odeiv_step * S)
     This function resets the stepping function S.  It should be used
     whenever the next use of S will not be a continuation of a
     previous step.

 -- Function: void gsl_odeiv_step_free (gsl_odeiv_step * S)
     This function frees all the memory associated with the stepping
     function S.

 -- Function: const char * gsl_odeiv_step_name (const gsl_odeiv_step *
          S)
     This function returns a pointer to the name of the stepping
     function.  For example,

          printf ("step method is '%s'\n",
                   gsl_odeiv_step_name (s));

     would print something like `step method is 'rk4''.

 -- Function: unsigned int gsl_odeiv_step_order (const gsl_odeiv_step *
          S)
     This function returns the order of the stepping function on the
     previous step.  This order can vary if the stepping function
     itself is adaptive.

 -- Function: int gsl_odeiv_step_apply (gsl_odeiv_step * S, double T,
          double H, double Y[], double YERR[], const double DYDT_IN[],
          double DYDT_OUT[], const gsl_odeiv_system * DYDT)
     This function applies the stepping function S to the system of
     equations defined by DYDT, using the step size H to advance the
     system from time T and state Y to time T+H.  The new state of the
     system is stored in Y on output, with an estimate of the absolute
     error in each component stored in YERR.  If the argument DYDT_IN
     is not null it should point an array containing the derivatives
     for the system at time T on input. This is optional as the
     derivatives will be computed internally if they are not provided,
     but allows the reuse of existing derivative information.  On
     output the new derivatives of the system at time T+H will be
     stored in DYDT_OUT if it is not null.

     If the user-supplied functions defined in the system DYDT return a
     status other than `GSL_SUCCESS' the step will be aborted.  In this
     case, the elements of Y will be restored to their pre-step values
     and the error code from the user-supplied function will be
     returned.  The step-size H will be set to the step-size which
     caused the error.  If the function is called again with a smaller
     step-size, e.g. H/10, it should be possible to get closer to any
     singularity.  To distinguish between error codes from the
     user-supplied functions and those from `gsl_odeiv_step_apply'
     itself, any user-defined return values should be distinct from the
     standard GSL error codes.

   The following algorithms are available,

 -- Step Type: gsl_odeiv_step_rk2
     Embedded Runge-Kutta (2, 3) method.

 -- Step Type: gsl_odeiv_step_rk4
     4th order (classical) Runge-Kutta.

 -- Step Type: gsl_odeiv_step_rkf45
     Embedded Runge-Kutta-Fehlberg (4, 5) method.  This method is a good
     general-purpose integrator.

 -- Step Type: gsl_odeiv_step_rkck
     Embedded Runge-Kutta Cash-Karp (4, 5) method.

 -- Step Type: gsl_odeiv_step_rk8pd
     Embedded Runge-Kutta Prince-Dormand (8,9) method.

 -- Step Type: gsl_odeiv_step_rk2imp
     Implicit 2nd order Runge-Kutta at Gaussian points.

 -- Step Type: gsl_odeiv_step_rk4imp
     Implicit 4th order Runge-Kutta at Gaussian points.

 -- Step Type: gsl_odeiv_step_bsimp
     Implicit Bulirsch-Stoer method of Bader and Deuflhard.  This
     algorithm requires the Jacobian.

 -- Step Type: gsl_odeiv_step_gear1
     M=1 implicit Gear method.

 -- Step Type: gsl_odeiv_step_gear2
     M=2 implicit Gear method.


File: gsl-ref.info,  Node: Adaptive Step-size Control,  Next: Evolution,  Prev: Stepping Functions,  Up: Ordinary Differential Equations

25.3 Adaptive Step-size Control
===============================

The control function examines the proposed change to the solution
produced by a stepping function and attempts to determine the optimal
step-size for a user-specified level of error.

 -- Function: gsl_odeiv_control * gsl_odeiv_control_standard_new
          (double EPS_ABS, double EPS_REL, double A_Y, double A_DYDT)
     The standard control object is a four parameter heuristic based on
     absolute and relative errors EPS_ABS and EPS_REL, and scaling
     factors A_Y and A_DYDT for the system state y(t) and derivatives
     y'(t) respectively.

     The step-size adjustment procedure for this method begins by
     computing the desired error level D_i for each component,

          D_i = eps_abs + eps_rel * (a_y |y_i| + a_dydt h |y'_i|)

     and comparing it with the observed error E_i = |yerr_i|.  If the
     observed error E exceeds the desired error level D by more than
     10% for any component then the method reduces the step-size by an
     appropriate factor,

          h_new = h_old * S * (E/D)^(-1/q)

     where q is the consistency order of the method (e.g. q=4 for 4(5)
     embedded RK), and S is a safety factor of 0.9. The ratio E/D is
     taken to be the maximum of the ratios E_i/D_i.

     If the observed error E is less than 50% of the desired error
     level D for the maximum ratio E_i/D_i then the algorithm takes the
     opportunity to increase the step-size to bring the error in line
     with the desired level,

          h_new = h_old * S * (E/D)^(-1/(q+1))

     This encompasses all the standard error scaling methods. To avoid
     uncontrolled changes in the stepsize, the overall scaling factor is
     limited to the range 1/5 to 5.

 -- Function: gsl_odeiv_control * gsl_odeiv_control_y_new (double
          EPS_ABS, double EPS_REL)
     This function creates a new control object which will keep the
     local error on each step within an absolute error of EPS_ABS and
     relative error of EPS_REL with respect to the solution y_i(t).
     This is equivalent to the standard control object with A_Y=1 and
     A_DYDT=0.

 -- Function: gsl_odeiv_control * gsl_odeiv_control_yp_new (double
          EPS_ABS, double EPS_REL)
     This function creates a new control object which will keep the
     local error on each step within an absolute error of EPS_ABS and
     relative error of EPS_REL with respect to the derivatives of the
     solution y'_i(t).  This is equivalent to the standard control
     object with A_Y=0 and A_DYDT=1.

 -- Function: gsl_odeiv_control * gsl_odeiv_control_scaled_new (double
          EPS_ABS, double EPS_REL, double A_Y, double A_DYDT, const
          double SCALE_ABS[], size_t DIM)
     This function creates a new control object which uses the same
     algorithm as `gsl_odeiv_control_standard_new' but with an absolute
     error which is scaled for each component by the array SCALE_ABS.
     The formula for D_i for this control object is,

          D_i = eps_abs * s_i + eps_rel * (a_y |y_i| + a_dydt h |y'_i|)

     where s_i is the i-th component of the array SCALE_ABS.  The same
     error control heuristic is used by the Matlab ODE suite.

 -- Function: gsl_odeiv_control * gsl_odeiv_control_alloc (const
          gsl_odeiv_control_type * T)
     This function returns a pointer to a newly allocated instance of a
     control function of type T.  This function is only needed for
     defining new types of control functions.  For most purposes the
     standard control functions described above should be sufficient.

 -- Function: int gsl_odeiv_control_init (gsl_odeiv_control * C, double
          EPS_ABS, double EPS_REL, double A_Y, double A_DYDT)
     This function initializes the control function C with the
     parameters EPS_ABS (absolute error), EPS_REL (relative error), A_Y
     (scaling factor for y) and A_DYDT (scaling factor for derivatives).

 -- Function: void gsl_odeiv_control_free (gsl_odeiv_control * C)
     This function frees all the memory associated with the control
     function C.

 -- Function: int gsl_odeiv_control_hadjust (gsl_odeiv_control * C,
          gsl_odeiv_step * S, const double Y[], const double YERR[],
          const double DYDT[], double * H)
     This function adjusts the step-size H using the control function
     C, and the current values of Y, YERR and DYDT.  The stepping
     function STEP is also needed to determine the order of the method.
     If the error in the y-values YERR is found to be too large then
     the step-size H is reduced and the function returns
     `GSL_ODEIV_HADJ_DEC'.  If the error is sufficiently small then H
     may be increased and `GSL_ODEIV_HADJ_INC' is returned.  The
     function returns `GSL_ODEIV_HADJ_NIL' if the step-size is
     unchanged.  The goal of the function is to estimate the largest
     step-size which satisfies the user-specified accuracy requirements
     for the current point.

 -- Function: const char * gsl_odeiv_control_name (const
          gsl_odeiv_control * C)
     This function returns a pointer to the name of the control
     function.  For example,

          printf ("control method is '%s'\n",
                  gsl_odeiv_control_name (c));

     would print something like `control method is 'standard''


File: gsl-ref.info,  Node: Evolution,  Next: ODE Example programs,  Prev: Adaptive Step-size Control,  Up: Ordinary Differential Equations

25.4 Evolution
==============

The highest level of the system is the evolution function which combines
the results of a stepping function and control function to reliably
advance the solution forward over an interval (t_0, t_1).  If the
control function signals that the step-size should be decreased the
evolution function backs out of the current step and tries the proposed
smaller step-size.  This process is continued until an acceptable
step-size is found.

 -- Function: gsl_odeiv_evolve * gsl_odeiv_evolve_alloc (size_t DIM)
     This function returns a pointer to a newly allocated instance of an
     evolution function for a system of DIM dimensions.

 -- Function: int gsl_odeiv_evolve_apply (gsl_odeiv_evolve * E,
          gsl_odeiv_control * CON, gsl_odeiv_step * STEP, const
          gsl_odeiv_system * DYDT, double * T, double T1, double * H,
          double Y[])
     This function advances the system (E, DYDT) from time T and
     position Y using the stepping function STEP.  The new time and
     position are stored in T and Y on output.  The initial step-size
     is taken as H, but this will be modified using the control
     function C to achieve the appropriate error bound if necessary.
     The routine may make several calls to STEP in order to determine
     the optimum step-size. An estimate of the local error for the step
     can be obtained from the components of the array `E->yerr[]'.  If
     the step-size has been changed the value of H will be modified on
     output.  The maximum time T1 is guaranteed not to be exceeded by
     the time-step.  On the final time-step the value of T will be set
     to T1 exactly.

     If the user-supplied functions defined in the system DYDT return a
     status other than `GSL_SUCCESS' the step will be aborted.  In this
     case,  T and Y will be restored to their pre-step values and the
     error code from the user-supplied function will be returned.  To
     distinguish between error codes from the user-supplied functions
     and those from `gsl_odeiv_evolve_apply' itself, any user-defined
     return values should be distinct from the standard GSL error codes.

 -- Function: int gsl_odeiv_evolve_reset (gsl_odeiv_evolve * E)
     This function resets the evolution function E.  It should be used
     whenever the next use of E will not be a continuation of a
     previous step.

 -- Function: void gsl_odeiv_evolve_free (gsl_odeiv_evolve * E)
     This function frees all the memory associated with the evolution
     function E.


File: gsl-ref.info,  Node: ODE Example programs,  Next: ODE References and Further Reading,  Prev: Evolution,  Up: Ordinary Differential Equations

25.5 Examples
=============

The following program solves the second-order nonlinear Van der Pol
oscillator equation,

     x''(t) + \mu x'(t) (x(t)^2 - 1) + x(t) = 0

This can be converted into a first order system suitable for use with
the routines described in this chapter by introducing a separate
variable for the velocity, y = x'(t),

     x' = y
     y' = -x + \mu y (1-x^2)

The program begins by defining functions for these derivatives and
their Jacobian,

     #include <stdio.h>
     #include <gsl/gsl_errno.h>
     #include <gsl/gsl_matrix.h>
     #include <gsl/gsl_odeiv.h>

     int
     func (double t, const double y[], double f[],
           void *params)
     {
       double mu = *(double *)params;
       f[0] = y[1];
       f[1] = -y[0] - mu*y[1]*(y[0]*y[0] - 1);
       return GSL_SUCCESS;
     }

     int
     jac (double t, const double y[], double *dfdy,
          double dfdt[], void *params)
     {
       double mu = *(double *)params;
       gsl_matrix_view dfdy_mat
         = gsl_matrix_view_array (dfdy, 2, 2);
       gsl_matrix * m = &dfdy_mat.matrix;
       gsl_matrix_set (m, 0, 0, 0.0);
       gsl_matrix_set (m, 0, 1, 1.0);
       gsl_matrix_set (m, 1, 0, -2.0*mu*y[0]*y[1] - 1.0);
       gsl_matrix_set (m, 1, 1, -mu*(y[0]*y[0] - 1.0));
       dfdt[0] = 0.0;
       dfdt[1] = 0.0;
       return GSL_SUCCESS;
     }

     int
     main (void)
     {
       const gsl_odeiv_step_type * T
         = gsl_odeiv_step_rk8pd;

       gsl_odeiv_step * s
         = gsl_odeiv_step_alloc (T, 2);
       gsl_odeiv_control * c
         = gsl_odeiv_control_y_new (1e-6, 0.0);
       gsl_odeiv_evolve * e
         = gsl_odeiv_evolve_alloc (2);

       double mu = 10;
       gsl_odeiv_system sys = {func, jac, 2, &mu};

       double t = 0.0, t1 = 100.0;
       double h = 1e-6;
       double y[2] = { 1.0, 0.0 };

       while (t < t1)
         {
           int status = gsl_odeiv_evolve_apply (e, c, s,
                                                &sys,
                                                &t, t1,
                                                &h, y);

           if (status != GSL_SUCCESS)
               break;

           printf ("%.5e %.5e %.5e\n", t, y[0], y[1]);
         }

       gsl_odeiv_evolve_free (e);
       gsl_odeiv_control_free (c);
       gsl_odeiv_step_free (s);
       return 0;
     }

For functions with multiple parameters, the appropriate information can
be passed in through the PARAMS argument using a pointer to a struct.

   The main loop of the program evolves the solution from (y, y') = (1,
0) at t=0 to t=100.  The step-size h is automatically adjusted by the
controller to maintain an absolute accuracy of 10^{-6} in the function
values Y.

To obtain the values at regular intervals, rather than the variable
spacings chosen by the control function, the main loop can be modified
to advance the solution from one point to the next.  For example, the
following main loop prints the solution at the fixed points t = 0, 1,
2, \dots, 100,

       for (i = 1; i <= 100; i++)
         {
           double ti = i * t1 / 100.0;

           while (t < ti)
             {
               gsl_odeiv_evolve_apply (e, c, s,
                                       &sys,
                                       &t, ti, &h,
                                       y);
             }

           printf ("%.5e %.5e %.5e\n", t, y[0], y[1]);
         }

It is also possible to work with a non-adaptive integrator, using only
the stepping function itself.  The following program uses the `rk4'
fourth-order Runge-Kutta stepping function with a fixed stepsize of
0.01,

     int
     main (void)
     {
       const gsl_odeiv_step_type * T
         = gsl_odeiv_step_rk4;

       gsl_odeiv_step * s
         = gsl_odeiv_step_alloc (T, 2);

       double mu = 10;
       gsl_odeiv_system sys = {func, jac, 2, &mu};

       double t = 0.0, t1 = 100.0;
       double h = 1e-2;
       double y[2] = { 1.0, 0.0 }, y_err[2];
       double dydt_in[2], dydt_out[2];

       /* initialise dydt_in from system parameters */
       GSL_ODEIV_FN_EVAL(&sys, t, y, dydt_in);

       while (t < t1)
         {
           int status = gsl_odeiv_step_apply (s, t, h,
                                              y, y_err,
                                              dydt_in,
                                              dydt_out,
                                              &sys);

           if (status != GSL_SUCCESS)
               break;

           dydt_in[0] = dydt_out[0];
           dydt_in[1] = dydt_out[1];

           t += h;

           printf ("%.5e %.5e %.5e\n", t, y[0], y[1]);
         }

       gsl_odeiv_step_free (s);
       return 0;
     }

The derivatives must be initialized for the starting point t=0 before
the first step is taken.  Subsequent steps use the output derivatives
DYDT_OUT as inputs to the next step by copying their values into
DYDT_IN.


File: gsl-ref.info,  Node: ODE References and Further Reading,  Prev: ODE Example programs,  Up: Ordinary Differential Equations

25.6 References and Further Reading
===================================

Many of the basic Runge-Kutta formulas can be found in the Handbook of
Mathematical Functions,

     Abramowitz & Stegun (eds.), `Handbook of Mathematical Functions',
     Section 25.5.

The implicit Bulirsch-Stoer algorithm `bsimp' is described in the
following paper,

     G. Bader and P. Deuflhard, "A Semi-Implicit Mid-Point Rule for
     Stiff Systems of Ordinary Differential Equations.", Numer. Math.
     41, 373-398, 1983.


File: gsl-ref.info,  Node: Interpolation,  Next: Numerical Differentiation,  Prev: Ordinary Differential Equations,  Up: Top

26 Interpolation
****************

This chapter describes functions for performing interpolation.  The
library provides a variety of interpolation methods, including Cubic
splines and Akima splines.  The interpolation types are interchangeable,
allowing different methods to be used without recompiling.
Interpolations can be defined for both normal and periodic boundary
conditions.  Additional functions are available for computing
derivatives and integrals of interpolating functions.

   The functions described in this section are declared in the header
files `gsl_interp.h' and `gsl_spline.h'.

* Menu:

* Introduction to Interpolation::
* Interpolation Functions::
* Interpolation Types::
* Index Look-up and Acceleration::
* Evaluation of Interpolating Functions::
* Higher-level Interface::
* Interpolation Example programs::
* Interpolation References and Further Reading::


File: gsl-ref.info,  Node: Introduction to Interpolation,  Next: Interpolation Functions,  Up: Interpolation

26.1 Introduction
=================

Given a set of data points (x_1, y_1) \dots (x_n, y_n) the routines
described in this section compute a continuous interpolating function
y(x) such that y(x_i) = y_i.  The interpolation is piecewise smooth,
and its behavior at the end-points is determined by the type of
interpolation used.


File: gsl-ref.info,  Node: Interpolation Functions,  Next: Interpolation Types,  Prev: Introduction to Interpolation,  Up: Interpolation

26.2 Interpolation Functions
============================

The interpolation function for a given dataset is stored in a
`gsl_interp' object.  These are created by the following functions.

 -- Function: gsl_interp * gsl_interp_alloc (const gsl_interp_type * T,
          size_t SIZE)
     This function returns a pointer to a newly allocated interpolation
     object of type T for SIZE data-points.

 -- Function: int gsl_interp_init (gsl_interp * INTERP, const double
          XA[], const double YA[], size_t SIZE)
     This function initializes the interpolation object INTERP for the
     data (XA,YA) where XA and YA are arrays of size SIZE.  The
     interpolation object (`gsl_interp') does not save the data arrays
     XA and YA and only stores the static state computed from the data.
     The XA data array is always assumed to be strictly ordered; the
     behavior for other arrangements is not defined.

 -- Function: void gsl_interp_free (gsl_interp * INTERP)
     This function frees the interpolation object INTERP.


File: gsl-ref.info,  Node: Interpolation Types,  Next: Index Look-up and Acceleration,  Prev: Interpolation Functions,  Up: Interpolation

26.3 Interpolation Types
========================

The interpolation library provides five interpolation types:

 -- Interpolation Type: gsl_interp_linear
     Linear interpolation.  This interpolation method does not require
     any additional memory.

 -- Interpolation Type: gsl_interp_polynomial
     Polynomial interpolation.  This method should only be used for
     interpolating small numbers of points because polynomial
     interpolation introduces large oscillations, even for well-behaved
     datasets.  The number of terms in the interpolating polynomial is
     equal to the number of points.

 -- Interpolation Type: gsl_interp_cspline
     Cubic spline with natural boundary conditions.  The resulting
     curve is piecewise cubic on each interval, with matching first and
     second derivatives at the supplied data-points.  The second
     derivative is chosen to be zero at the first point and last point.

 -- Interpolation Type: gsl_interp_cspline_periodic
     Cubic spline with periodic boundary conditions.  The resulting
     curve is piecewise cubic on each interval, with matching first and
     second derivatives at the supplied data-points.  The derivatives
     at the first and last points are also matched.  Note that the last
     point in the data must have the same y-value as the first point,
     otherwise the resulting periodic interpolation will have a
     discontinuity at the boundary.


 -- Interpolation Type: gsl_interp_akima
     Non-rounded Akima spline with natural boundary conditions.  This
     method uses the non-rounded corner algorithm of Wodicka.

 -- Interpolation Type: gsl_interp_akima_periodic
     Non-rounded Akima spline with periodic boundary conditions.  This
     method uses the non-rounded corner algorithm of Wodicka.

   The following related functions are available:

 -- Function: const char * gsl_interp_name (const gsl_interp * INTERP)
     This function returns the name of the interpolation type used by
     INTERP.  For example,

          printf ("interp uses '%s' interpolation.\n",
                  gsl_interp_name (interp));

     would print something like,

          interp uses 'cspline' interpolation.

 -- Function: unsigned int gsl_interp_min_size (const gsl_interp *
          INTERP)
     This function returns the minimum number of points required by the
     interpolation type of INTERP.  For example, Akima spline
     interpolation requires a minimum of 5 points.


File: gsl-ref.info,  Node: Index Look-up and Acceleration,  Next: Evaluation of Interpolating Functions,  Prev: Interpolation Types,  Up: Interpolation

26.4 Index Look-up and Acceleration
===================================

The state of searches can be stored in a `gsl_interp_accel' object,
which is a kind of iterator for interpolation lookups.  It caches the
previous value of an index lookup.  When the subsequent interpolation
point falls in the same interval its index value can be returned
immediately.

 -- Function: size_t gsl_interp_bsearch (const double X_ARRAY[], double
          X, size_t INDEX_LO, size_t INDEX_HI)
     This function returns the index i of the array X_ARRAY such that
     `x_array[i] <= x < x_array[i+1]'.  The index is searched for in
     the range [INDEX_LO,INDEX_HI].

 -- Function: gsl_interp_accel * gsl_interp_accel_alloc (void)
     This function returns a pointer to an accelerator object, which is
     a kind of iterator for interpolation lookups.  It tracks the state
     of lookups, thus allowing for application of various acceleration
     strategies.

 -- Function: size_t gsl_interp_accel_find (gsl_interp_accel * A, const
          double X_ARRAY[], size_t SIZE, double X)
     This function performs a lookup action on the data array X_ARRAY
     of size SIZE, using the given accelerator A.  This is how lookups
     are performed during evaluation of an interpolation.  The function
     returns an index i such that `x_array[i] <= x < x_array[i+1]'.

 -- Function: void gsl_interp_accel_free (gsl_interp_accel* ACC)
     This function frees the accelerator object ACC.


File: gsl-ref.info,  Node: Evaluation of Interpolating Functions,  Next: Higher-level Interface,  Prev: Index Look-up and Acceleration,  Up: Interpolation

26.5 Evaluation of Interpolating Functions
==========================================

 -- Function: double gsl_interp_eval (const gsl_interp * INTERP, const
          double XA[], const double YA[], double X, gsl_interp_accel *
          ACC)
 -- Function: int gsl_interp_eval_e (const gsl_interp * INTERP, const
          double XA[], const double YA[], double X, gsl_interp_accel *
          ACC, double * Y)
     These functions return the interpolated value of Y for a given
     point X, using the interpolation object INTERP, data arrays XA and
     YA and the accelerator ACC.

 -- Function: double gsl_interp_eval_deriv (const gsl_interp * INTERP,
          const double XA[], const double YA[], double X,
          gsl_interp_accel * ACC)
 -- Function: int gsl_interp_eval_deriv_e (const gsl_interp * INTERP,
          const double XA[], const double YA[], double X,
          gsl_interp_accel * ACC, double * D)
     These functions return the derivative D of an interpolated
     function for a given point X, using the interpolation object
     INTERP, data arrays XA and YA and the accelerator ACC.

 -- Function: double gsl_interp_eval_deriv2 (const gsl_interp * INTERP,
          const double XA[], const double YA[], double X,
          gsl_interp_accel * ACC)
 -- Function: int gsl_interp_eval_deriv2_e (const gsl_interp * INTERP,
          const double XA[], const double YA[], double X,
          gsl_interp_accel * ACC, double * D2)
     These functions return the second derivative D2 of an interpolated
     function for a given point X, using the interpolation object
     INTERP, data arrays XA and YA and the accelerator ACC.

 -- Function: double gsl_interp_eval_integ (const gsl_interp * INTERP,
          const double XA[], const double YA[], double A, double B,
          gsl_interp_accel * ACC)
 -- Function: int gsl_interp_eval_integ_e (const gsl_interp * INTERP,
          const double XA[], const double YA[], double A, double B,
          gsl_interp_accel * ACC, double * RESULT)
     These functions return the numerical integral RESULT of an
     interpolated function over the range [A, B], using the
     interpolation object INTERP, data arrays XA and YA and the
     accelerator ACC.


File: gsl-ref.info,  Node: Higher-level Interface,  Next: Interpolation Example programs,  Prev: Evaluation of Interpolating Functions,  Up: Interpolation

26.6 Higher-level Interface
===========================

The functions described in the previous sections required the user to
supply pointers to the x and y arrays on each call.  The following
functions are equivalent to the corresponding `gsl_interp' functions
but maintain a copy of this data in the `gsl_spline' object.  This
removes the need to pass both XA and YA as arguments on each
evaluation. These functions are defined in the header file
`gsl_spline.h'.

 -- Function: gsl_spline * gsl_spline_alloc (const gsl_interp_type * T,
          size_t SIZE)

 -- Function: int gsl_spline_init (gsl_spline * SPLINE, const double
          XA[], const double YA[], size_t SIZE)

 -- Function: void gsl_spline_free (gsl_spline * SPLINE)

 -- Function: const char * gsl_spline_name (const gsl_spline * SPLINE)

 -- Function: unsigned int gsl_spline_min_size (const gsl_spline *
          SPLINE)

 -- Function: double gsl_spline_eval (const gsl_spline * SPLINE, double
          X, gsl_interp_accel * ACC)
 -- Function: int gsl_spline_eval_e (const gsl_spline * SPLINE, double
          X, gsl_interp_accel * ACC, double * Y)

 -- Function: double gsl_spline_eval_deriv (const gsl_spline * SPLINE,
          double X, gsl_interp_accel * ACC)
 -- Function: int gsl_spline_eval_deriv_e (const gsl_spline * SPLINE,
          double X, gsl_interp_accel * ACC, double * D)

 -- Function: double gsl_spline_eval_deriv2 (const gsl_spline * SPLINE,
          double X, gsl_interp_accel * ACC)
 -- Function: int gsl_spline_eval_deriv2_e (const gsl_spline * SPLINE,
          double X, gsl_interp_accel * ACC, double * D2)

 -- Function: double gsl_spline_eval_integ (const gsl_spline * SPLINE,
          double A, double B, gsl_interp_accel * ACC)
 -- Function: int gsl_spline_eval_integ_e (const gsl_spline * SPLINE,
          double A, double B, gsl_interp_accel * ACC, double * RESULT)


File: gsl-ref.info,  Node: Interpolation Example programs,  Next: Interpolation References and Further Reading,  Prev: Higher-level Interface,  Up: Interpolation

26.7 Examples
=============

The following program demonstrates the use of the interpolation and
spline functions.  It computes a cubic spline interpolation of the
10-point dataset (x_i, y_i) where x_i = i + \sin(i)/2 and y_i = i +
\cos(i^2) for i = 0 \dots 9.

     #include <stdlib.h>
     #include <stdio.h>
     #include <math.h>
     #include <gsl/gsl_errno.h>
     #include <gsl/gsl_spline.h>

     int
     main (void)
     {
       int i;
       double xi, yi, x[10], y[10];

       printf ("#m=0,S=2\n");

       for (i = 0; i < 10; i++)
         {
           x[i] = i + 0.5 * sin (i);
           y[i] = i + cos (i * i);
           printf ("%g %g\n", x[i], y[i]);
         }

       printf ("#m=1,S=0\n");

       {
         gsl_interp_accel *acc
           = gsl_interp_accel_alloc ();
         gsl_spline *spline
           = gsl_spline_alloc (gsl_interp_cspline, 10);

         gsl_spline_init (spline, x, y, 10);

         for (xi = x[0]; xi < x[9]; xi += 0.01)
           {
             yi = gsl_spline_eval (spline, xi, acc);
             printf ("%g %g\n", xi, yi);
           }
         gsl_spline_free (spline);
         gsl_interp_accel_free (acc);
       }
       return 0;
     }

The output is designed to be used with the GNU plotutils `graph'
program,

     $ ./a.out > interp.dat
     $ graph -T ps < interp.dat > interp.ps

The result shows a smooth interpolation of the original points.  The
interpolation method can changed simply by varying the first argument of
`gsl_spline_alloc'.

   The next program demonstrates a periodic cubic spline with 4 data
points.  Note that the first and last points must be supplied with the
same y-value for a periodic spline.

     #include <stdlib.h>
     #include <stdio.h>
     #include <math.h>
     #include <gsl/gsl_errno.h>
     #include <gsl/gsl_spline.h>

     int
     main (void)
     {
       int N = 4;
       double x[4] = {0.00, 0.10,  0.27,  0.30};
       double y[4] = {0.15, 0.70, -0.10,  0.15}; /* Note: first = last
                                                    for periodic data */

       gsl_interp_accel *acc = gsl_interp_accel_alloc ();
       const gsl_interp_type *t = gsl_interp_cspline_periodic;
       gsl_spline *spline = gsl_spline_alloc (t, N);

       int i; double xi, yi;

       printf ("#m=0,S=5\n");
       for (i = 0; i < N; i++)
         {
           printf ("%g %g\n", x[i], y[i]);
         }

       printf ("#m=1,S=0\n");
       gsl_spline_init (spline, x, y, N);

       for (i = 0; i <= 100; i++)
         {
           xi = (1 - i / 100.0) * x[0] + (i / 100.0) * x[N-1];
           yi = gsl_spline_eval (spline, xi, acc);
           printf ("%g %g\n", xi, yi);
         }

       gsl_spline_free (spline);
       gsl_interp_accel_free (acc);
       return 0;
     }

The output can be plotted with GNU `graph'.

     $ ./a.out > interp.dat
     $ graph -T ps < interp.dat > interp.ps

The result shows a periodic interpolation of the original points. The
slope of the fitted curve is the same at the beginning and end of the
data, and the second derivative is also.


File: gsl-ref.info,  Node: Interpolation References and Further Reading,  Prev: Interpolation Example programs,  Up: Interpolation

26.8 References and Further Reading
===================================

Descriptions of the interpolation algorithms and further references can
be found in the following books:

     C.W. Ueberhuber, `Numerical Computation (Volume 1), Chapter 9
     "Interpolation"', Springer (1997), ISBN 3-540-62058-3.

     D.M. Young, R.T. Gregory `A Survey of Numerical Mathematics
     (Volume 1), Chapter 6.8', Dover (1988), ISBN 0-486-65691-8.



File: gsl-ref.info,  Node: Numerical Differentiation,  Next: Chebyshev Approximations,  Prev: Interpolation,  Up: Top

27 Numerical Differentiation
****************************

The functions described in this chapter compute numerical derivatives by
finite differencing.  An adaptive algorithm is used to find the best
choice of finite difference and to estimate the error in the derivative.
These functions are declared in the header file `gsl_deriv.h'.

* Menu:

* Numerical Differentiation functions::
* Numerical Differentiation Examples::
* Numerical Differentiation References::


File: gsl-ref.info,  Node: Numerical Differentiation functions,  Next: Numerical Differentiation Examples,  Up: Numerical Differentiation

27.1 Functions
==============

 -- Function: int gsl_deriv_central (const gsl_function * F, double X,
          double H, double * RESULT, double * ABSERR)
     This function computes the numerical derivative of the function F
     at the point X using an adaptive central difference algorithm with
     a step-size of H.   The derivative is returned in RESULT and an
     estimate of its absolute error is returned in ABSERR.

     The initial value of H is used to estimate an optimal step-size,
     based on the scaling of the truncation error and round-off error
     in the derivative calculation.  The derivative is computed using a
     5-point rule for equally spaced abscissae at x-h, x-h/2, x, x+h/2,
     x+h, with an error estimate taken from the difference between the
     5-point rule and the corresponding 3-point rule x-h, x, x+h.  Note
     that the value of the function at x does not contribute to the
     derivative calculation, so only 4-points are actually used.

 -- Function: int gsl_deriv_forward (const gsl_function * F, double X,
          double H, double * RESULT, double * ABSERR)
     This function computes the numerical derivative of the function F
     at the point X using an adaptive forward difference algorithm with
     a step-size of H. The function is evaluated only at points greater
     than X, and never at X itself.  The derivative is returned in
     RESULT and an estimate of its absolute error is returned in
     ABSERR.  This function should be used if f(x) has a discontinuity
     at X, or is undefined for values less than X.

     The initial value of H is used to estimate an optimal step-size,
     based on the scaling of the truncation error and round-off error
     in the derivative calculation.  The derivative at x is computed
     using an "open" 4-point rule for equally spaced abscissae at x+h/4,
     x+h/2, x+3h/4, x+h, with an error estimate taken from the
     difference between the 4-point rule and the corresponding 2-point
     rule x+h/2, x+h.

 -- Function: int gsl_deriv_backward (const gsl_function * F, double X,
          double H, double * RESULT, double * ABSERR)
     This function computes the numerical derivative of the function F
     at the point X using an adaptive backward difference algorithm
     with a step-size of H. The function is evaluated only at points
     less than X, and never at X itself.  The derivative is returned in
     RESULT and an estimate of its absolute error is returned in
     ABSERR.  This function should be used if f(x) has a discontinuity
     at X, or is undefined for values greater than X.

     This function is equivalent to calling `gsl_deriv_forward' with a
     negative step-size.


File: gsl-ref.info,  Node: Numerical Differentiation Examples,  Next: Numerical Differentiation References,  Prev: Numerical Differentiation functions,  Up: Numerical Differentiation

27.2 Examples
=============

The following code estimates the derivative of the function f(x) =
x^{3/2} at x=2 and at x=0.  The function f(x) is undefined for x<0 so
the derivative at x=0 is computed using `gsl_deriv_forward'.

     #include <stdio.h>
     #include <gsl/gsl_math.h>
     #include <gsl/gsl_deriv.h>

     double f (double x, void * params)
     {
       return pow (x, 1.5);
     }

     int
     main (void)
     {
       gsl_function F;
       double result, abserr;

       F.function = &f;
       F.params = 0;

       printf ("f(x) = x^(3/2)\n");

       gsl_deriv_central (&F, 2.0, 1e-8, &result, &abserr);
       printf ("x = 2.0\n");
       printf ("f'(x) = %.10f +/- %.10f\n", result, abserr);
       printf ("exact = %.10f\n\n", 1.5 * sqrt(2.0));

       gsl_deriv_forward (&F, 0.0, 1e-8, &result, &abserr);
       printf ("x = 0.0\n");
       printf ("f'(x) = %.10f +/- %.10f\n", result, abserr);
       printf ("exact = %.10f\n", 0.0);

       return 0;
     }

Here is the output of the program,

     $ ./a.out
     f(x) = x^(3/2)
     x = 2.0
     f'(x) = 2.1213203120 +/- 0.0000004064
     exact = 2.1213203436

     x = 0.0
     f'(x) = 0.0000000160 +/- 0.0000000339
     exact = 0.0000000000


File: gsl-ref.info,  Node: Numerical Differentiation References,  Prev: Numerical Differentiation Examples,  Up: Numerical Differentiation

27.3 References and Further Reading
===================================

The algorithms used by these functions are described in the following
sources:

     Abramowitz and Stegun, `Handbook of Mathematical Functions',
     Section 25.3.4, and Table 25.5 (Coefficients for Differentiation).

     S.D. Conte and Carl de Boor, `Elementary Numerical Analysis: An
     Algorithmic Approach', McGraw-Hill, 1972.


File: gsl-ref.info,  Node: Chebyshev Approximations,  Next: Series Acceleration,  Prev: Numerical Differentiation,  Up: Top

28 Chebyshev Approximations
***************************

This chapter describes routines for computing Chebyshev approximations
to univariate functions.  A Chebyshev approximation is a truncation of
the series f(x) = \sum c_n T_n(x), where the Chebyshev polynomials
T_n(x) = \cos(n \arccos x) provide an orthogonal basis of polynomials
on the interval [-1,1] with the weight function 1 / \sqrt{1-x^2}.  The
first few Chebyshev polynomials are, T_0(x) = 1, T_1(x) = x, T_2(x) = 2
x^2 - 1.  For further information see Abramowitz & Stegun, Chapter 22.

   The functions described in this chapter are declared in the header
file `gsl_chebyshev.h'.

* Menu:

* Chebyshev Definitions::
* Creation and Calculation of Chebyshev Series::
* Chebyshev Series Evaluation::
* Derivatives and Integrals::
* Chebyshev Approximation examples::
* Chebyshev Approximation References and Further Reading::


File: gsl-ref.info,  Node: Chebyshev Definitions,  Next: Creation and Calculation of Chebyshev Series,  Up: Chebyshev Approximations

28.1 Definitions
================

A Chebyshev series  is stored using the following structure,

     typedef struct
     {
       double * c;   /* coefficients  c[0] .. c[order] */
       int order;    /* order of expansion             */
       double a;     /* lower interval point           */
       double b;     /* upper interval point           */
       ...
     } gsl_cheb_series

The approximation is made over the range [a,b] using ORDER+1 terms,
including the coefficient c[0].  The series is computed using the
following convention,

     f(x) = (c_0 / 2) + \sum_{n=1} c_n T_n(x)

which is needed when accessing the coefficients directly.


File: gsl-ref.info,  Node: Creation and Calculation of Chebyshev Series,  Next: Chebyshev Series Evaluation,  Prev: Chebyshev Definitions,  Up: Chebyshev Approximations

28.2 Creation and Calculation of Chebyshev Series
=================================================

 -- Function: gsl_cheb_series * gsl_cheb_alloc (const size_t N)
     This function allocates space for a Chebyshev series of order N
     and returns a pointer to a new `gsl_cheb_series' struct.

 -- Function: void gsl_cheb_free (gsl_cheb_series * CS)
     This function frees a previously allocated Chebyshev series CS.

 -- Function: int gsl_cheb_init (gsl_cheb_series * CS, const
          gsl_function * F, const double A, const double B)
     This function computes the Chebyshev approximation CS for the
     function F over the range (a,b) to the previously specified order.
     The computation of the Chebyshev approximation is an O(n^2)
     process, and requires n function evaluations.


File: gsl-ref.info,  Node: Chebyshev Series Evaluation,  Next: Derivatives and Integrals,  Prev: Creation and Calculation of Chebyshev Series,  Up: Chebyshev Approximations

28.3 Chebyshev Series Evaluation
================================

 -- Function: double gsl_cheb_eval (const gsl_cheb_series * CS, double
          X)
     This function evaluates the Chebyshev series CS at a given point X.

 -- Function: int gsl_cheb_eval_err (const gsl_cheb_series * CS, const
          double X, double * RESULT, double * ABSERR)
     This function computes the Chebyshev series CS at a given point X,
     estimating both the series RESULT and its absolute error ABSERR.
     The error estimate is made from the first neglected term in the
     series.

 -- Function: double gsl_cheb_eval_n (const gsl_cheb_series * CS,
          size_t ORDER, double X)
     This function evaluates the Chebyshev series CS at a given point
     N, to (at most) the given order ORDER.

 -- Function: int gsl_cheb_eval_n_err (const gsl_cheb_series * CS,
          const size_t ORDER, const double X, double * RESULT, double *
          ABSERR)
     This function evaluates a Chebyshev series CS at a given point X,
     estimating both the series RESULT and its absolute error ABSERR,
     to (at most) the given order ORDER.  The error estimate is made
     from the first neglected term in the series.


File: gsl-ref.info,  Node: Derivatives and Integrals,  Next: Chebyshev Approximation examples,  Prev: Chebyshev Series Evaluation,  Up: Chebyshev Approximations

28.4 Derivatives and Integrals
==============================

The following functions allow a Chebyshev series to be differentiated or
integrated, producing a new Chebyshev series.  Note that the error
estimate produced by evaluating the derivative series will be
underestimated due to the contribution of higher order terms being
neglected.

 -- Function: int gsl_cheb_calc_deriv (gsl_cheb_series * DERIV, const
          gsl_cheb_series * CS)
     This function computes the derivative of the series CS, storing
     the derivative coefficients in the previously allocated DERIV.
     The two series CS and DERIV must have been allocated with the same
     order.

 -- Function: int gsl_cheb_calc_integ (gsl_cheb_series * INTEG, const
          gsl_cheb_series * CS)
     This function computes the integral of the series CS, storing the
     integral coefficients in the previously allocated INTEG.  The two
     series CS and INTEG must have been allocated with the same order.
     The lower limit of the integration is taken to be the left hand
     end of the range A.


File: gsl-ref.info,  Node: Chebyshev Approximation examples,  Next: Chebyshev Approximation References and Further Reading,  Prev: Derivatives and Integrals,  Up: Chebyshev Approximations

28.5 Examples
=============

The following example program computes Chebyshev approximations to a
step function.  This is an extremely difficult approximation to make,
due to the discontinuity, and was chosen as an example where
approximation error is visible.  For smooth functions the Chebyshev
approximation converges extremely rapidly and errors would not be
visible.

     #include <stdio.h>
     #include <gsl/gsl_math.h>
     #include <gsl/gsl_chebyshev.h>

     double
     f (double x, void *p)
     {
       if (x < 0.5)
         return 0.25;
       else
         return 0.75;
     }

     int
     main (void)
     {
       int i, n = 10000;

       gsl_cheb_series *cs = gsl_cheb_alloc (40);

       gsl_function F;

       F.function = f;
       F.params = 0;

       gsl_cheb_init (cs, &F, 0.0, 1.0);

       for (i = 0; i < n; i++)
         {
           double x = i / (double)n;
           double r10 = gsl_cheb_eval_n (cs, 10, x);
           double r40 = gsl_cheb_eval (cs, x);
           printf ("%g %g %g %g\n",
                   x, GSL_FN_EVAL (&F, x), r10, r40);
         }

       gsl_cheb_free (cs);

       return 0;
     }

The output from the program gives the original function, 10-th order
approximation and 40-th order approximation, all sampled at intervals of
0.001 in x.


File: gsl-ref.info,  Node: Chebyshev Approximation References and Further Reading,  Prev: Chebyshev Approximation examples,  Up: Chebyshev Approximations

28.6 References and Further Reading
===================================

The following paper describes the use of Chebyshev series,

     R. Broucke, "Ten Subroutines for the Manipulation of Chebyshev
     Series [C1] (Algorithm 446)". `Communications of the ACM' 16(4),
     254-256 (1973)


File: gsl-ref.info,  Node: Series Acceleration,  Next: Wavelet Transforms,  Prev: Chebyshev Approximations,  Up: Top

29 Series Acceleration
**********************

The functions described in this chapter accelerate the convergence of a
series using the Levin u-transform.  This method takes a small number of
terms from the start of a series and uses a systematic approximation to
compute an extrapolated value and an estimate of its error.  The
u-transform works for both convergent and divergent series, including
asymptotic series.

   These functions are declared in the header file `gsl_sum.h'.

* Menu:

* Acceleration functions::
* Acceleration functions without error estimation::
* Example of accelerating a series::
* Series Acceleration References::


File: gsl-ref.info,  Node: Acceleration functions,  Next: Acceleration functions without error estimation,  Up: Series Acceleration

29.1 Acceleration functions
===========================

The following functions compute the full Levin u-transform of a series
with its error estimate.  The error estimate is computed by propagating
rounding errors from each term through to the final extrapolation.

   These functions are intended for summing analytic series where each
term is known to high accuracy, and the rounding errors are assumed to
originate from finite precision. They are taken to be relative errors of
order `GSL_DBL_EPSILON' for each term.

   The calculation of the error in the extrapolated value is an O(N^2)
process, which is expensive in time and memory.  A faster but less
reliable method which estimates the error from the convergence of the
extrapolated value is described in the next section.  For the method
described here a full table of intermediate values and derivatives
through to O(N) must be computed and stored, but this does give a
reliable error estimate.

 -- Function: gsl_sum_levin_u_workspace * gsl_sum_levin_u_alloc (size_t
          N)
     This function allocates a workspace for a Levin u-transform of N
     terms.  The size of the workspace is O(2n^2 + 3n).

 -- Function: void gsl_sum_levin_u_free (gsl_sum_levin_u_workspace * W)
     This function frees the memory associated with the workspace W.

 -- Function: int gsl_sum_levin_u_accel (const double * ARRAY, size_t
          ARRAY_SIZE, gsl_sum_levin_u_workspace * W, double *
          SUM_ACCEL, double * ABSERR)
     This function takes the terms of a series in ARRAY of size
     ARRAY_SIZE and computes the extrapolated limit of the series using
     a Levin u-transform.  Additional working space must be provided in
     W.  The extrapolated sum is stored in SUM_ACCEL, with an estimate
     of the absolute error stored in ABSERR.  The actual term-by-term
     sum is returned in `w->sum_plain'. The algorithm calculates the
     truncation error (the difference between two successive
     extrapolations) and round-off error (propagated from the individual
     terms) to choose an optimal number of terms for the extrapolation.
     All the terms of the series passed in through ARRAY should be
     non-zero.


File: gsl-ref.info,  Node: Acceleration functions without error estimation,  Next: Example of accelerating a series,  Prev: Acceleration functions,  Up: Series Acceleration

29.2 Acceleration functions without error estimation
====================================================

The functions described in this section compute the Levin u-transform of
series and attempt to estimate the error from the "truncation error" in
the extrapolation, the difference between the final two approximations.
Using this method avoids the need to compute an intermediate table of
derivatives because the error is estimated from the behavior of the
extrapolated value itself. Consequently this algorithm is an O(N)
process and only requires O(N) terms of storage.  If the series
converges sufficiently fast then this procedure can be acceptable.  It
is appropriate to use this method when there is a need to compute many
extrapolations of series with similar convergence properties at
high-speed.  For example, when numerically integrating a function
defined by a parameterized series where the parameter varies only
slightly. A reliable error estimate should be computed first using the
full algorithm described above in order to verify the consistency of the
results.

 -- Function: gsl_sum_levin_utrunc_workspace *
gsl_sum_levin_utrunc_alloc (size_t N)
     This function allocates a workspace for a Levin u-transform of N
     terms, without error estimation.  The size of the workspace is
     O(3n).

 -- Function: void gsl_sum_levin_utrunc_free
          (gsl_sum_levin_utrunc_workspace * W)
     This function frees the memory associated with the workspace W.

 -- Function: int gsl_sum_levin_utrunc_accel (const double * ARRAY,
          size_t ARRAY_SIZE, gsl_sum_levin_utrunc_workspace * W, double
          * SUM_ACCEL, double * ABSERR_TRUNC)
     This function takes the terms of a series in ARRAY of size
     ARRAY_SIZE and computes the extrapolated limit of the series using
     a Levin u-transform.  Additional working space must be provided in
     W.  The extrapolated sum is stored in SUM_ACCEL.  The actual
     term-by-term sum is returned in `w->sum_plain'. The algorithm
     terminates when the difference between two successive
     extrapolations reaches a minimum or is sufficiently small. The
     difference between these two values is used as estimate of the
     error and is stored in ABSERR_TRUNC.  To improve the reliability
     of the algorithm the extrapolated values are replaced by moving
     averages when calculating the truncation error, smoothing out any
     fluctuations.


File: gsl-ref.info,  Node: Example of accelerating a series,  Next: Series Acceleration References,  Prev: Acceleration functions without error estimation,  Up: Series Acceleration

29.3 Examples
=============

The following code calculates an estimate of \zeta(2) = \pi^2 / 6 using
the series,

     \zeta(2) = 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...

After N terms the error in the sum is O(1/N), making direct summation
of the series converge slowly.

     #include <stdio.h>
     #include <gsl/gsl_math.h>
     #include <gsl/gsl_sum.h>

     #define N 20

     int
     main (void)
     {
       double t[N];
       double sum_accel, err;
       double sum = 0;
       int n;

       gsl_sum_levin_u_workspace * w
         = gsl_sum_levin_u_alloc (N);

       const double zeta_2 = M_PI * M_PI / 6.0;

       /* terms for zeta(2) = \sum_{n=1}^{\infty} 1/n^2 */

       for (n = 0; n < N; n++)
         {
           double np1 = n + 1.0;
           t[n] = 1.0 / (np1 * np1);
           sum += t[n];
         }

       gsl_sum_levin_u_accel (t, N, w, &sum_accel, &err);

       printf ("term-by-term sum = % .16f using %d terms\n",
               sum, N);

       printf ("term-by-term sum = % .16f using %d terms\n",
               w->sum_plain, w->terms_used);

       printf ("exact value      = % .16f\n", zeta_2);
       printf ("accelerated sum  = % .16f using %d terms\n",
               sum_accel, w->terms_used);

       printf ("estimated error  = % .16f\n", err);
       printf ("actual error     = % .16f\n",
               sum_accel - zeta_2);

       gsl_sum_levin_u_free (w);
       return 0;
     }

The output below shows that the Levin u-transform is able to obtain an
estimate of the sum to 1 part in 10^10 using the first eleven terms of
the series.  The error estimate returned by the function is also
accurate, giving the correct number of significant digits.

     $ ./a.out
     term-by-term sum =  1.5961632439130233 using 20 terms
     term-by-term sum =  1.5759958390005426 using 13 terms
     exact value      =  1.6449340668482264
     accelerated sum  =  1.6449340668166479 using 13 terms
     estimated error  =  0.0000000000508580
     actual error     = -0.0000000000315785

Note that a direct summation of this series would require 10^10 terms
to achieve the same precision as the accelerated sum does in 13 terms.


File: gsl-ref.info,  Node: Series Acceleration References,  Prev: Example of accelerating a series,  Up: Series Acceleration

29.4 References and Further Reading
===================================

The algorithms used by these functions are described in the following
papers,

     T. Fessler, W.F. Ford, D.A. Smith, HURRY: An acceleration
     algorithm for scalar sequences and series `ACM Transactions on
     Mathematical Software', 9(3):346-354, 1983.  and Algorithm 602
     9(3):355-357, 1983.

The theory of the u-transform was presented by Levin,

     D. Levin, Development of Non-Linear Transformations for Improving
     Convergence of Sequences, `Intern. J. Computer Math.' B3:371-388,
     1973.

A review paper on the Levin Transform is available online,
     Herbert H. H. Homeier, Scalar Levin-Type Sequence Transformations,
     `http://arxiv.org/abs/math/0005209'.


File: gsl-ref.info,  Node: Wavelet Transforms,  Next: Discrete Hankel Transforms,  Prev: Series Acceleration,  Up: Top

30 Wavelet Transforms
*********************

This chapter describes functions for performing Discrete Wavelet
Transforms (DWTs).  The library includes wavelets for real data in both
one and two dimensions.  The wavelet functions are declared in the
header files `gsl_wavelet.h' and `gsl_wavelet2d.h'.

* Menu:

* DWT Definitions::
* DWT Initialization::
* DWT Transform Functions::
* DWT Examples::
* DWT References::


File: gsl-ref.info,  Node: DWT Definitions,  Next: DWT Initialization,  Up: Wavelet Transforms

30.1 Definitions
================

The continuous wavelet transform and its inverse are defined by the
relations,

     w(s,\tau) = \int f(t) * \psi^*_{s,\tau}(t) dt

and,

     f(t) = \int \int_{-\infty}^\infty w(s, \tau) * \psi_{s,\tau}(t) d\tau ds

where the basis functions \psi_{s,\tau} are obtained by scaling and
translation from a single function, referred to as the "mother wavelet".

   The discrete version of the wavelet transform acts on equally-spaced
samples, with fixed scaling and translation steps (s, \tau).  The
frequency and time axes are sampled "dyadically" on scales of 2^j
through a level parameter j.  The resulting family of functions
{\psi_{j,n}} constitutes an orthonormal basis for square-integrable
signals.

   The discrete wavelet transform is an O(N) algorithm, and is also
referred to as the "fast wavelet transform".


File: gsl-ref.info,  Node: DWT Initialization,  Next: DWT Transform Functions,  Prev: DWT Definitions,  Up: Wavelet Transforms

30.2 Initialization
===================

The `gsl_wavelet' structure contains the filter coefficients defining
the wavelet and any associated offset parameters.

 -- Function: gsl_wavelet * gsl_wavelet_alloc (const gsl_wavelet_type *
          T, size_t K)
     This function allocates and initializes a wavelet object of type
     T.  The parameter K selects the specific member of the wavelet
     family.  A null pointer is returned if insufficient memory is
     available or if a unsupported member is selected.

   The following wavelet types are implemented:

 -- Wavelet: gsl_wavelet_daubechies
 -- Wavelet: gsl_wavelet_daubechies_centered
     The is the Daubechies wavelet family of maximum phase with k/2
     vanishing moments.  The implemented wavelets are k=4, 6, ..., 20,
     with K even.

 -- Wavelet: gsl_wavelet_haar
 -- Wavelet: gsl_wavelet_haar_centered
     This is the Haar wavelet.  The only valid choice of k for the Haar
     wavelet is k=2.

 -- Wavelet: gsl_wavelet_bspline
 -- Wavelet: gsl_wavelet_bspline_centered
     This is the biorthogonal B-spline wavelet family of order (i,j).
     The implemented values of k = 100*i + j are 103, 105, 202, 204,
     206, 208, 301, 303, 305 307, 309.

The centered forms of the wavelets align the coefficients of the various
sub-bands on edges.  Thus the resulting visualization of the
coefficients of the wavelet transform in the phase plane is easier to
understand.

 -- Function: const char * gsl_wavelet_name (const gsl_wavelet * W)
     This function returns a pointer to the name of the wavelet family
     for W.

 -- Function: void gsl_wavelet_free (gsl_wavelet * W)
     This function frees the wavelet object W.

   The `gsl_wavelet_workspace' structure contains scratch space of the
same size as the input data and is used to hold intermediate results
during the transform.

 -- Function: gsl_wavelet_workspace * gsl_wavelet_workspace_alloc
          (size_t N)
     This function allocates a workspace for the discrete wavelet
     transform.  To perform a one-dimensional transform on N elements,
     a workspace of size N must be provided.  For two-dimensional
     transforms of N-by-N matrices it is sufficient to allocate a
     workspace of size N, since the transform operates on individual
     rows and columns.

 -- Function: void gsl_wavelet_workspace_free (gsl_wavelet_workspace *
          WORK)
     This function frees the allocated workspace WORK.


File: gsl-ref.info,  Node: DWT Transform Functions,  Next: DWT Examples,  Prev: DWT Initialization,  Up: Wavelet Transforms

30.3 Transform Functions
========================

This sections describes the actual functions performing the discrete
wavelet transform.  Note that the transforms use periodic boundary
conditions.  If the signal is not periodic in the sample length then
spurious coefficients will appear at the beginning and end of each level
of the transform.

* Menu:

* DWT in one dimension::
* DWT in two dimension::


File: gsl-ref.info,  Node: DWT in one dimension,  Next: DWT in two dimension,  Up: DWT Transform Functions

30.3.1 Wavelet transforms in one dimension
------------------------------------------

 -- Function: int gsl_wavelet_transform (const gsl_wavelet * W, double
          * DATA, size_t STRIDE, size_t N, gsl_wavelet_direction DIR,
          gsl_wavelet_workspace * WORK)
 -- Function: int gsl_wavelet_transform_forward (const gsl_wavelet * W,
          double * DATA, size_t STRIDE, size_t N, gsl_wavelet_workspace
          * WORK)
 -- Function: int gsl_wavelet_transform_inverse (const gsl_wavelet * W,
          double * DATA, size_t STRIDE, size_t N, gsl_wavelet_workspace
          * WORK)
     These functions compute in-place forward and inverse discrete
     wavelet transforms of length N with stride STRIDE on the array
     DATA. The length of the transform N is restricted to powers of
     two.  For the `transform' version of the function the argument DIR
     can be either `forward' (+1) or `backward' (-1).  A workspace WORK
     of length N must be provided.

     For the forward transform, the elements of the original array are
     replaced by the discrete wavelet transform f_i -> w_{j,k} in a
     packed triangular storage layout, where J is the index of the level
     j = 0 ... J-1 and K is the index of the coefficient within each
     level, k = 0 ... (2^j)-1.  The total number of levels is J =
     \log_2(n).  The output data has the following form,

          (s_{-1,0}, d_{0,0}, d_{1,0}, d_{1,1}, d_{2,0}, ...,
            d_{j,k}, ..., d_{J-1,2^{J-1}-1})

     where the first element is the smoothing coefficient s_{-1,0},
     followed by the detail coefficients d_{j,k} for each level j.  The
     backward transform inverts these coefficients to obtain the
     original data.

     These functions return a status of `GSL_SUCCESS' upon successful
     completion.  `GSL_EINVAL' is returned if N is not an integer power
     of 2 or if insufficient workspace is provided.


File: gsl-ref.info,  Node: DWT in two dimension,  Prev: DWT in one dimension,  Up: DWT Transform Functions

30.3.2 Wavelet transforms in two dimension
------------------------------------------

The library provides functions to perform two-dimensional discrete
wavelet transforms on square matrices.  The matrix dimensions must be an
integer power of two.  There are two possible orderings of the rows and
columns in the two-dimensional wavelet transform, referred to as the
"standard" and "non-standard" forms.

   The "standard" transform performs a complete discrete wavelet
transform on the rows of the matrix, followed by a separate complete
discrete wavelet transform on the columns of the resulting
row-transformed matrix.  This procedure uses the same ordering as a
two-dimensional fourier transform.

   The "non-standard" transform is performed in interleaved passes on
the rows and columns of the matrix for each level of the transform.  The
first level of the transform is applied to the matrix rows, and then to
the matrix columns.  This procedure is then repeated across the rows and
columns of the data for the subsequent levels of the transform, until
the full discrete wavelet transform is complete.  The non-standard form
of the discrete wavelet transform is typically used in image analysis.

   The functions described in this section are declared in the header
file `gsl_wavelet2d.h'.

 -- Function: int gsl_wavelet2d_transform (const gsl_wavelet * W,
          double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2,
          gsl_wavelet_direction DIR, gsl_wavelet_workspace * WORK)
 -- Function: int gsl_wavelet2d_transform_forward (const gsl_wavelet *
          W, double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2,
          gsl_wavelet_workspace * WORK)
 -- Function: int gsl_wavelet2d_transform_inverse (const gsl_wavelet *
          W, double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2,
          gsl_wavelet_workspace * WORK)
     These functions compute two-dimensional in-place forward and
     inverse discrete wavelet transforms in standard and non-standard
     forms on the array DATA stored in row-major form with dimensions
     SIZE1 and SIZE2 and physical row length TDA.  The dimensions must
     be equal (square matrix) and are restricted to powers of two.  For
     the `transform' version of the function the argument DIR can be
     either `forward' (+1) or `backward' (-1).  A workspace WORK of the
     appropriate size must be provided.  On exit, the appropriate
     elements of the array DATA are replaced by their two-dimensional
     wavelet transform.

     The functions return a status of `GSL_SUCCESS' upon successful
     completion.  `GSL_EINVAL' is returned if SIZE1 and SIZE2 are not
     equal and integer powers of 2, or if insufficient workspace is
     provided.

 -- Function: int gsl_wavelet2d_transform_matrix (const gsl_wavelet *
          W, gsl_matrix * M, gsl_wavelet_direction DIR,
          gsl_wavelet_workspace * WORK)
 -- Function: int gsl_wavelet2d_transform_matrix_forward (const
          gsl_wavelet * W, gsl_matrix * M, gsl_wavelet_workspace * WORK)
 -- Function: int gsl_wavelet2d_transform_matrix_inverse (const
          gsl_wavelet * W, gsl_matrix * M, gsl_wavelet_workspace * WORK)
     These functions compute the two-dimensional in-place wavelet
     transform on a matrix A.

 -- Function: int gsl_wavelet2d_nstransform (const gsl_wavelet * W,
          double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2,
          gsl_wavelet_direction DIR, gsl_wavelet_workspace * WORK)
 -- Function: int gsl_wavelet2d_nstransform_forward (const gsl_wavelet
          * W, double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2,
          gsl_wavelet_workspace * WORK)
 -- Function: int gsl_wavelet2d_nstransform_inverse (const gsl_wavelet
          * W, double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2,
          gsl_wavelet_workspace * WORK)
     These functions compute the two-dimensional wavelet transform in
     non-standard form.

 -- Function: int gsl_wavelet2d_nstransform_matrix (const gsl_wavelet *
          W, gsl_matrix * M, gsl_wavelet_direction DIR,
          gsl_wavelet_workspace * WORK)
 -- Function: int gsl_wavelet2d_nstransform_matrix_forward (const
          gsl_wavelet * W, gsl_matrix * M, gsl_wavelet_workspace * WORK)
 -- Function: int gsl_wavelet2d_nstransform_matrix_inverse (const
          gsl_wavelet * W, gsl_matrix * M, gsl_wavelet_workspace * WORK)
     These functions compute the non-standard form of the
     two-dimensional in-place wavelet transform on a matrix A.


File: gsl-ref.info,  Node: DWT Examples,  Next: DWT References,  Prev: DWT Transform Functions,  Up: Wavelet Transforms

30.4 Examples
=============

The following program demonstrates the use of the one-dimensional
wavelet transform functions.  It computes an approximation to an input
signal (of length 256) using the 20 largest components of the wavelet
transform, while setting the others to zero.

     #include <stdio.h>
     #include <math.h>
     #include <gsl/gsl_sort.h>
     #include <gsl/gsl_wavelet.h>

     int
     main (int argc, char **argv)
     {
       int i, n = 256, nc = 20;
       double *data = malloc (n * sizeof (double));
       double *abscoeff = malloc (n * sizeof (double));
       size_t *p = malloc (n * sizeof (size_t));

       FILE * f;
       gsl_wavelet *w;
       gsl_wavelet_workspace *work;

       w = gsl_wavelet_alloc (gsl_wavelet_daubechies, 4);
       work = gsl_wavelet_workspace_alloc (n);

       f = fopen (argv[1], "r");
       for (i = 0; i < n; i++)
         {
           fscanf (f, "%lg", &data[i]);
         }
       fclose (f);

       gsl_wavelet_transform_forward (w, data, 1, n, work);

       for (i = 0; i < n; i++)
         {
           abscoeff[i] = fabs (data[i]);
         }

       gsl_sort_index (p, abscoeff, 1, n);

       for (i = 0; (i + nc) < n; i++)
         data[p[i]] = 0;

       gsl_wavelet_transform_inverse (w, data, 1, n, work);

       for (i = 0; i < n; i++)
         {
           printf ("%g\n", data[i]);
         }

       gsl_wavelet_free (w);
       gsl_wavelet_workspace_free (work);

       free (data);
       free (abscoeff);
       free (p);
       return 0;
     }

The output can be used with the GNU plotutils `graph' program,

     $ ./a.out ecg.dat > dwt.dat
     $ graph -T ps -x 0 256 32 -h 0.3 -a dwt.dat > dwt.ps


File: gsl-ref.info,  Node: DWT References,  Prev: DWT Examples,  Up: Wavelet Transforms

30.5 References and Further Reading
===================================

The mathematical background to wavelet transforms is covered in the
original lectures by Daubechies,

     Ingrid Daubechies.  Ten Lectures on Wavelets.  `CBMS-NSF Regional
     Conference Series in Applied Mathematics' (1992), SIAM, ISBN
     0898712742.

An easy to read introduction to the subject with an emphasis on the
application of the wavelet transform in various branches of science is,

     Paul S. Addison. `The Illustrated Wavelet Transform Handbook'.
     Institute of Physics Publishing (2002), ISBN 0750306920.

For extensive coverage of signal analysis by wavelets, wavelet packets
and local cosine bases see,

     S. G. Mallat.  `A wavelet tour of signal processing' (Second
     edition). Academic Press (1999), ISBN 012466606X.

The concept of multiresolution analysis underlying the wavelet transform
is described in,

     S. G. Mallat.  Multiresolution Approximations and Wavelet
     Orthonormal Bases of L^2(R).  `Transactions of the American
     Mathematical Society', 315(1), 1989, 69-87.

     S. G. Mallat.  A Theory for Multiresolution Signal
     Decomposition--The Wavelet Representation.  `IEEE Transactions on
     Pattern Analysis and Machine Intelligence', 11, 1989, 674-693.

The coefficients for the individual wavelet families implemented by the
library can be found in the following papers,

     I. Daubechies.  Orthonormal Bases of Compactly Supported Wavelets.
     `Communications on Pure and Applied Mathematics', 41 (1988)
     909-996.

     A. Cohen, I. Daubechies, and J.-C. Feauveau.  Biorthogonal Bases
     of Compactly Supported Wavelets.  `Communications on Pure and
     Applied Mathematics', 45 (1992) 485-560.

The PhysioNet archive of physiological datasets can be found online at
`http://www.physionet.org/' and is described in the following paper,

     Goldberger et al.  PhysioBank, PhysioToolkit, and PhysioNet:
     Components of a New Research Resource for Complex Physiologic
     Signals.  `Circulation' 101(23):e215-e220 2000.


File: gsl-ref.info,  Node: Discrete Hankel Transforms,  Next: One dimensional Root-Finding,  Prev: Wavelet Transforms,  Up: Top

31 Discrete Hankel Transforms
*****************************

This chapter describes functions for performing Discrete Hankel
Transforms (DHTs).  The functions are declared in the header file
`gsl_dht.h'.

* Menu:

* Discrete Hankel Transform Definition::
* Discrete Hankel Transform Functions::
* Discrete Hankel Transform References::


File: gsl-ref.info,  Node: Discrete Hankel Transform Definition,  Next: Discrete Hankel Transform Functions,  Up: Discrete Hankel Transforms

31.1 Definitions
================

The discrete Hankel transform acts on a vector of sampled data, where
the samples are assumed to have been taken at points related to the
zeroes of a Bessel function of fixed order; compare this to the case of
the discrete Fourier transform, where samples are taken at points
related to the zeroes of the sine or cosine function.

   Specifically, let f(t) be a function on the unit interval.  Then the
finite \nu-Hankel transform of f(t) is defined to be the set of numbers
g_m given by,
     g_m = \int_0^1 t dt J_\nu(j_(\nu,m)t) f(t),

so that,
     f(t) = \sum_{m=1}^\infty (2 J_\nu(j_(\nu,m)x) / J_(\nu+1)(j_(\nu,m))^2) g_m.

Suppose that f is band-limited in the sense that g_m=0 for m > M. Then
we have the following fundamental sampling theorem.
     g_m = (2 / j_(\nu,M)^2)
           \sum_{k=1}^{M-1} f(j_(\nu,k)/j_(\nu,M))
               (J_\nu(j_(\nu,m) j_(\nu,k) / j_(\nu,M)) / J_(\nu+1)(j_(\nu,k))^2).

It is this discrete expression which defines the discrete Hankel
transform. The kernel in the summation above defines the matrix of the
\nu-Hankel transform of size M-1.  The coefficients of this matrix,
being dependent on \nu and M, must be precomputed and stored; the
`gsl_dht' object encapsulates this data.  The allocation function
`gsl_dht_alloc' returns a `gsl_dht' object which must be properly
initialized with `gsl_dht_init' before it can be used to perform
transforms on data sample vectors, for fixed \nu and M, using the
`gsl_dht_apply' function. The implementation allows a scaling of the
fundamental interval, for convenience, so that one can assume the
function is defined on the interval [0,X], rather than the unit
interval.

   Notice that by assumption f(t) vanishes at the endpoints of the
interval, consistent with the inversion formula and the sampling
formula given above. Therefore, this transform corresponds to an
orthogonal expansion in eigenfunctions of the Dirichlet problem for the
Bessel differential equation.


File: gsl-ref.info,  Node: Discrete Hankel Transform Functions,  Next: Discrete Hankel Transform References,  Prev: Discrete Hankel Transform Definition,  Up: Discrete Hankel Transforms

31.2 Functions
==============

 -- Function: gsl_dht * gsl_dht_alloc (size_t SIZE)
     This function allocates a Discrete Hankel transform object of size
     SIZE.

 -- Function: int gsl_dht_init (gsl_dht * T, double NU, double XMAX)
     This function initializes the transform T for the given values of
     NU and X.

 -- Function: gsl_dht * gsl_dht_new (size_t SIZE, double NU, double
          XMAX)
     This function allocates a Discrete Hankel transform object of size
     SIZE and initializes it for the given values of NU and X.

 -- Function: void gsl_dht_free (gsl_dht * T)
     This function frees the transform T.

 -- Function: int gsl_dht_apply (const gsl_dht * T, double * F_IN,
          double * F_OUT)
     This function applies the transform T to the array F_IN whose size
     is equal to the size of the transform.  The result is stored in
     the array F_OUT which must be of the same length.

 -- Function: double gsl_dht_x_sample (const gsl_dht * T, int N)
     This function returns the value of the N-th sample point in the
     unit interval, (j_{\nu,n+1}/j_{\nu,M}) X. These are the points
     where the function f(t) is assumed to be sampled.

 -- Function: double gsl_dht_k_sample (const gsl_dht * T, int N)
     This function returns the value of the N-th sample point in
     "k-space", j_{\nu,n+1}/X.


File: gsl-ref.info,  Node: Discrete Hankel Transform References,  Prev: Discrete Hankel Transform Functions,  Up: Discrete Hankel Transforms

31.3 References and Further Reading
===================================

The algorithms used by these functions are described in the following
papers,

     H. Fisk Johnson, Comp. Phys. Comm. 43, 181 (1987).

     D. Lemoine, J. Chem. Phys. 101, 3936 (1994).


File: gsl-ref.info,  Node: One dimensional Root-Finding,  Next: One dimensional Minimization,  Prev: Discrete Hankel Transforms,  Up: Top

32 One dimensional Root-Finding
*******************************

This chapter describes routines for finding roots of arbitrary
one-dimensional functions.  The library provides low level components
for a variety of iterative solvers and convergence tests.  These can be
combined by the user to achieve the desired solution, with full access
to the intermediate steps of the iteration.  Each class of methods uses
the same framework, so that you can switch between solvers at runtime
without needing to recompile your program.  Each instance of a solver
keeps track of its own state, allowing the solvers to be used in
multi-threaded programs.

   The header file `gsl_roots.h' contains prototypes for the root
finding functions and related declarations.

* Menu:

* Root Finding Overview::
* Root Finding Caveats::
* Initializing the Solver::
* Providing the function to solve::
* Search Bounds and Guesses::
* Root Finding Iteration::
* Search Stopping Parameters::
* Root Bracketing Algorithms::
* Root Finding Algorithms using Derivatives::
* Root Finding Examples::
* Root Finding References and Further Reading::


File: gsl-ref.info,  Node: Root Finding Overview,  Next: Root Finding Caveats,  Up: One dimensional Root-Finding

32.1 Overview
=============

One-dimensional root finding algorithms can be divided into two classes,
"root bracketing" and "root polishing".  Algorithms which proceed by
bracketing a root are guaranteed to converge.  Bracketing algorithms
begin with a bounded region known to contain a root.  The size of this
bounded region is reduced, iteratively, until it encloses the root to a
desired tolerance.  This provides a rigorous error estimate for the
location of the root.

   The technique of "root polishing" attempts to improve an initial
guess to the root.  These algorithms converge only if started "close
enough" to a root, and sacrifice a rigorous error bound for speed.  By
approximating the behavior of a function in the vicinity of a root they
attempt to find a higher order improvement of an initial guess.  When
the behavior of the function is compatible with the algorithm and a good
initial guess is available a polishing algorithm can provide rapid
convergence.

   In GSL both types of algorithm are available in similar frameworks.
The user provides a high-level driver for the algorithms, and the
library provides the individual functions necessary for each of the
steps.  There are three main phases of the iteration.  The steps are,

   * initialize solver state, S, for algorithm T

   * update S using the iteration T

   * test S for convergence, and repeat iteration if necessary

The state for bracketing solvers is held in a `gsl_root_fsolver'
struct.  The updating procedure uses only function evaluations (not
derivatives).  The state for root polishing solvers is held in a
`gsl_root_fdfsolver' struct.  The updates require both the function and
its derivative (hence the name `fdf') to be supplied by the user.


File: gsl-ref.info,  Node: Root Finding Caveats,  Next: Initializing the Solver,  Prev: Root Finding Overview,  Up: One dimensional Root-Finding

32.2 Caveats
============

Note that root finding functions can only search for one root at a time.
When there are several roots in the search area, the first root to be
found will be returned; however it is difficult to predict which of the
roots this will be. _In most cases, no error will be reported if you
try to find a root in an area where there is more than one._

   Care must be taken when a function may have a multiple root (such as
f(x) = (x-x_0)^2 or f(x) = (x-x_0)^3).  It is not possible to use
root-bracketing algorithms on even-multiplicity roots.  For these
algorithms the initial interval must contain a zero-crossing, where the
function is negative at one end of the interval and positive at the
other end.  Roots with even-multiplicity do not cross zero, but only
touch it instantaneously.  Algorithms based on root bracketing will
still work for odd-multiplicity roots (e.g. cubic, quintic, ...).  Root
polishing algorithms generally work with higher multiplicity roots, but
at a reduced rate of convergence.  In these cases the "Steffenson
algorithm" can be used to accelerate the convergence of multiple roots.

   While it is not absolutely required that f have a root within the
search region, numerical root finding functions should not be used
haphazardly to check for the _existence_ of roots.  There are better
ways to do this.  Because it is easy to create situations where
numerical root finders can fail, it is a bad idea to throw a root
finder at a function you do not know much about.  In general it is best
to examine the function visually by plotting before searching for a
root.


File: gsl-ref.info,  Node: Initializing the Solver,  Next: Providing the function to solve,  Prev: Root Finding Caveats,  Up: One dimensional Root-Finding

32.3 Initializing the Solver
============================

 -- Function: gsl_root_fsolver * gsl_root_fsolver_alloc (const
          gsl_root_fsolver_type * T)
     This function returns a pointer to a newly allocated instance of a
     solver of type T.  For example, the following code creates an
     instance of a bisection solver,

          const gsl_root_fsolver_type * T
            = gsl_root_fsolver_bisection;
          gsl_root_fsolver * s
            = gsl_root_fsolver_alloc (T);

     If there is insufficient memory to create the solver then the
     function returns a null pointer and the error handler is invoked
     with an error code of `GSL_ENOMEM'.

 -- Function: gsl_root_fdfsolver * gsl_root_fdfsolver_alloc (const
          gsl_root_fdfsolver_type * T)
     This function returns a pointer to a newly allocated instance of a
     derivative-based solver of type T.  For example, the following
     code creates an instance of a Newton-Raphson solver,

          const gsl_root_fdfsolver_type * T
            = gsl_root_fdfsolver_newton;
          gsl_root_fdfsolver * s
            = gsl_root_fdfsolver_alloc (T);

     If there is insufficient memory to create the solver then the
     function returns a null pointer and the error handler is invoked
     with an error code of `GSL_ENOMEM'.

 -- Function: int gsl_root_fsolver_set (gsl_root_fsolver * S,
          gsl_function * F, double X_LOWER, double X_UPPER)
     This function initializes, or reinitializes, an existing solver S
     to use the function F and the initial search interval [X_LOWER,
     X_UPPER].

 -- Function: int gsl_root_fdfsolver_set (gsl_root_fdfsolver * S,
          gsl_function_fdf * FDF, double ROOT)
     This function initializes, or reinitializes, an existing solver S
     to use the function and derivative FDF and the initial guess ROOT.

 -- Function: void gsl_root_fsolver_free (gsl_root_fsolver * S)
 -- Function: void gsl_root_fdfsolver_free (gsl_root_fdfsolver * S)
     These functions free all the memory associated with the solver S.

 -- Function: const char * gsl_root_fsolver_name (const
          gsl_root_fsolver * S)
 -- Function: const char * gsl_root_fdfsolver_name (const
          gsl_root_fdfsolver * S)
     These functions return a pointer to the name of the solver.  For
     example,

          printf ("s is a '%s' solver\n",
                  gsl_root_fsolver_name (s));

     would print something like `s is a 'bisection' solver'.


File: gsl-ref.info,  Node: Providing the function to solve,  Next: Search Bounds and Guesses,  Prev: Initializing the Solver,  Up: One dimensional Root-Finding

32.4 Providing the function to solve
====================================

You must provide a continuous function of one variable for the root
finders to operate on, and, sometimes, its first derivative.  In order
to allow for general parameters the functions are defined by the
following data types:

 -- Data Type: gsl_function
     This data type defines a general function with parameters.

    `double (* function) (double X, void * PARAMS)'
          this function should return the value f(x,params) for
          argument X and parameters PARAMS

    `void * params'
          a pointer to the parameters of the function

   Here is an example for the general quadratic function,

     f(x) = a x^2 + b x + c

with a = 3, b = 2, c = 1.  The following code defines a `gsl_function'
`F' which you could pass to a root finder:

     struct my_f_params { double a; double b; double c; };

     double
     my_f (double x, void * p) {
        struct my_f_params * params
          = (struct my_f_params *)p;
        double a = (params->a);
        double b = (params->b);
        double c = (params->c);

        return  (a * x + b) * x + c;
     }

     gsl_function F;
     struct my_f_params params = { 3.0, 2.0, 1.0 };

     F.function = &my_f;
     F.params = &params;

The function f(x) can be evaluated using the following macro,

     #define GSL_FN_EVAL(F,x)
         (*((F)->function))(x,(F)->params)

 -- Data Type: gsl_function_fdf
     This data type defines a general function with parameters and its
     first derivative.

    `double (* f) (double X, void * PARAMS)'
          this function should return the value of f(x,params) for
          argument X and parameters PARAMS

    `double (* df) (double X, void * PARAMS)'
          this function should return the value of the derivative of F
          with respect to X, f'(x,params), for argument X and
          parameters PARAMS

    `void (* fdf) (double X, void * PARAMS, double * F, double * Df)'
          this function should set the values of the function F to
          f(x,params) and its derivative DF to f'(x,params) for
          argument X and parameters PARAMS.  This function provides an
          optimization of the separate functions for f(x) and f'(x)--it
          is always faster to compute the function and its derivative
          at the same time.

    `void * params'
          a pointer to the parameters of the function

   Here is an example where f(x) = 2\exp(2x):

     double
     my_f (double x, void * params)
     {
        return exp (2 * x);
     }

     double
     my_df (double x, void * params)
     {
        return 2 * exp (2 * x);
     }

     void
     my_fdf (double x, void * params,
             double * f, double * df)
     {
        double t = exp (2 * x);

        *f = t;
        *df = 2 * t;   /* uses existing value */
     }

     gsl_function_fdf FDF;

     FDF.f = &my_f;
     FDF.df = &my_df;
     FDF.fdf = &my_fdf;
     FDF.params = 0;

The function f(x) can be evaluated using the following macro,

     #define GSL_FN_FDF_EVAL_F(FDF,x)
          (*((FDF)->f))(x,(FDF)->params)

The derivative f'(x) can be evaluated using the following macro,

     #define GSL_FN_FDF_EVAL_DF(FDF,x)
          (*((FDF)->df))(x,(FDF)->params)

and both the function y = f(x) and its derivative dy = f'(x) can be
evaluated at the same time using the following macro,

     #define GSL_FN_FDF_EVAL_F_DF(FDF,x,y,dy)
          (*((FDF)->fdf))(x,(FDF)->params,(y),(dy))

The macro stores f(x) in its Y argument and f'(x) in its DY
argument--both of these should be pointers to `double'.


File: gsl-ref.info,  Node: Search Bounds and Guesses,  Next: Root Finding Iteration,  Prev: Providing the function to solve,  Up: One dimensional Root-Finding

32.5 Search Bounds and Guesses
==============================

You provide either search bounds or an initial guess; this section
explains how search bounds and guesses work and how function arguments
control them.

   A guess is simply an x value which is iterated until it is within
the desired precision of a root.  It takes the form of a `double'.

   Search bounds are the endpoints of a interval which is iterated until
the length of the interval is smaller than the requested precision.  The
interval is defined by two values, the lower limit and the upper limit.
Whether the endpoints are intended to be included in the interval or not
depends on the context in which the interval is used.


File: gsl-ref.info,  Node: Root Finding Iteration,  Next: Search Stopping Parameters,  Prev: Search Bounds and Guesses,  Up: One dimensional Root-Finding

32.6 Iteration
==============

The following functions drive the iteration of each algorithm.  Each
function performs one iteration to update the state of any solver of the
corresponding type.  The same functions work for all solvers so that
different methods can be substituted at runtime without modifications to
the code.

 -- Function: int gsl_root_fsolver_iterate (gsl_root_fsolver * S)
 -- Function: int gsl_root_fdfsolver_iterate (gsl_root_fdfsolver * S)
     These functions perform a single iteration of the solver S.  If the
     iteration encounters an unexpected problem then an error code will
     be returned,

    `GSL_EBADFUNC'
          the iteration encountered a singular point where the function
          or its derivative evaluated to `Inf' or `NaN'.

    `GSL_EZERODIV'
          the derivative of the function vanished at the iteration
          point, preventing the algorithm from continuing without a
          division by zero.

   The solver maintains a current best estimate of the root at all
times.  The bracketing solvers also keep track of the current best
interval bounding the root.  This information can be accessed with the
following auxiliary functions,

 -- Function: double gsl_root_fsolver_root (const gsl_root_fsolver * S)
 -- Function: double gsl_root_fdfsolver_root (const gsl_root_fdfsolver
          * S)
     These functions return the current estimate of the root for the
     solver S.

 -- Function: double gsl_root_fsolver_x_lower (const gsl_root_fsolver *
          S)
 -- Function: double gsl_root_fsolver_x_upper (const gsl_root_fsolver *
          S)
     These functions return the current bracketing interval for the
     solver S.


File: gsl-ref.info,  Node: Search Stopping Parameters,  Next: Root Bracketing Algorithms,  Prev: Root Finding Iteration,  Up: One dimensional Root-Finding

32.7 Search Stopping Parameters
===============================

A root finding procedure should stop when one of the following
conditions is true:

   * A root has been found to within the user-specified precision.

   * A user-specified maximum number of iterations has been reached.

   * An error has occurred.

The handling of these conditions is under user control.  The functions
below allow the user to test the precision of the current result in
several standard ways.

 -- Function: int gsl_root_test_interval (double X_LOWER, double
          X_UPPER, double EPSABS, double EPSREL)
     This function tests for the convergence of the interval [X_LOWER,
     X_UPPER] with absolute error EPSABS and relative error EPSREL.
     The test returns `GSL_SUCCESS' if the following condition is
     achieved,

          |a - b| < epsabs + epsrel min(|a|,|b|)

     when the interval x = [a,b] does not include the origin.  If the
     interval includes the origin then \min(|a|,|b|) is replaced by
     zero (which is the minimum value of |x| over the interval).  This
     ensures that the relative error is accurately estimated for roots
     close to the origin.

     This condition on the interval also implies that any estimate of
     the root r in the interval satisfies the same condition with
     respect to the true root r^*,

          |r - r^*| < epsabs + epsrel r^*

     assuming that the true root r^* is contained within the interval.

 -- Function: int gsl_root_test_delta (double X1, double X0, double
          EPSABS, double EPSREL)
     This function tests for the convergence of the sequence ..., X0,
     X1 with absolute error EPSABS and relative error EPSREL.  The test
     returns `GSL_SUCCESS' if the following condition is achieved,

          |x_1 - x_0| < epsabs + epsrel |x_1|

     and returns `GSL_CONTINUE' otherwise.

 -- Function: int gsl_root_test_residual (double F, double EPSABS)
     This function tests the residual value F against the absolute
     error bound EPSABS.  The test returns `GSL_SUCCESS' if the
     following condition is achieved,

          |f| < epsabs

     and returns `GSL_CONTINUE' otherwise.  This criterion is suitable
     for situations where the precise location of the root, x, is
     unimportant provided a value can be found where the residual,
     |f(x)|, is small enough.


File: gsl-ref.info,  Node: Root Bracketing Algorithms,  Next: Root Finding Algorithms using Derivatives,  Prev: Search Stopping Parameters,  Up: One dimensional Root-Finding

32.8 Root Bracketing Algorithms
===============================

The root bracketing algorithms described in this section require an
initial interval which is guaranteed to contain a root--if a and b are
the endpoints of the interval then f(a) must differ in sign from f(b).
This ensures that the function crosses zero at least once in the
interval.  If a valid initial interval is used then these algorithm
cannot fail, provided the function is well-behaved.

   Note that a bracketing algorithm cannot find roots of even degree,
since these do not cross the x-axis.

 -- Solver: gsl_root_fsolver_bisection
     The "bisection algorithm" is the simplest method of bracketing the
     roots of a function.   It is the slowest algorithm provided by the
     library, with linear convergence.

     On each iteration, the interval is bisected and the value of the
     function at the midpoint is calculated.  The sign of this value is
     used to determine which half of the interval does not contain a
     root.  That half is discarded to give a new, smaller interval
     containing the root.  This procedure can be continued indefinitely
     until the interval is sufficiently small.

     At any time the current estimate of the root is taken as the
     midpoint of the interval.


 -- Solver: gsl_root_fsolver_falsepos
     The "false position algorithm" is a method of finding roots based
     on linear interpolation.  Its convergence is linear, but it is
     usually faster than bisection.

     On each iteration a line is drawn between the endpoints (a,f(a))
     and (b,f(b)) and the point where this line crosses the x-axis
     taken as a "midpoint".  The value of the function at this point is
     calculated and its sign is used to determine which side of the
     interval does not contain a root.  That side is discarded to give a
     new, smaller interval containing the root.  This procedure can be
     continued indefinitely until the interval is sufficiently small.

     The best estimate of the root is taken from the linear
     interpolation of the interval on the current iteration.


 -- Solver: gsl_root_fsolver_brent
     The "Brent-Dekker method" (referred to here as "Brent's method")
     combines an interpolation strategy with the bisection algorithm.
     This produces a fast algorithm which is still robust.

     On each iteration Brent's method approximates the function using an
     interpolating curve.  On the first iteration this is a linear
     interpolation of the two endpoints.  For subsequent iterations the
     algorithm uses an inverse quadratic fit to the last three points,
     for higher accuracy.  The intercept of the interpolating curve
     with the x-axis is taken as a guess for the root.  If it lies
     within the bounds of the current interval then the interpolating
     point is accepted, and used to generate a smaller interval.  If
     the interpolating point is not accepted then the algorithm falls
     back to an ordinary bisection step.

     The best estimate of the root is taken from the most recent
     interpolation or bisection.


File: gsl-ref.info,  Node: Root Finding Algorithms using Derivatives,  Next: Root Finding Examples,  Prev: Root Bracketing Algorithms,  Up: One dimensional Root-Finding

32.9 Root Finding Algorithms using Derivatives
==============================================

The root polishing algorithms described in this section require an
initial guess for the location of the root.  There is no absolute
guarantee of convergence--the function must be suitable for this
technique and the initial guess must be sufficiently close to the root
for it to work.  When these conditions are satisfied then convergence is
quadratic.

   These algorithms make use of both the function and its derivative.

 -- Derivative Solver: gsl_root_fdfsolver_newton
     Newton's Method is the standard root-polishing algorithm.  The
     algorithm begins with an initial guess for the location of the
     root.  On each iteration, a line tangent to the function f is
     drawn at that position.  The point where this line crosses the
     x-axis becomes the new guess.  The iteration is defined by the
     following sequence,

          x_{i+1} = x_i - f(x_i)/f'(x_i)

     Newton's method converges quadratically for single roots, and
     linearly for multiple roots.


 -- Derivative Solver: gsl_root_fdfsolver_secant
     The "secant method" is a simplified version of Newton's method
     which does not require the computation of the derivative on every
     step.

     On its first iteration the algorithm begins with Newton's method,
     using the derivative to compute a first step,

          x_1 = x_0 - f(x_0)/f'(x_0)

     Subsequent iterations avoid the evaluation of the derivative by
     replacing it with a numerical estimate, the slope of the line
     through the previous two points,

          x_{i+1} = x_i f(x_i) / f'_{est} where
           f'_{est} = (f(x_i) - f(x_{i-1})/(x_i - x_{i-1})

     When the derivative does not change significantly in the vicinity
     of the root the secant method gives a useful saving.
     Asymptotically the secant method is faster than Newton's method
     whenever the cost of evaluating the derivative is more than 0.44
     times the cost of evaluating the function itself.  As with all
     methods of computing a numerical derivative the estimate can
     suffer from cancellation errors if the separation of the points
     becomes too small.

     On single roots, the method has a convergence of order (1 + \sqrt
     5)/2 (approximately 1.62).  It converges linearly for multiple
     roots.


 -- Derivative Solver: gsl_root_fdfsolver_steffenson
     The "Steffenson Method" provides the fastest convergence of all the
     routines.  It combines the basic Newton algorithm with an Aitken
     "delta-squared" acceleration.  If the Newton iterates are x_i then
     the acceleration procedure generates a new sequence R_i,

          R_i = x_i - (x_{i+1} - x_i)^2 / (x_{i+2} - 2 x_{i+1} + x_{i})

     which converges faster than the original sequence under reasonable
     conditions.  The new sequence requires three terms before it can
     produce its first value so the method returns accelerated values
     on the second and subsequent iterations.  On the first iteration
     it returns the ordinary Newton estimate.  The Newton iterate is
     also returned if the denominator of the acceleration term ever
     becomes zero.

     As with all acceleration procedures this method can become
     unstable if the function is not well-behaved.


File: gsl-ref.info,  Node: Root Finding Examples,  Next: Root Finding References and Further Reading,  Prev: Root Finding Algorithms using Derivatives,  Up: One dimensional Root-Finding

32.10 Examples
==============

For any root finding algorithm we need to prepare the function to be
solved.  For this example we will use the general quadratic equation
described earlier.  We first need a header file (`demo_fn.h') to define
the function parameters,

     struct quadratic_params
       {
         double a, b, c;
       };

     double quadratic (double x, void *params);
     double quadratic_deriv (double x, void *params);
     void quadratic_fdf (double x, void *params,
                         double *y, double *dy);

We place the function definitions in a separate file (`demo_fn.c'),

     double
     quadratic (double x, void *params)
     {
       struct quadratic_params *p
         = (struct quadratic_params *) params;

       double a = p->a;
       double b = p->b;
       double c = p->c;

       return (a * x + b) * x + c;
     }

     double
     quadratic_deriv (double x, void *params)
     {
       struct quadratic_params *p
         = (struct quadratic_params *) params;

       double a = p->a;
       double b = p->b;
       double c = p->c;

       return 2.0 * a * x + b;
     }

     void
     quadratic_fdf (double x, void *params,
                    double *y, double *dy)
     {
       struct quadratic_params *p
         = (struct quadratic_params *) params;

       double a = p->a;
       double b = p->b;
       double c = p->c;

       *y = (a * x + b) * x + c;
       *dy = 2.0 * a * x + b;
     }

The first program uses the function solver `gsl_root_fsolver_brent' for
Brent's method and the general quadratic defined above to solve the
following equation,

     x^2 - 5 = 0

with solution x = \sqrt 5 = 2.236068...

     #include <stdio.h>
     #include <gsl/gsl_errno.h>
     #include <gsl/gsl_math.h>
     #include <gsl/gsl_roots.h>

     #include "demo_fn.h"
     #include "demo_fn.c"

     int
     main (void)
     {
       int status;
       int iter = 0, max_iter = 100;
       const gsl_root_fsolver_type *T;
       gsl_root_fsolver *s;
       double r = 0, r_expected = sqrt (5.0);
       double x_lo = 0.0, x_hi = 5.0;
       gsl_function F;
       struct quadratic_params params = {1.0, 0.0, -5.0};

       F.function = &quadratic;
       F.params = &params;

       T = gsl_root_fsolver_brent;
       s = gsl_root_fsolver_alloc (T);
       gsl_root_fsolver_set (s, &F, x_lo, x_hi);

       printf ("using %s method\n",
               gsl_root_fsolver_name (s));

       printf ("%5s [%9s, %9s] %9s %10s %9s\n",
               "iter", "lower", "upper", "root",
               "err", "err(est)");

       do
         {
           iter++;
           status = gsl_root_fsolver_iterate (s);
           r = gsl_root_fsolver_root (s);
           x_lo = gsl_root_fsolver_x_lower (s);
           x_hi = gsl_root_fsolver_x_upper (s);
           status = gsl_root_test_interval (x_lo, x_hi,
                                            0, 0.001);

           if (status == GSL_SUCCESS)
             printf ("Converged:\n");

           printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n",
                   iter, x_lo, x_hi,
                   r, r - r_expected,
                   x_hi - x_lo);
         }
       while (status == GSL_CONTINUE && iter < max_iter);

       gsl_root_fsolver_free (s);

       return status;
     }

Here are the results of the iterations,

     $ ./a.out
     using brent method
      iter [    lower,     upper]      root        err  err(est)
         1 [1.0000000, 5.0000000] 1.0000000 -1.2360680 4.0000000
         2 [1.0000000, 3.0000000] 3.0000000 +0.7639320 2.0000000
         3 [2.0000000, 3.0000000] 2.0000000 -0.2360680 1.0000000
         4 [2.2000000, 3.0000000] 2.2000000 -0.0360680 0.8000000
         5 [2.2000000, 2.2366300] 2.2366300 +0.0005621 0.0366300
     Converged:
         6 [2.2360634, 2.2366300] 2.2360634 -0.0000046 0.0005666

If the program is modified to use the bisection solver instead of
Brent's method, by changing `gsl_root_fsolver_brent' to
`gsl_root_fsolver_bisection' the slower convergence of the Bisection
method can be observed,

     $ ./a.out
     using bisection method
      iter [    lower,     upper]      root        err  err(est)
         1 [0.0000000, 2.5000000] 1.2500000 -0.9860680 2.5000000
         2 [1.2500000, 2.5000000] 1.8750000 -0.3610680 1.2500000
         3 [1.8750000, 2.5000000] 2.1875000 -0.0485680 0.6250000
         4 [2.1875000, 2.5000000] 2.3437500 +0.1076820 0.3125000
         5 [2.1875000, 2.3437500] 2.2656250 +0.0295570 0.1562500
         6 [2.1875000, 2.2656250] 2.2265625 -0.0095055 0.0781250
         7 [2.2265625, 2.2656250] 2.2460938 +0.0100258 0.0390625
         8 [2.2265625, 2.2460938] 2.2363281 +0.0002601 0.0195312
         9 [2.2265625, 2.2363281] 2.2314453 -0.0046227 0.0097656
        10 [2.2314453, 2.2363281] 2.2338867 -0.0021813 0.0048828
        11 [2.2338867, 2.2363281] 2.2351074 -0.0009606 0.0024414
     Converged:
        12 [2.2351074, 2.2363281] 2.2357178 -0.0003502 0.0012207

   The next program solves the same function using a derivative solver
instead.

     #include <stdio.h>
     #include <gsl/gsl_errno.h>
     #include <gsl/gsl_math.h>
     #include <gsl/gsl_roots.h>

     #include "demo_fn.h"
     #include "demo_fn.c"

     int
     main (void)
     {
       int status;
       int iter = 0, max_iter = 100;
       const gsl_root_fdfsolver_type *T;
       gsl_root_fdfsolver *s;
       double x0, x = 5.0, r_expected = sqrt (5.0);
       gsl_function_fdf FDF;
       struct quadratic_params params = {1.0, 0.0, -5.0};

       FDF.f = &quadratic;
       FDF.df = &quadratic_deriv;
       FDF.fdf = &quadratic_fdf;
       FDF.params = &params;

       T = gsl_root_fdfsolver_newton;
       s = gsl_root_fdfsolver_alloc (T);
       gsl_root_fdfsolver_set (s, &FDF, x);

       printf ("using %s method\n",
               gsl_root_fdfsolver_name (s));

       printf ("%-5s %10s %10s %10s\n",
               "iter", "root", "err", "err(est)");
       do
         {
           iter++;
           status = gsl_root_fdfsolver_iterate (s);
           x0 = x;
           x = gsl_root_fdfsolver_root (s);
           status = gsl_root_test_delta (x, x0, 0, 1e-3);

           if (status == GSL_SUCCESS)
             printf ("Converged:\n");

           printf ("%5d %10.7f %+10.7f %10.7f\n",
                   iter, x, x - r_expected, x - x0);
         }
       while (status == GSL_CONTINUE && iter < max_iter);

       gsl_root_fdfsolver_free (s);
       return status;
     }

Here are the results for Newton's method,

     $ ./a.out
     using newton method
     iter        root        err   err(est)
         1  3.0000000 +0.7639320 -2.0000000
         2  2.3333333 +0.0972654 -0.6666667
         3  2.2380952 +0.0020273 -0.0952381
     Converged:
         4  2.2360689 +0.0000009 -0.0020263

Note that the error can be estimated more accurately by taking the
difference between the current iterate and next iterate rather than the
previous iterate.  The other derivative solvers can be investigated by
changing `gsl_root_fdfsolver_newton' to `gsl_root_fdfsolver_secant' or
`gsl_root_fdfsolver_steffenson'.


File: gsl-ref.info,  Node: Root Finding References and Further Reading,  Prev: Root Finding Examples,  Up: One dimensional Root-Finding

32.11 References and Further Reading
====================================

For information on the Brent-Dekker algorithm see the following two
papers,

     R. P. Brent, "An algorithm with guaranteed convergence for finding
     a zero of a function", `Computer Journal', 14 (1971) 422-425

     J. C. P. Bus and T. J. Dekker, "Two Efficient Algorithms with
     Guaranteed Convergence for Finding a Zero of a Function", `ACM
     Transactions of Mathematical Software', Vol. 1 No. 4 (1975) 330-345


File: gsl-ref.info,  Node: One dimensional Minimization,  Next: Multidimensional Root-Finding,  Prev: One dimensional Root-Finding,  Up: Top

33 One dimensional Minimization
*******************************

This chapter describes routines for finding minima of arbitrary
one-dimensional functions.  The library provides low level components
for a variety of iterative minimizers and convergence tests.  These can
be combined by the user to achieve the desired solution, with full
access to the intermediate steps of the algorithms.  Each class of
methods uses the same framework, so that you can switch between
minimizers at runtime without needing to recompile your program.  Each
instance of a minimizer keeps track of its own state, allowing the
minimizers to be used in multi-threaded programs.

   The header file `gsl_min.h' contains prototypes for the minimization
functions and related declarations.  To use the minimization algorithms
to find the maximum of a function simply invert its sign.

* Menu:

* Minimization Overview::
* Minimization Caveats::
* Initializing the Minimizer::
* Providing the function to minimize::
* Minimization Iteration::
* Minimization Stopping Parameters::
* Minimization Algorithms::
* Minimization Examples::
* Minimization References and Further Reading::


File: gsl-ref.info,  Node: Minimization Overview,  Next: Minimization Caveats,  Up: One dimensional Minimization

33.1 Overview
=============

The minimization algorithms begin with a bounded region known to contain
a minimum.  The region is described by a lower bound a and an upper
bound b, with an estimate of the location of the minimum x.

The value of the function at x must be less than the value of the
function at the ends of the interval,

     f(a) > f(x) < f(b)

This condition guarantees that a minimum is contained somewhere within
the interval.  On each iteration a new point x' is selected using one
of the available algorithms.  If the new point is a better estimate of
the minimum, i.e. where f(x') < f(x), then the current estimate of the
minimum x is updated.  The new point also allows the size of the
bounded interval to be reduced, by choosing the most compact set of
points which satisfies the constraint f(a) > f(x) < f(b).  The interval
is reduced until it encloses the true minimum to a desired tolerance.
This provides a best estimate of the location of the minimum and a
rigorous error estimate.

   Several bracketing algorithms are available within a single
framework.  The user provides a high-level driver for the algorithm,
and the library provides the individual functions necessary for each of
the steps.  There are three main phases of the iteration.  The steps
are,

   * initialize minimizer state, S, for algorithm T

   * update S using the iteration T

   * test S for convergence, and repeat iteration if necessary

The state for the minimizers is held in a `gsl_min_fminimizer' struct.
The updating procedure uses only function evaluations (not derivatives).


File: gsl-ref.info,  Node: Minimization Caveats,  Next: Initializing the Minimizer,  Prev: Minimization Overview,  Up: One dimensional Minimization

33.2 Caveats
============

Note that minimization functions can only search for one minimum at a
time.  When there are several minima in the search area, the first
minimum to be found will be returned; however it is difficult to predict
which of the minima this will be. _In most cases, no error will be
reported if you try to find a minimum in an area where there is more
than one._

   With all minimization algorithms it can be difficult to determine the
location of the minimum to full numerical precision.  The behavior of
the function in the region of the minimum x^* can be approximated by a
Taylor expansion,

     y = f(x^*) + (1/2) f''(x^*) (x - x^*)^2

and the second term of this expansion can be lost when added to the
first term at finite precision.  This magnifies the error in locating
x^*, making it proportional to \sqrt \epsilon (where \epsilon is the
relative accuracy of the floating point numbers).  For functions with
higher order minima, such as x^4, the magnification of the error is
correspondingly worse.  The best that can be achieved is to converge to
the limit of numerical accuracy in the function values, rather than the
location of the minimum itself.


File: gsl-ref.info,  Node: Initializing the Minimizer,  Next: Providing the function to minimize,  Prev: Minimization Caveats,  Up: One dimensional Minimization

33.3 Initializing the Minimizer
===============================

 -- Function: gsl_min_fminimizer * gsl_min_fminimizer_alloc (const
          gsl_min_fminimizer_type * T)
     This function returns a pointer to a newly allocated instance of a
     minimizer of type T.  For example, the following code creates an
     instance of a golden section minimizer,

          const gsl_min_fminimizer_type * T
            = gsl_min_fminimizer_goldensection;
          gsl_min_fminimizer * s
            = gsl_min_fminimizer_alloc (T);

     If there is insufficient memory to create the minimizer then the
     function returns a null pointer and the error handler is invoked
     with an error code of `GSL_ENOMEM'.

 -- Function: int gsl_min_fminimizer_set (gsl_min_fminimizer * S,
          gsl_function * F, double X_MINIMUM, double X_LOWER, double
          X_UPPER)
     This function sets, or resets, an existing minimizer S to use the
     function F and the initial search interval [X_LOWER, X_UPPER],
     with a guess for the location of the minimum X_MINIMUM.

     If the interval given does not contain a minimum, then the function
     returns an error code of `GSL_EINVAL'.

 -- Function: int gsl_min_fminimizer_set_with_values
          (gsl_min_fminimizer * S, gsl_function * F, double X_MINIMUM,
          double F_MINIMUM, double X_LOWER, double F_LOWER, double
          X_UPPER, double F_UPPER)
     This function is equivalent to `gsl_min_fminimizer_set' but uses
     the values F_MINIMUM, F_LOWER and F_UPPER instead of computing
     `f(x_minimum)', `f(x_lower)' and `f(x_upper)'.

 -- Function: void gsl_min_fminimizer_free (gsl_min_fminimizer * S)
     This function frees all the memory associated with the minimizer S.

 -- Function: const char * gsl_min_fminimizer_name (const
          gsl_min_fminimizer * S)
     This function returns a pointer to the name of the minimizer.  For
     example,

          printf ("s is a '%s' minimizer\n",
                  gsl_min_fminimizer_name (s));

     would print something like `s is a 'brent' minimizer'.


File: gsl-ref.info,  Node: Providing the function to minimize,  Next: Minimization Iteration,  Prev: Initializing the Minimizer,  Up: One dimensional Minimization

33.4 Providing the function to minimize
=======================================

You must provide a continuous function of one variable for the
minimizers to operate on.  In order to allow for general parameters the
functions are defined by a `gsl_function' data type (*note Providing
the function to solve::).


File: gsl-ref.info,  Node: Minimization Iteration,  Next: Minimization Stopping Parameters,  Prev: Providing the function to minimize,  Up: One dimensional Minimization

33.5 Iteration
==============

The following functions drive the iteration of each algorithm.  Each
function performs one iteration to update the state of any minimizer of
the corresponding type.  The same functions work for all minimizers so
that different methods can be substituted at runtime without
modifications to the code.

 -- Function: int gsl_min_fminimizer_iterate (gsl_min_fminimizer * S)
     This function performs a single iteration of the minimizer S.  If
     the iteration encounters an unexpected problem then an error code
     will be returned,

    `GSL_EBADFUNC'
          the iteration encountered a singular point where the function
          evaluated to `Inf' or `NaN'.

    `GSL_FAILURE'
          the algorithm could not improve the current best
          approximation or bounding interval.

   The minimizer maintains a current best estimate of the position of
the minimum at all times, and the current interval bounding the minimum.
This information can be accessed with the following auxiliary functions,

 -- Function: double gsl_min_fminimizer_x_minimum (const
          gsl_min_fminimizer * S)
     This function returns the current estimate of the position of the
     minimum for the minimizer S.

 -- Function: double gsl_min_fminimizer_x_upper (const
          gsl_min_fminimizer * S)
 -- Function: double gsl_min_fminimizer_x_lower (const
          gsl_min_fminimizer * S)
     These functions return the current upper and lower bound of the
     interval for the minimizer S.

 -- Function: double gsl_min_fminimizer_f_minimum (const
          gsl_min_fminimizer * S)
 -- Function: double gsl_min_fminimizer_f_upper (const
          gsl_min_fminimizer * S)
 -- Function: double gsl_min_fminimizer_f_lower (const
          gsl_min_fminimizer * S)
     These functions return the value of the function at the current
     estimate of the minimum and at the upper and lower bounds of the
     interval for the minimizer S.


File: gsl-ref.info,  Node: Minimization Stopping Parameters,  Next: Minimization Algorithms,  Prev: Minimization Iteration,  Up: One dimensional Minimization

33.6 Stopping Parameters
========================

A minimization procedure should stop when one of the following
conditions is true:

   * A minimum has been found to within the user-specified precision.

   * A user-specified maximum number of iterations has been reached.

   * An error has occurred.

The handling of these conditions is under user control.  The function
below allows the user to test the precision of the current result.

 -- Function: int gsl_min_test_interval (double X_LOWER, double
          X_UPPER, double EPSABS, double EPSREL)
     This function tests for the convergence of the interval [X_LOWER,
     X_UPPER] with absolute error EPSABS and relative error EPSREL.
     The test returns `GSL_SUCCESS' if the following condition is
     achieved,

          |a - b| < epsabs + epsrel min(|a|,|b|)

     when the interval x = [a,b] does not include the origin.  If the
     interval includes the origin then \min(|a|,|b|) is replaced by
     zero (which is the minimum value of |x| over the interval).  This
     ensures that the relative error is accurately estimated for minima
     close to the origin.

     This condition on the interval also implies that any estimate of
     the minimum x_m in the interval satisfies the same condition with
     respect to the true minimum x_m^*,

          |x_m - x_m^*| < epsabs + epsrel x_m^*

     assuming that the true minimum x_m^* is contained within the
     interval.


File: gsl-ref.info,  Node: Minimization Algorithms,  Next: Minimization Examples,  Prev: Minimization Stopping Parameters,  Up: One dimensional Minimization

33.7 Minimization Algorithms
============================

The minimization algorithms described in this section require an initial
interval which is guaranteed to contain a minimum--if a and b are the
endpoints of the interval and x is an estimate of the minimum then f(a)
> f(x) < f(b).  This ensures that the function has at least one minimum
somewhere in the interval.  If a valid initial interval is used then
these algorithm cannot fail, provided the function is well-behaved.

 -- Minimizer: gsl_min_fminimizer_goldensection
     The "golden section algorithm" is the simplest method of bracketing
     the minimum of a function.  It is the slowest algorithm provided
     by the library, with linear convergence.

     On each iteration, the algorithm first compares the subintervals
     from the endpoints to the current minimum.  The larger subinterval
     is divided in a golden section (using the famous ratio (3-\sqrt
     5)/2 = 0.3189660...) and the value of the function at this new
     point is calculated.  The new value is used with the constraint
     f(a') > f(x') < f(b') to a select new interval containing the
     minimum, by discarding the least useful point.  This procedure can
     be continued indefinitely until the interval is sufficiently
     small.  Choosing the golden section as the bisection ratio can be
     shown to provide the fastest convergence for this type of
     algorithm.


 -- Minimizer: gsl_min_fminimizer_brent
     The "Brent minimization algorithm" combines a parabolic
     interpolation with the golden section algorithm.  This produces a
     fast algorithm which is still robust.

     The outline of the algorithm can be summarized as follows: on each
     iteration Brent's method approximates the function using an
     interpolating parabola through three existing points.  The minimum
     of the parabola is taken as a guess for the minimum.  If it lies
     within the bounds of the current interval then the interpolating
     point is accepted, and used to generate a smaller interval.  If
     the interpolating point is not accepted then the algorithm falls
     back to an ordinary golden section step.  The full details of
     Brent's method include some additional checks to improve
     convergence.


File: gsl-ref.info,  Node: Minimization Examples,  Next: Minimization References and Further Reading,  Prev: Minimization Algorithms,  Up: One dimensional Minimization

33.8 Examples
=============

The following program uses the Brent algorithm to find the minimum of
the function f(x) = \cos(x) + 1, which occurs at x = \pi.  The starting
interval is (0,6), with an initial guess for the minimum of 2.

     #include <stdio.h>
     #include <gsl/gsl_errno.h>
     #include <gsl/gsl_math.h>
     #include <gsl/gsl_min.h>

     double fn1 (double x, void * params)
     {
       return cos(x) + 1.0;
     }

     int
     main (void)
     {
       int status;
       int iter = 0, max_iter = 100;
       const gsl_min_fminimizer_type *T;
       gsl_min_fminimizer *s;
       double m = 2.0, m_expected = M_PI;
       double a = 0.0, b = 6.0;
       gsl_function F;

       F.function = &fn1;
       F.params = 0;

       T = gsl_min_fminimizer_brent;
       s = gsl_min_fminimizer_alloc (T);
       gsl_min_fminimizer_set (s, &F, m, a, b);

       printf ("using %s method\n",
               gsl_min_fminimizer_name (s));

       printf ("%5s [%9s, %9s] %9s %10s %9s\n",
               "iter", "lower", "upper", "min",
               "err", "err(est)");

       printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n",
               iter, a, b,
               m, m - m_expected, b - a);

       do
         {
           iter++;
           status = gsl_min_fminimizer_iterate (s);

           m = gsl_min_fminimizer_x_minimum (s);
           a = gsl_min_fminimizer_x_lower (s);
           b = gsl_min_fminimizer_x_upper (s);

           status
             = gsl_min_test_interval (a, b, 0.001, 0.0);

           if (status == GSL_SUCCESS)
             printf ("Converged:\n");

           printf ("%5d [%.7f, %.7f] "
                   "%.7f %.7f %+.7f %.7f\n",
                   iter, a, b,
                   m, m_expected, m - m_expected, b - a);
         }
       while (status == GSL_CONTINUE && iter < max_iter);

       gsl_min_fminimizer_free (s);

       return status;
     }

Here are the results of the minimization procedure.

     $ ./a.out
         0 [0.0000000, 6.0000000] 2.0000000 -1.1415927 6.0000000
         1 [2.0000000, 6.0000000] 3.2758640 +0.1342713 4.0000000
         2 [2.0000000, 3.2831929] 3.2758640 +0.1342713 1.2831929
         3 [2.8689068, 3.2831929] 3.2758640 +0.1342713 0.4142862
         4 [2.8689068, 3.2831929] 3.2758640 +0.1342713 0.4142862
         5 [2.8689068, 3.2758640] 3.1460585 +0.0044658 0.4069572
         6 [3.1346075, 3.2758640] 3.1460585 +0.0044658 0.1412565
         7 [3.1346075, 3.1874620] 3.1460585 +0.0044658 0.0528545
         8 [3.1346075, 3.1460585] 3.1460585 +0.0044658 0.0114510
         9 [3.1346075, 3.1460585] 3.1424060 +0.0008133 0.0114510
        10 [3.1346075, 3.1424060] 3.1415885 -0.0000041 0.0077985
     Converged:
        11 [3.1415885, 3.1424060] 3.1415927 -0.0000000 0.0008175


File: gsl-ref.info,  Node: Minimization References and Further Reading,  Prev: Minimization Examples,  Up: One dimensional Minimization

33.9 References and Further Reading
===================================

Further information on Brent's algorithm is available in the following
book,

     Richard Brent, `Algorithms for minimization without derivatives',
     Prentice-Hall (1973), republished by Dover in paperback (2002),
     ISBN 0-486-41998-3.


File: gsl-ref.info,  Node: Multidimensional Root-Finding,  Next: Multidimensional Minimization,  Prev: One dimensional Minimization,  Up: Top

34 Multidimensional Root-Finding
********************************

This chapter describes functions for multidimensional root-finding
(solving nonlinear systems with n equations in n unknowns).  The
library provides low level components for a variety of iterative
solvers and convergence tests.  These can be combined by the user to
achieve the desired solution, with full access to the intermediate
steps of the iteration.  Each class of methods uses the same framework,
so that you can switch between solvers at runtime without needing to
recompile your program.  Each instance of a solver keeps track of its
own state, allowing the solvers to be used in multi-threaded programs.
The solvers are based on the original Fortran library MINPACK.

   The header file `gsl_multiroots.h' contains prototypes for the
multidimensional root finding functions and related declarations.

* Menu:

* Overview of Multidimensional Root Finding::
* Initializing the Multidimensional Solver::
* Providing the multidimensional system of equations to solve::
* Iteration of the multidimensional solver::
* Search Stopping Parameters for the multidimensional solver::
* Algorithms using Derivatives::
* Algorithms without Derivatives::
* Example programs for Multidimensional Root finding::
* References and Further Reading for Multidimensional Root Finding::


File: gsl-ref.info,  Node: Overview of Multidimensional Root Finding,  Next: Initializing the Multidimensional Solver,  Up: Multidimensional Root-Finding

34.1 Overview
=============

The problem of multidimensional root finding requires the simultaneous
solution of n equations, f_i, in n variables, x_i,

     f_i (x_1, ..., x_n) = 0    for i = 1 ... n.

In general there are no bracketing methods available for n dimensional
systems, and no way of knowing whether any solutions exist.  All
algorithms proceed from an initial guess using a variant of the Newton
iteration,

     x -> x' = x - J^{-1} f(x)

where x, f are vector quantities and J is the Jacobian matrix J_{ij} =
d f_i / d x_j.  Additional strategies can be used to enlarge the region
of convergence.  These include requiring a decrease in the norm |f| on
each step proposed by Newton's method, or taking steepest-descent steps
in the direction of the negative gradient of |f|.

   Several root-finding algorithms are available within a single
framework.  The user provides a high-level driver for the algorithms,
and the library provides the individual functions necessary for each of
the steps.  There are three main phases of the iteration.  The steps
are,

   * initialize solver state, S, for algorithm T

   * update S using the iteration T

   * test S for convergence, and repeat iteration if necessary

The evaluation of the Jacobian matrix can be problematic, either because
programming the derivatives is intractable or because computation of the
n^2 terms of the matrix becomes too expensive.  For these reasons the
algorithms provided by the library are divided into two classes
according to whether the derivatives are available or not.

   The state for solvers with an analytic Jacobian matrix is held in a
`gsl_multiroot_fdfsolver' struct.  The updating procedure requires both
the function and its derivatives to be supplied by the user.

   The state for solvers which do not use an analytic Jacobian matrix is
held in a `gsl_multiroot_fsolver' struct.  The updating procedure uses
only function evaluations (not derivatives).  The algorithms estimate
the matrix J or J^{-1} by approximate methods.


File: gsl-ref.info,  Node: Initializing the Multidimensional Solver,  Next: Providing the multidimensional system of equations to solve,  Prev: Overview of Multidimensional Root Finding,  Up: Multidimensional Root-Finding

34.2 Initializing the Solver
============================

The following functions initialize a multidimensional solver, either
with or without derivatives.  The solver itself depends only on the
dimension of the problem and the algorithm and can be reused for
different problems.

 -- Function: gsl_multiroot_fsolver * gsl_multiroot_fsolver_alloc
          (const gsl_multiroot_fsolver_type * T, size_t N)
     This function returns a pointer to a newly allocated instance of a
     solver of type T for a system of N dimensions.  For example, the
     following code creates an instance of a hybrid solver, to solve a
     3-dimensional system of equations.

          const gsl_multiroot_fsolver_type * T
              = gsl_multiroot_fsolver_hybrid;
          gsl_multiroot_fsolver * s
              = gsl_multiroot_fsolver_alloc (T, 3);

     If there is insufficient memory to create the solver then the
     function returns a null pointer and the error handler is invoked
     with an error code of `GSL_ENOMEM'.

 -- Function: gsl_multiroot_fdfsolver * gsl_multiroot_fdfsolver_alloc
          (const gsl_multiroot_fdfsolver_type * T, size_t N)
     This function returns a pointer to a newly allocated instance of a
     derivative solver of type T for a system of N dimensions.  For
     example, the following code creates an instance of a
     Newton-Raphson solver, for a 2-dimensional system of equations.

          const gsl_multiroot_fdfsolver_type * T
              = gsl_multiroot_fdfsolver_newton;
          gsl_multiroot_fdfsolver * s =
              gsl_multiroot_fdfsolver_alloc (T, 2);

     If there is insufficient memory to create the solver then the
     function returns a null pointer and the error handler is invoked
     with an error code of `GSL_ENOMEM'.

 -- Function: int gsl_multiroot_fsolver_set (gsl_multiroot_fsolver * S,
          gsl_multiroot_function * F, gsl_vector * X)
     This function sets, or resets, an existing solver S to use the
     function F and the initial guess X.

 -- Function: int gsl_multiroot_fdfsolver_set (gsl_multiroot_fdfsolver
          * S, gsl_multiroot_function_fdf * FDF, gsl_vector * X)
     This function sets, or resets, an existing solver S to use the
     function and derivative FDF and the initial guess X.

 -- Function: void gsl_multiroot_fsolver_free (gsl_multiroot_fsolver *
          S)
 -- Function: void gsl_multiroot_fdfsolver_free
          (gsl_multiroot_fdfsolver * S)
     These functions free all the memory associated with the solver S.

 -- Function: const char * gsl_multiroot_fsolver_name (const
          gsl_multiroot_fsolver * S)
 -- Function: const char * gsl_multiroot_fdfsolver_name (const
          gsl_multiroot_fdfsolver * S)
     These functions return a pointer to the name of the solver.  For
     example,

          printf ("s is a '%s' solver\n",
                  gsl_multiroot_fdfsolver_name (s));

     would print something like `s is a 'newton' solver'.


File: gsl-ref.info,  Node: Providing the multidimensional system of equations to solve,  Next: Iteration of the multidimensional solver,  Prev: Initializing the Multidimensional Solver,  Up: Multidimensional Root-Finding

34.3 Providing the function to solve
====================================

You must provide n functions of n variables for the root finders to
operate on.  In order to allow for general parameters the functions are
defined by the following data types:

 -- Data Type: gsl_multiroot_function
     This data type defines a general system of functions with
     parameters.

    `int (* f) (const gsl_vector * X, void * PARAMS, gsl_vector * F)'
          this function should store the vector result f(x,params) in F
          for argument X and parameters PARAMS, returning an
          appropriate error code if the function cannot be computed.

    `size_t n'
          the dimension of the system, i.e. the number of components of
          the vectors X and F.

    `void * params'
          a pointer to the parameters of the function.

Here is an example using Powell's test function,

     f_1(x) = A x_0 x_1 - 1,
     f_2(x) = exp(-x_0) + exp(-x_1) - (1 + 1/A)

with A = 10^4.  The following code defines a `gsl_multiroot_function'
system `F' which you could pass to a solver:

     struct powell_params { double A; };

     int
     powell (gsl_vector * x, void * p, gsl_vector * f) {
        struct powell_params * params
          = *(struct powell_params *)p;
        const double A = (params->A);
        const double x0 = gsl_vector_get(x,0);
        const double x1 = gsl_vector_get(x,1);

        gsl_vector_set (f, 0, A * x0 * x1 - 1);
        gsl_vector_set (f, 1, (exp(-x0) + exp(-x1)
                               - (1.0 + 1.0/A)));
        return GSL_SUCCESS
     }

     gsl_multiroot_function F;
     struct powell_params params = { 10000.0 };

     F.f = &powell;
     F.n = 2;
     F.params = &params;

 -- Data Type: gsl_multiroot_function_fdf
     This data type defines a general system of functions with
     parameters and the corresponding Jacobian matrix of derivatives,

    `int (* f) (const gsl_vector * X, void * PARAMS, gsl_vector * F)'
          this function should store the vector result f(x,params) in F
          for argument X and parameters PARAMS, returning an
          appropriate error code if the function cannot be computed.

    `int (* df) (const gsl_vector * X, void * PARAMS, gsl_matrix * J)'
          this function should store the N-by-N matrix result J_ij = d
          f_i(x,params) / d x_j in J for argument X and parameters
          PARAMS, returning an appropriate error code if the function
          cannot be computed.

    `int (* fdf) (const gsl_vector * X, void * PARAMS, gsl_vector * F, gsl_matrix * J)'
          This function should set the values of the F and J as above,
          for arguments X and parameters PARAMS.  This function
          provides an optimization of the separate functions for f(x)
          and J(x)--it is always faster to compute the function and its
          derivative at the same time.

    `size_t n'
          the dimension of the system, i.e. the number of components of
          the vectors X and F.

    `void * params'
          a pointer to the parameters of the function.

The example of Powell's test function defined above can be extended to
include analytic derivatives using the following code,

     int
     powell_df (gsl_vector * x, void * p, gsl_matrix * J)
     {
        struct powell_params * params
          = *(struct powell_params *)p;
        const double A = (params->A);
        const double x0 = gsl_vector_get(x,0);
        const double x1 = gsl_vector_get(x,1);
        gsl_matrix_set (J, 0, 0, A * x1);
        gsl_matrix_set (J, 0, 1, A * x0);
        gsl_matrix_set (J, 1, 0, -exp(-x0));
        gsl_matrix_set (J, 1, 1, -exp(-x1));
        return GSL_SUCCESS
     }

     int
     powell_fdf (gsl_vector * x, void * p,
                 gsl_matrix * f, gsl_matrix * J) {
        struct powell_params * params
          = *(struct powell_params *)p;
        const double A = (params->A);
        const double x0 = gsl_vector_get(x,0);
        const double x1 = gsl_vector_get(x,1);

        const double u0 = exp(-x0);
        const double u1 = exp(-x1);

        gsl_vector_set (f, 0, A * x0 * x1 - 1);
        gsl_vector_set (f, 1, u0 + u1 - (1 + 1/A));

        gsl_matrix_set (J, 0, 0, A * x1);
        gsl_matrix_set (J, 0, 1, A * x0);
        gsl_matrix_set (J, 1, 0, -u0);
        gsl_matrix_set (J, 1, 1, -u1);
        return GSL_SUCCESS
     }

     gsl_multiroot_function_fdf FDF;

     FDF.f = &powell_f;
     FDF.df = &powell_df;
     FDF.fdf = &powell_fdf;
     FDF.n = 2;
     FDF.params = 0;

Note that the function `powell_fdf' is able to reuse existing terms
from the function when calculating the Jacobian, thus saving time.


File: gsl-ref.info,  Node: Iteration of the multidimensional solver,  Next: Search Stopping Parameters for the multidimensional solver,  Prev: Providing the multidimensional system of equations to solve,  Up: Multidimensional Root-Finding

34.4 Iteration
==============

The following functions drive the iteration of each algorithm.  Each
function performs one iteration to update the state of any solver of the
corresponding type.  The same functions work for all solvers so that
different methods can be substituted at runtime without modifications to
the code.

 -- Function: int gsl_multiroot_fsolver_iterate (gsl_multiroot_fsolver
          * S)
 -- Function: int gsl_multiroot_fdfsolver_iterate
          (gsl_multiroot_fdfsolver * S)
     These functions perform a single iteration of the solver S.  If the
     iteration encounters an unexpected problem then an error code will
     be returned,

    `GSL_EBADFUNC'
          the iteration encountered a singular point where the function
          or its derivative evaluated to `Inf' or `NaN'.

    `GSL_ENOPROG'
          the iteration is not making any progress, preventing the
          algorithm from continuing.

   The solver maintains a current best estimate of the root at all
times.  This information can be accessed with the following auxiliary
functions,

 -- Function: gsl_vector * gsl_multiroot_fsolver_root (const
          gsl_multiroot_fsolver * S)
 -- Function: gsl_vector * gsl_multiroot_fdfsolver_root (const
          gsl_multiroot_fdfsolver * S)
     These functions return the current estimate of the root for the
     solver S.

 -- Function: gsl_vector * gsl_multiroot_fsolver_f (const
          gsl_multiroot_fsolver * S)
 -- Function: gsl_vector * gsl_multiroot_fdfsolver_f (const
          gsl_multiroot_fdfsolver * S)
     These functions return the function value f(x) at the current
     estimate of the root for the solver S.

 -- Function: gsl_vector * gsl_multiroot_fsolver_dx (const
          gsl_multiroot_fsolver * S)
 -- Function: gsl_vector * gsl_multiroot_fdfsolver_dx (const
          gsl_multiroot_fdfsolver * S)
     These functions return the last step dx taken by the solver S.


File: gsl-ref.info,  Node: Search Stopping Parameters for the multidimensional solver,  Next: Algorithms using Derivatives,  Prev: Iteration of the multidimensional solver,  Up: Multidimensional Root-Finding

34.5 Search Stopping Parameters
===============================

A root finding procedure should stop when one of the following
conditions is true:

   * A multidimensional root has been found to within the
     user-specified precision.

   * A user-specified maximum number of iterations has been reached.

   * An error has occurred.

The handling of these conditions is under user control.  The functions
below allow the user to test the precision of the current result in
several standard ways.

 -- Function: int gsl_multiroot_test_delta (const gsl_vector * DX,
          const gsl_vector * X, double EPSABS, double EPSREL)
     This function tests for the convergence of the sequence by
     comparing the last step DX with the absolute error EPSABS and
     relative error EPSREL to the current position X.  The test returns
     `GSL_SUCCESS' if the following condition is achieved,

          |dx_i| < epsabs + epsrel |x_i|

     for each component of X and returns `GSL_CONTINUE' otherwise.

 -- Function: int gsl_multiroot_test_residual (const gsl_vector * F,
          double EPSABS)
     This function tests the residual value F against the absolute
     error bound EPSABS.  The test returns `GSL_SUCCESS' if the
     following condition is achieved,

          \sum_i |f_i| < epsabs

     and returns `GSL_CONTINUE' otherwise.  This criterion is suitable
     for situations where the precise location of the root, x, is
     unimportant provided a value can be found where the residual is
     small enough.


File: gsl-ref.info,  Node: Algorithms using Derivatives,  Next: Algorithms without Derivatives,  Prev: Search Stopping Parameters for the multidimensional solver,  Up: Multidimensional Root-Finding

34.6 Algorithms using Derivatives
=================================

The root finding algorithms described in this section make use of both
the function and its derivative.  They require an initial guess for the
location of the root, but there is no absolute guarantee of
convergence--the function must be suitable for this technique and the
initial guess must be sufficiently close to the root for it to work.
When the conditions are satisfied then convergence is quadratic.

 -- Derivative Solver: gsl_multiroot_fdfsolver_hybridsj
     This is a modified version of Powell's Hybrid method as
     implemented in the HYBRJ algorithm in MINPACK.  Minpack was
     written by Jorge J. More', Burton S. Garbow and Kenneth E.
     Hillstrom.  The Hybrid algorithm retains the fast convergence of
     Newton's method but will also reduce the residual when Newton's
     method is unreliable.

     The algorithm uses a generalized trust region to keep each step
     under control.  In order to be accepted a proposed new position x'
     must satisfy the condition |D (x' - x)| < \delta, where D is a
     diagonal scaling matrix and \delta is the size of the trust
     region.  The components of D are computed internally, using the
     column norms of the Jacobian to estimate the sensitivity of the
     residual to each component of x.  This improves the behavior of the
     algorithm for badly scaled functions.

     On each iteration the algorithm first determines the standard
     Newton step by solving the system J dx = - f.  If this step falls
     inside the trust region it is used as a trial step in the next
     stage.  If not, the algorithm uses the linear combination of the
     Newton and gradient directions which is predicted to minimize the
     norm of the function while staying inside the trust region,

          dx = - \alpha J^{-1} f(x) - \beta \nabla |f(x)|^2.

     This combination of Newton and gradient directions is referred to
     as a "dogleg step".

     The proposed step is now tested by evaluating the function at the
     resulting point, x'.  If the step reduces the norm of the function
     sufficiently then it is accepted and size of the trust region is
     increased.  If the proposed step fails to improve the solution
     then the size of the trust region is decreased and another trial
     step is computed.

     The speed of the algorithm is increased by computing the changes
     to the Jacobian approximately, using a rank-1 update.  If two
     successive attempts fail to reduce the residual then the full
     Jacobian is recomputed.  The algorithm also monitors the progress
     of the solution and returns an error if several steps fail to make
     any improvement,

    `GSL_ENOPROG'
          the iteration is not making any progress, preventing the
          algorithm from continuing.

    `GSL_ENOPROGJ'
          re-evaluations of the Jacobian indicate that the iteration is
          not making any progress, preventing the algorithm from
          continuing.


 -- Derivative Solver: gsl_multiroot_fdfsolver_hybridj
     This algorithm is an unscaled version of `hybridsj'.  The steps are
     controlled by a spherical trust region |x' - x| < \delta, instead
     of a generalized region.  This can be useful if the generalized
     region estimated by `hybridsj' is inappropriate.

 -- Derivative Solver: gsl_multiroot_fdfsolver_newton
     Newton's Method is the standard root-polishing algorithm.  The
     algorithm begins with an initial guess for the location of the
     solution.  On each iteration a linear approximation to the
     function F is used to estimate the step which will zero all the
     components of the residual.  The iteration is defined by the
     following sequence,

          x -> x' = x - J^{-1} f(x)

     where the Jacobian matrix J is computed from the derivative
     functions provided by F.  The step dx is obtained by solving the
     linear system,

          J dx = - f(x)

     using LU decomposition.

 -- Derivative Solver: gsl_multiroot_fdfsolver_gnewton
     This is a modified version of Newton's method which attempts to
     improve global convergence by requiring every step to reduce the
     Euclidean norm of the residual, |f(x)|.  If the Newton step leads
     to an increase in the norm then a reduced step of relative size,

          t = (\sqrt(1 + 6 r) - 1) / (3 r)

     is proposed, with r being the ratio of norms |f(x')|^2/|f(x)|^2.
     This procedure is repeated until a suitable step size is found.


File: gsl-ref.info,  Node: Algorithms without Derivatives,  Next: Example programs for Multidimensional Root finding,  Prev: Algorithms using Derivatives,  Up: Multidimensional Root-Finding

34.7 Algorithms without Derivatives
===================================

The algorithms described in this section do not require any derivative
information to be supplied by the user.  Any derivatives needed are
approximated by finite differences.  Note that if the
finite-differencing step size chosen by these routines is inappropriate,
an explicit user-supplied numerical derivative can always be used with
the algorithms described in the previous section.

 -- Solver: gsl_multiroot_fsolver_hybrids
     This is a version of the Hybrid algorithm which replaces calls to
     the Jacobian function by its finite difference approximation.  The
     finite difference approximation is computed using
     `gsl_multiroots_fdjac' with a relative step size of
     `GSL_SQRT_DBL_EPSILON'.  Note that this step size will not be
     suitable for all problems.

 -- Solver: gsl_multiroot_fsolver_hybrid
     This is a finite difference version of the Hybrid algorithm without
     internal scaling.

 -- Solver: gsl_multiroot_fsolver_dnewton
     The "discrete Newton algorithm" is the simplest method of solving a
     multidimensional system.  It uses the Newton iteration

          x -> x - J^{-1} f(x)

     where the Jacobian matrix J is approximated by taking finite
     differences of the function F.  The approximation scheme used by
     this implementation is,

          J_{ij} = (f_i(x + \delta_j) - f_i(x)) /  \delta_j

     where \delta_j is a step of size \sqrt\epsilon |x_j| with \epsilon
     being the machine precision (\epsilon \approx 2.22 \times 10^-16).
     The order of convergence of Newton's algorithm is quadratic, but
     the finite differences require n^2 function evaluations on each
     iteration.  The algorithm may become unstable if the finite
     differences are not a good approximation to the true derivatives.

 -- Solver: gsl_multiroot_fsolver_broyden
     The "Broyden algorithm" is a version of the discrete Newton
     algorithm which attempts to avoids the expensive update of the
     Jacobian matrix on each iteration.  The changes to the Jacobian
     are also approximated, using a rank-1 update,

          J^{-1} \to J^{-1} - (J^{-1} df - dx) dx^T J^{-1} / dx^T J^{-1} df

     where the vectors dx and df are the changes in x and f.  On the
     first iteration the inverse Jacobian is estimated using finite
     differences, as in the discrete Newton algorithm.

     This approximation gives a fast update but is unreliable if the
     changes are not small, and the estimate of the inverse Jacobian
     becomes worse as time passes.  The algorithm has a tendency to
     become unstable unless it starts close to the root.  The Jacobian
     is refreshed if this instability is detected (consult the source
     for details).

     This algorithm is included only for demonstration purposes, and is
     not recommended for serious use.


File: gsl-ref.info,  Node: Example programs for Multidimensional Root finding,  Next: References and Further Reading for Multidimensional Root Finding,  Prev: Algorithms without Derivatives,  Up: Multidimensional Root-Finding

34.8 Examples
=============

The multidimensional solvers are used in a similar way to the
one-dimensional root finding algorithms.  This first example
demonstrates the `hybrids' scaled-hybrid algorithm, which does not
require derivatives. The program solves the Rosenbrock system of
equations,

     f_1 (x, y) = a (1 - x)
     f_2 (x, y) = b (y - x^2)

with a = 1, b = 10. The solution of this system lies at (x,y) = (1,1)
in a narrow valley.

   The first stage of the program is to define the system of equations,

     #include <stdlib.h>
     #include <stdio.h>
     #include <gsl/gsl_vector.h>
     #include <gsl/gsl_multiroots.h>

     struct rparams
       {
         double a;
         double b;
       };

     int
     rosenbrock_f (const gsl_vector * x, void *params,
                   gsl_vector * f)
     {
       double a = ((struct rparams *) params)->a;
       double b = ((struct rparams *) params)->b;

       const double x0 = gsl_vector_get (x, 0);
       const double x1 = gsl_vector_get (x, 1);

       const double y0 = a * (1 - x0);
       const double y1 = b * (x1 - x0 * x0);

       gsl_vector_set (f, 0, y0);
       gsl_vector_set (f, 1, y1);

       return GSL_SUCCESS;
     }

The main program begins by creating the function object `f', with the
arguments `(x,y)' and parameters `(a,b)'. The solver `s' is initialized
to use this function, with the `hybrids' method.

     int
     main (void)
     {
       const gsl_multiroot_fsolver_type *T;
       gsl_multiroot_fsolver *s;

       int status;
       size_t i, iter = 0;

       const size_t n = 2;
       struct rparams p = {1.0, 10.0};
       gsl_multiroot_function f = {&rosenbrock_f, n, &p};

       double x_init[2] = {-10.0, -5.0};
       gsl_vector *x = gsl_vector_alloc (n);

       gsl_vector_set (x, 0, x_init[0]);
       gsl_vector_set (x, 1, x_init[1]);

       T = gsl_multiroot_fsolver_hybrids;
       s = gsl_multiroot_fsolver_alloc (T, 2);
       gsl_multiroot_fsolver_set (s, &f, x);

       print_state (iter, s);

       do
         {
           iter++;
           status = gsl_multiroot_fsolver_iterate (s);

           print_state (iter, s);

           if (status)   /* check if solver is stuck */
             break;

           status =
             gsl_multiroot_test_residual (s->f, 1e-7);
         }
       while (status == GSL_CONTINUE && iter < 1000);

       printf ("status = %s\n", gsl_strerror (status));

       gsl_multiroot_fsolver_free (s);
       gsl_vector_free (x);
       return 0;
     }

Note that it is important to check the return status of each solver
step, in case the algorithm becomes stuck.  If an error condition is
detected, indicating that the algorithm cannot proceed, then the error
can be reported to the user, a new starting point chosen or a different
algorithm used.

   The intermediate state of the solution is displayed by the following
function.  The solver state contains the vector `s->x' which is the
current position, and the vector `s->f' with corresponding function
values.

     int
     print_state (size_t iter, gsl_multiroot_fsolver * s)
     {
       printf ("iter = %3u x = % .3f % .3f "
               "f(x) = % .3e % .3e\n",
               iter,
               gsl_vector_get (s->x, 0),
               gsl_vector_get (s->x, 1),
               gsl_vector_get (s->f, 0),
               gsl_vector_get (s->f, 1));
     }

Here are the results of running the program. The algorithm is started at
(-10,-5) far from the solution.  Since the solution is hidden in a
narrow valley the earliest steps follow the gradient of the function
downhill, in an attempt to reduce the large value of the residual. Once
the root has been approximately located, on iteration 8, the Newton
behavior takes over and convergence is very rapid.

     iter =  0 x = -10.000  -5.000  f(x) = 1.100e+01 -1.050e+03
     iter =  1 x = -10.000  -5.000  f(x) = 1.100e+01 -1.050e+03
     iter =  2 x =  -3.976  24.827  f(x) = 4.976e+00  9.020e+01
     iter =  3 x =  -3.976  24.827  f(x) = 4.976e+00  9.020e+01
     iter =  4 x =  -3.976  24.827  f(x) = 4.976e+00  9.020e+01
     iter =  5 x =  -1.274  -5.680  f(x) = 2.274e+00 -7.302e+01
     iter =  6 x =  -1.274  -5.680  f(x) = 2.274e+00 -7.302e+01
     iter =  7 x =   0.249   0.298  f(x) = 7.511e-01  2.359e+00
     iter =  8 x =   0.249   0.298  f(x) = 7.511e-01  2.359e+00
     iter =  9 x =   1.000   0.878  f(x) = 1.268e-10 -1.218e+00
     iter = 10 x =   1.000   0.989  f(x) = 1.124e-11 -1.080e-01
     iter = 11 x =   1.000   1.000  f(x) = 0.000e+00  0.000e+00
     status = success

Note that the algorithm does not update the location on every
iteration. Some iterations are used to adjust the trust-region
parameter, after trying a step which was found to be divergent, or to
recompute the Jacobian, when poor convergence behavior is detected.

   The next example program adds derivative information, in order to
accelerate the solution. There are two derivative functions
`rosenbrock_df' and `rosenbrock_fdf'. The latter computes both the
function and its derivative simultaneously. This allows the
optimization of any common terms.  For simplicity we substitute calls to
the separate `f' and `df' functions at this point in the code below.

     int
     rosenbrock_df (const gsl_vector * x, void *params,
                    gsl_matrix * J)
     {
       const double a = ((struct rparams *) params)->a;
       const double b = ((struct rparams *) params)->b;

       const double x0 = gsl_vector_get (x, 0);

       const double df00 = -a;
       const double df01 = 0;
       const double df10 = -2 * b  * x0;
       const double df11 = b;

       gsl_matrix_set (J, 0, 0, df00);
       gsl_matrix_set (J, 0, 1, df01);
       gsl_matrix_set (J, 1, 0, df10);
       gsl_matrix_set (J, 1, 1, df11);

       return GSL_SUCCESS;
     }

     int
     rosenbrock_fdf (const gsl_vector * x, void *params,
                     gsl_vector * f, gsl_matrix * J)
     {
       rosenbrock_f (x, params, f);
       rosenbrock_df (x, params, J);

       return GSL_SUCCESS;
     }

The main program now makes calls to the corresponding `fdfsolver'
versions of the functions,

     int
     main (void)
     {
       const gsl_multiroot_fdfsolver_type *T;
       gsl_multiroot_fdfsolver *s;

       int status;
       size_t i, iter = 0;

       const size_t n = 2;
       struct rparams p = {1.0, 10.0};
       gsl_multiroot_function_fdf f = {&rosenbrock_f,
                                       &rosenbrock_df,
                                       &rosenbrock_fdf,
                                       n, &p};

       double x_init[2] = {-10.0, -5.0};
       gsl_vector *x = gsl_vector_alloc (n);

       gsl_vector_set (x, 0, x_init[0]);
       gsl_vector_set (x, 1, x_init[1]);

       T = gsl_multiroot_fdfsolver_gnewton;
       s = gsl_multiroot_fdfsolver_alloc (T, n);
       gsl_multiroot_fdfsolver_set (s, &f, x);

       print_state (iter, s);

       do
         {
           iter++;

           status = gsl_multiroot_fdfsolver_iterate (s);

           print_state (iter, s);

           if (status)
             break;

           status = gsl_multiroot_test_residual (s->f, 1e-7);
         }
       while (status == GSL_CONTINUE && iter < 1000);

       printf ("status = %s\n", gsl_strerror (status));

       gsl_multiroot_fdfsolver_free (s);
       gsl_vector_free (x);
       return 0;
     }

The addition of derivative information to the `hybrids' solver does not
make any significant difference to its behavior, since it able to
approximate the Jacobian numerically with sufficient accuracy.  To
illustrate the behavior of a different derivative solver we switch to
`gnewton'. This is a traditional Newton solver with the constraint that
it scales back its step if the full step would lead "uphill". Here is
the output for the `gnewton' algorithm,

     iter = 0 x = -10.000  -5.000 f(x) =  1.100e+01 -1.050e+03
     iter = 1 x =  -4.231 -65.317 f(x) =  5.231e+00 -8.321e+02
     iter = 2 x =   1.000 -26.358 f(x) = -8.882e-16 -2.736e+02
     iter = 3 x =   1.000   1.000 f(x) = -2.220e-16 -4.441e-15
     status = success

The convergence is much more rapid, but takes a wide excursion out to
the point (-4.23,-65.3). This could cause the algorithm to go astray in
a realistic application.  The hybrid algorithm follows the downhill
path to the solution more reliably.


File: gsl-ref.info,  Node: References and Further Reading for Multidimensional Root Finding,  Prev: Example programs for Multidimensional Root finding,  Up: Multidimensional Root-Finding

34.9 References and Further Reading
===================================

The original version of the Hybrid method is described in the following
articles by Powell,

     M.J.D. Powell, "A Hybrid Method for Nonlinear Equations" (Chap 6, p
     87-114) and "A Fortran Subroutine for Solving systems of Nonlinear
     Algebraic Equations" (Chap 7, p 115-161), in `Numerical Methods for
     Nonlinear Algebraic Equations', P. Rabinowitz, editor.  Gordon and
     Breach, 1970.

The following papers are also relevant to the algorithms described in
this section,

     J.J. More', M.Y. Cosnard, "Numerical Solution of Nonlinear
     Equations", `ACM Transactions on Mathematical Software', Vol 5, No
     1, (1979), p 64-85

     C.G. Broyden, "A Class of Methods for Solving Nonlinear
     Simultaneous Equations", `Mathematics of Computation', Vol 19
     (1965), p 577-593

     J.J. More', B.S. Garbow, K.E. Hillstrom, "Testing Unconstrained
     Optimization Software", ACM Transactions on Mathematical Software,
     Vol 7, No 1 (1981), p 17-41


File: gsl-ref.info,  Node: Multidimensional Minimization,  Next: Least-Squares Fitting,  Prev: Multidimensional Root-Finding,  Up: Top

35 Multidimensional Minimization
********************************

This chapter describes routines for finding minima of arbitrary
multidimensional functions.  The library provides low level components
for a variety of iterative minimizers and convergence tests.  These can
be combined by the user to achieve the desired solution, while providing
full access to the intermediate steps of the algorithms.  Each class of
methods uses the same framework, so that you can switch between
minimizers at runtime without needing to recompile your program.  Each
instance of a minimizer keeps track of its own state, allowing the
minimizers to be used in multi-threaded programs. The minimization
algorithms can be used to maximize a function by inverting its sign.

   The header file `gsl_multimin.h' contains prototypes for the
minimization functions and related declarations.

* Menu:

* Multimin Overview::
* Multimin Caveats::
* Initializing the Multidimensional Minimizer::
* Providing a function to minimize::
* Multimin Iteration::
* Multimin Stopping Criteria::
* Multimin Algorithms::
* Multimin Examples::
* Multimin References and Further Reading::


File: gsl-ref.info,  Node: Multimin Overview,  Next: Multimin Caveats,  Up: Multidimensional Minimization

35.1 Overview
=============

The problem of multidimensional minimization requires finding a point x
such that the scalar function,

     f(x_1, ..., x_n)

takes a value which is lower than at any neighboring point. For smooth
functions the gradient g = \nabla f vanishes at the minimum. In general
there are no bracketing methods available for the minimization of
n-dimensional functions.  The algorithms proceed from an initial guess
using a search algorithm which attempts to move in a downhill direction.

   Algorithms making use of the gradient of the function perform a
one-dimensional line minimisation along this direction until the lowest
point is found to a suitable tolerance.  The search direction is then
updated with local information from the function and its derivatives,
and the whole process repeated until the true n-dimensional minimum is
found.

   The Nelder-Mead Simplex algorithm applies a different strategy.  It
maintains n+1 trial parameter vectors as the vertices of a
n-dimensional simplex.  In each iteration step it tries to improve the
worst vertex by a simple geometrical transformation until the size of
the simplex falls below a given tolerance.

   Both types of algorithms use a standard framework. The user provides
a high-level driver for the algorithms, and the library provides the
individual functions necessary for each of the steps.  There are three
main phases of the iteration.  The steps are,

   * initialize minimizer state, S, for algorithm T

   * update S using the iteration T

   * test S for convergence, and repeat iteration if necessary

Each iteration step consists either of an improvement to the
line-minimisation in the current direction or an update to the search
direction itself.  The state for the minimizers is held in a
`gsl_multimin_fdfminimizer' struct or a `gsl_multimin_fminimizer'
struct.


File: gsl-ref.info,  Node: Multimin Caveats,  Next: Initializing the Multidimensional Minimizer,  Prev: Multimin Overview,  Up: Multidimensional Minimization

35.2 Caveats
============

Note that the minimization algorithms can only search for one local
minimum at a time.  When there are several local minima in the search
area, the first minimum to be found will be returned; however it is
difficult to predict which of the minima this will be.  In most cases,
no error will be reported if you try to find a local minimum in an area
where there is more than one.

   It is also important to note that the minimization algorithms find
local minima; there is no way to determine whether a minimum is a global
minimum of the function in question.


File: gsl-ref.info,  Node: Initializing the Multidimensional Minimizer,  Next: Providing a function to minimize,  Prev: Multimin Caveats,  Up: Multidimensional Minimization

35.3 Initializing the Multidimensional Minimizer
================================================

The following function initializes a multidimensional minimizer.  The
minimizer itself depends only on the dimension of the problem and the
algorithm and can be reused for different problems.

 -- Function: gsl_multimin_fdfminimizer *
gsl_multimin_fdfminimizer_alloc (const gsl_multimin_fdfminimizer_type *
          T, size_t N)
 -- Function: gsl_multimin_fminimizer * gsl_multimin_fminimizer_alloc
          (const gsl_multimin_fminimizer_type * T, size_t N)
     This function returns a pointer to a newly allocated instance of a
     minimizer of type T for an N-dimension function.  If there is
     insufficient memory to create the minimizer then the function
     returns a null pointer and the error handler is invoked with an
     error code of `GSL_ENOMEM'.

 -- Function: int gsl_multimin_fdfminimizer_set
          (gsl_multimin_fdfminimizer * S, gsl_multimin_function_fdf *
          FDF, const gsl_vector * X, double STEP_SIZE, double TOL)
     This function initializes the minimizer S to minimize the function
     FDF starting from the initial point X.  The size of the first
     trial step is given by STEP_SIZE.  The accuracy of the line
     minimization is specified by TOL.  The precise meaning of this
     parameter depends on the method used.  Typically the line
     minimization is considered successful if the gradient of the
     function g is orthogonal to the current search direction p to a
     relative accuracy of TOL, where dot(p,g) < tol |p| |g|.  A TOL
     value of 0.1 is suitable for most purposes, since line
     minimization only needs to be carried out approximately.    Note
     that setting TOL to zero will force the use of "exact"
     line-searches, which are extremely expensive.

 -- Function: int gsl_multimin_fminimizer_set (gsl_multimin_fminimizer
          * S, gsl_multimin_function * F, const gsl_vector * X, const
          gsl_vector * STEP_SIZE)
     This function initializes the minimizer S to minimize the function
     F, starting from the initial point X. The size of the initial
     trial steps is given in vector STEP_SIZE. The precise meaning of
     this parameter depends on the method used.

 -- Function: void gsl_multimin_fdfminimizer_free
          (gsl_multimin_fdfminimizer * S)
 -- Function: void gsl_multimin_fminimizer_free
          (gsl_multimin_fminimizer * S)
     This function frees all the memory associated with the minimizer S.

 -- Function: const char * gsl_multimin_fdfminimizer_name (const
          gsl_multimin_fdfminimizer * S)
 -- Function: const char * gsl_multimin_fminimizer_name (const
          gsl_multimin_fminimizer * S)
     This function returns a pointer to the name of the minimizer.  For
     example,

          printf ("s is a '%s' minimizer\n",
                  gsl_multimin_fdfminimizer_name (s));

     would print something like `s is a 'conjugate_pr' minimizer'.


File: gsl-ref.info,  Node: Providing a function to minimize,  Next: Multimin Iteration,  Prev: Initializing the Multidimensional Minimizer,  Up: Multidimensional Minimization

35.4 Providing a function to minimize
=====================================

You must provide a parametric function of n variables for the
minimizers to operate on.  You may also need to provide a routine which
calculates the gradient of the function and a third routine which
calculates both the function value and the gradient together.  In order
to allow for general parameters the functions are defined by the
following data types:

 -- Data Type: gsl_multimin_function_fdf
     This data type defines a general function of n variables with
     parameters and the corresponding gradient vector of derivatives,

    `double (* f) (const gsl_vector * X, void * PARAMS)'
          this function should return the result f(x,params) for
          argument X and parameters PARAMS.

    `void (* df) (const gsl_vector * X, void * PARAMS, gsl_vector * G)'
          this function should store the N-dimensional gradient g_i = d
          f(x,params) / d x_i in the vector G for argument X and
          parameters PARAMS, returning an appropriate error code if the
          function cannot be computed.

    `void (* fdf) (const gsl_vector * X, void * PARAMS, double * f, gsl_vector * G)'
          This function should set the values of the F and G as above,
          for arguments X and parameters PARAMS.  This function
          provides an optimization of the separate functions for f(x)
          and g(x)--it is always faster to compute the function and its
          derivative at the same time.

    `size_t n'
          the dimension of the system, i.e. the number of components of
          the vectors X.

    `void * params'
          a pointer to the parameters of the function.

 -- Data Type: gsl_multimin_function
     This data type defines a general function of n variables with
     parameters,

    `double (* f) (const gsl_vector * X, void * PARAMS)'
          this function should return the result f(x,params) for
          argument X and parameters PARAMS.

    `size_t n'
          the dimension of the system, i.e. the number of components of
          the vectors X.

    `void * params'
          a pointer to the parameters of the function.

The following example function defines a simple paraboloid with two
parameters,

     /* Paraboloid centered on (dp[0],dp[1]) */

     double
     my_f (const gsl_vector *v, void *params)
     {
       double x, y;
       double *dp = (double *)params;

       x = gsl_vector_get(v, 0);
       y = gsl_vector_get(v, 1);

       return 10.0 * (x - dp[0]) * (x - dp[0]) +
                20.0 * (y - dp[1]) * (y - dp[1]) + 30.0;
     }

     /* The gradient of f, df = (df/dx, df/dy). */
     void
     my_df (const gsl_vector *v, void *params,
            gsl_vector *df)
     {
       double x, y;
       double *dp = (double *)params;

       x = gsl_vector_get(v, 0);
       y = gsl_vector_get(v, 1);

       gsl_vector_set(df, 0, 20.0 * (x - dp[0]));
       gsl_vector_set(df, 1, 40.0 * (y - dp[1]));
     }

     /* Compute both f and df together. */
     void
     my_fdf (const gsl_vector *x, void *params,
             double *f, gsl_vector *df)
     {
       *f = my_f(x, params);
       my_df(x, params, df);
     }

The function can be initialized using the following code,

     gsl_multimin_function_fdf my_func;

     double p[2] = { 1.0, 2.0 }; /* center at (1,2) */

     my_func.f = &my_f;
     my_func.df = &my_df;
     my_func.fdf = &my_fdf;
     my_func.n = 2;
     my_func.params = (void *)p;


File: gsl-ref.info,  Node: Multimin Iteration,  Next: Multimin Stopping Criteria,  Prev: Providing a function to minimize,  Up: Multidimensional Minimization

35.5 Iteration
==============

The following function drives the iteration of each algorithm.  The
function performs one iteration to update the state of the minimizer.
The same function works for all minimizers so that different methods can
be substituted at runtime without modifications to the code.

 -- Function: int gsl_multimin_fdfminimizer_iterate
          (gsl_multimin_fdfminimizer * S)
 -- Function: int gsl_multimin_fminimizer_iterate
          (gsl_multimin_fminimizer * S)
     These functions perform a single iteration of the minimizer S.  If
     the iteration encounters an unexpected problem then an error code
     will be returned.

The minimizer maintains a current best estimate of the minimum at all
times.  This information can be accessed with the following auxiliary
functions,

 -- Function: gsl_vector * gsl_multimin_fdfminimizer_x (const
          gsl_multimin_fdfminimizer * S)
 -- Function: gsl_vector * gsl_multimin_fminimizer_x (const
          gsl_multimin_fminimizer * S)
 -- Function: double gsl_multimin_fdfminimizer_minimum (const
          gsl_multimin_fdfminimizer * S)
 -- Function: double gsl_multimin_fminimizer_minimum (const
          gsl_multimin_fminimizer * S)
 -- Function: gsl_vector * gsl_multimin_fdfminimizer_gradient (const
          gsl_multimin_fdfminimizer * S)
 -- Function: double gsl_multimin_fminimizer_size (const
          gsl_multimin_fminimizer * S)
     These functions return the current best estimate of the location
     of the minimum, the value of the function at that point, its
     gradient, and minimizer specific characteristic size for the
     minimizer S.

 -- Function: int gsl_multimin_fdfminimizer_restart
          (gsl_multimin_fdfminimizer * S)
     This function resets the minimizer S to use the current point as a
     new starting point.


File: gsl-ref.info,  Node: Multimin Stopping Criteria,  Next: Multimin Algorithms,  Prev: Multimin Iteration,  Up: Multidimensional Minimization

35.6 Stopping Criteria
======================

A minimization procedure should stop when one of the following
conditions is true:

   * A minimum has been found to within the user-specified precision.

   * A user-specified maximum number of iterations has been reached.

   * An error has occurred.

The handling of these conditions is under user control.  The functions
below allow the user to test the precision of the current result.

 -- Function: int gsl_multimin_test_gradient (const gsl_vector * G,
          double EPSABS)
     This function tests the norm of the gradient G against the
     absolute tolerance EPSABS. The gradient of a multidimensional
     function goes to zero at a minimum. The test returns `GSL_SUCCESS'
     if the following condition is achieved,

          |g| < epsabs

     and returns `GSL_CONTINUE' otherwise.  A suitable choice of EPSABS
     can be made from the desired accuracy in the function for small
     variations in x.  The relationship between these quantities is
     given by \delta f = g \delta x.

 -- Function: int gsl_multimin_test_size (const double SIZE, double
          EPSABS)
     This function tests the minimizer specific characteristic size (if
     applicable to the used minimizer) against absolute tolerance
     EPSABS.  The test returns `GSL_SUCCESS' if the size is smaller
     than tolerance, otherwise `GSL_CONTINUE' is returned.


File: gsl-ref.info,  Node: Multimin Algorithms,  Next: Multimin Examples,  Prev: Multimin Stopping Criteria,  Up: Multidimensional Minimization

35.7 Algorithms
===============

There are several minimization methods available. The best choice of
algorithm depends on the problem.  All of the algorithms use the value
of the function and its gradient at each evaluation point, except for
the Simplex algorithm which uses function values only.

 -- Minimizer: gsl_multimin_fdfminimizer_conjugate_fr
     This is the Fletcher-Reeves conjugate gradient algorithm. The
     conjugate gradient algorithm proceeds as a succession of line
     minimizations. The sequence of search directions is used to build
     up an approximation to the curvature of the function in the
     neighborhood of the minimum.

     An initial search direction P is chosen using the gradient, and
     line minimization is carried out in that direction.  The accuracy
     of the line minimization is specified by the parameter TOL.  The
     minimum along this line occurs when the function gradient G and
     the search direction P are orthogonal.  The line minimization
     terminates when dot(p,g) < tol |p| |g|.  The search direction is
     updated  using the Fletcher-Reeves formula p' = g' - \beta g where
     \beta=-|g'|^2/|g|^2, and the line minimization is then repeated
     for the new search direction.

 -- Minimizer: gsl_multimin_fdfminimizer_conjugate_pr
     This is the Polak-Ribiere conjugate gradient algorithm.  It is
     similar to the Fletcher-Reeves method, differing only in the
     choice of the coefficient \beta. Both methods work well when the
     evaluation point is close enough to the minimum of the objective
     function that it is well approximated by a quadratic hypersurface.

 -- Minimizer: gsl_multimin_fdfminimizer_vector_bfgs2
 -- Minimizer: gsl_multimin_fdfminimizer_vector_bfgs
     These methods use the vector Broyden-Fletcher-Goldfarb-Shanno
     (BFGS) algorithm.  This is a quasi-Newton method which builds up
     an approximation to the second derivatives of the function f using
     the difference between successive gradient vectors.  By combining
     the first and second derivatives the algorithm is able to take
     Newton-type steps towards the function minimum, assuming quadratic
     behavior in that region.

     The `bfgs2' version of this minimizer is the most efficient
     version available, and is a faithful implementation of the line
     minimization scheme described in Fletcher's `Practical Methods of
     Optimization', Algorithms 2.6.2 and 2.6.4.  It supercedes the
     original `bfgs' routine and requires substantially fewer function
     and gradient evaluations.  The user-supplied tolerance TOL
     corresponds to the parameter \sigma used by Fletcher.  A value of
     0.1 is recommended for typical use (larger values correspond to
     less accurate line searches).


 -- Minimizer: gsl_multimin_fdfminimizer_steepest_descent
     The steepest descent algorithm follows the downhill gradient of the
     function at each step. When a downhill step is successful the
     step-size is increased by a factor of two.  If the downhill step
     leads to a higher function value then the algorithm backtracks and
     the step size is decreased using the parameter TOL.  A suitable
     value of TOL for most applications is 0.1.  The steepest descent
     method is inefficient and is included only for demonstration
     purposes.

 -- Minimizer: gsl_multimin_fminimizer_nmsimplex
     This is the Simplex algorithm of Nelder and Mead. It constructs n
     vectors p_i from the starting vector X and the vector STEP_SIZE as
     follows:

          p_0 = (x_0, x_1, ... , x_n)
          p_1 = (x_0 + step_size_0, x_1, ... , x_n)
          p_2 = (x_0, x_1 + step_size_1, ... , x_n)
          ... = ...
          p_n = (x_0, x_1, ... , x_n+step_size_n)

     These vectors form the n+1 vertices of a simplex in n dimensions.
     On each iteration the algorithm tries to improve the parameter
     vector p_i corresponding to the highest function value by simple
     geometrical transformations.  These are reflection, reflection
     followed by expansion, contraction and multiple contraction. Using
     these transformations the simplex moves through the parameter
     space towards the minimum, where it contracts itself.

     After each iteration, the best vertex is returned.  Note, that due
     to the nature of the algorithm not every step improves the current
     best parameter vector.  Usually several iterations are required.

     The routine calculates the minimizer specific characteristic size
     as the average distance from the geometrical center of the simplex
     to all its vertices.  This size can be used as a stopping
     criteria, as the simplex contracts itself near the minimum. The
     size is returned by the function `gsl_multimin_fminimizer_size'.


File: gsl-ref.info,  Node: Multimin Examples,  Next: Multimin References and Further Reading,  Prev: Multimin Algorithms,  Up: Multidimensional Minimization

35.8 Examples
=============

This example program finds the minimum of the paraboloid function
defined earlier.  The location of the minimum is offset from the origin
in x and y, and the function value at the minimum is non-zero. The main
program is given below, it requires the example function given earlier
in this chapter.

     int
     main (void)
     {
       size_t iter = 0;
       int status;

       const gsl_multimin_fdfminimizer_type *T;
       gsl_multimin_fdfminimizer *s;

       /* Position of the minimum (1,2). */
       double par[2] = { 1.0, 2.0 };

       gsl_vector *x;
       gsl_multimin_function_fdf my_func;

       my_func.f = &my_f;
       my_func.df = &my_df;
       my_func.fdf = &my_fdf;
       my_func.n = 2;
       my_func.params = &par;

       /* Starting point, x = (5,7) */
       x = gsl_vector_alloc (2);
       gsl_vector_set (x, 0, 5.0);
       gsl_vector_set (x, 1, 7.0);

       T = gsl_multimin_fdfminimizer_conjugate_fr;
       s = gsl_multimin_fdfminimizer_alloc (T, 2);

       gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.01, 1e-4);

       do
         {
           iter++;
           status = gsl_multimin_fdfminimizer_iterate (s);

           if (status)
             break;

           status = gsl_multimin_test_gradient (s->gradient, 1e-3);

           if (status == GSL_SUCCESS)
             printf ("Minimum found at:\n");

           printf ("%5d %.5f %.5f %10.5f\n", iter,
                   gsl_vector_get (s->x, 0),
                   gsl_vector_get (s->x, 1),
                   s->f);

         }
       while (status == GSL_CONTINUE && iter < 100);

       gsl_multimin_fdfminimizer_free (s);
       gsl_vector_free (x);

       return 0;
     }

The initial step-size is chosen as 0.01, a conservative estimate in this
case, and the line minimization parameter is set at 0.0001.  The program
terminates when the norm of the gradient has been reduced below 0.001.
The output of the program is shown below,

              x       y         f
         1 4.99629 6.99072  687.84780
         2 4.98886 6.97215  683.55456
         3 4.97400 6.93501  675.01278
         4 4.94429 6.86073  658.10798
         5 4.88487 6.71217  625.01340
         6 4.76602 6.41506  561.68440
         7 4.52833 5.82083  446.46694
         8 4.05295 4.63238  261.79422
         9 3.10219 2.25548   75.49762
        10 2.85185 1.62963   67.03704
        11 2.19088 1.76182   45.31640
        12 0.86892 2.02622   30.18555
     Minimum found at:
        13 1.00000 2.00000   30.00000

Note that the algorithm gradually increases the step size as it
successfully moves downhill, as can be seen by plotting the successive
points.

The conjugate gradient algorithm finds the minimum on its second
direction because the function is purely quadratic. Additional
iterations would be needed for a more complicated function.

   Here is another example using the Nelder-Mead Simplex algorithm to
minimize the same example object function, as above.

     int
     main(void)
     {
       size_t np = 2;
       double par[2] = {1.0, 2.0};

       const gsl_multimin_fminimizer_type *T =
         gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *s = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;

       size_t iter = 0, i;
       int status;
       double size;

       /* Initial vertex size vector */
       ss = gsl_vector_alloc (np);

       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 1.0);

       /* Starting point */
       x = gsl_vector_alloc (np);

       gsl_vector_set (x, 0, 5.0);
       gsl_vector_set (x, 1, 7.0);

       /* Initialize method and iterate */
       minex_func.f = &my_f;
       minex_func.n = np;
       minex_func.params = (void *)&par;

       s = gsl_multimin_fminimizer_alloc (T, np);
       gsl_multimin_fminimizer_set (s, &minex_func, x, ss);

       do
         {
           iter++;
           status = gsl_multimin_fminimizer_iterate(s);

           if (status)
             break;

           size = gsl_multimin_fminimizer_size (s);
           status = gsl_multimin_test_size (size, 1e-2);

           if (status == GSL_SUCCESS)
             {
               printf ("converged to minimum at\n");
             }

           printf ("%5d ", iter);
           for (i = 0; i < np; i++)
             {
               printf ("%10.3e ", gsl_vector_get (s->x, i));
             }
           printf ("f() = %7.3f size = %.3f\n", s->fval, size);
         }
       while (status == GSL_CONTINUE && iter < 100);

       gsl_vector_free(x);
       gsl_vector_free(ss);
       gsl_multimin_fminimizer_free (s);

       return status;
     }

The minimum search stops when the Simplex size drops to 0.01. The
output is shown below.

         1  6.500e+00  5.000e+00 f() = 512.500 size = 1.082
         2  5.250e+00  4.000e+00 f() = 290.625 size = 1.372
         3  5.250e+00  4.000e+00 f() = 290.625 size = 1.372
         4  5.500e+00  1.000e+00 f() = 252.500 size = 1.372
         5  2.625e+00  3.500e+00 f() = 101.406 size = 1.823
         6  3.469e+00  1.375e+00 f() = 98.760  size = 1.526
         7  1.820e+00  3.156e+00 f() = 63.467  size = 1.105
         8  1.820e+00  3.156e+00 f() = 63.467  size = 1.105
         9  1.016e+00  2.812e+00 f() = 43.206  size = 1.105
        10  2.041e+00  2.008e+00 f() = 40.838  size = 0.645
        11  1.236e+00  1.664e+00 f() = 32.816  size = 0.645
        12  1.236e+00  1.664e+00 f() = 32.816  size = 0.447
        13  5.225e-01  1.980e+00 f() = 32.288  size = 0.447
        14  1.103e+00  2.073e+00 f() = 30.214  size = 0.345
        15  1.103e+00  2.073e+00 f() = 30.214  size = 0.264
        16  1.103e+00  2.073e+00 f() = 30.214  size = 0.160
        17  9.864e-01  1.934e+00 f() = 30.090  size = 0.132
        18  9.190e-01  1.987e+00 f() = 30.069  size = 0.092
        19  1.028e+00  2.017e+00 f() = 30.013  size = 0.056
        20  1.028e+00  2.017e+00 f() = 30.013  size = 0.046
        21  1.028e+00  2.017e+00 f() = 30.013  size = 0.033
        22  9.874e-01  1.985e+00 f() = 30.006  size = 0.028
        23  9.846e-01  1.995e+00 f() = 30.003  size = 0.023
        24  1.007e+00  2.003e+00 f() = 30.001  size = 0.012
     converged to minimum at
        25  1.007e+00  2.003e+00 f() = 30.001  size = 0.010

The simplex size first increases, while the simplex moves towards the
minimum. After a while the size begins to decrease as the simplex
contracts around the minimum.


File: gsl-ref.info,  Node: Multimin References and Further Reading,  Prev: Multimin Examples,  Up: Multidimensional Minimization

35.9 References and Further Reading
===================================

The conjugate gradient and BFGS methods are described in detail in the
following book,

     R. Fletcher, `Practical Methods of Optimization (Second Edition)'
     Wiley (1987), ISBN 0471915475.

   A brief description of multidimensional minimization algorithms and
more recent references can be found in,

     C.W. Ueberhuber, `Numerical Computation (Volume 2)', Chapter 14,
     Section 4.4 "Minimization Methods", p. 325-335, Springer (1997),
     ISBN 3-540-62057-5.

The simplex algorithm is described in the following paper,

     J.A. Nelder and R. Mead, `A simplex method for function
     minimization', Computer Journal vol. 7 (1965), 308-315.



File: gsl-ref.info,  Node: Least-Squares Fitting,  Next: Nonlinear Least-Squares Fitting,  Prev: Multidimensional Minimization,  Up: Top

36 Least-Squares Fitting
************************

This chapter describes routines for performing least squares fits to
experimental data using linear combinations of functions.  The data may
be weighted or unweighted, i.e. with known or unknown errors.  For
weighted data the functions compute the best fit parameters and their
associated covariance matrix.  For unweighted data the covariance
matrix is estimated from the scatter of the points, giving a
variance-covariance matrix.

   The functions are divided into separate versions for simple one- or
two-parameter regression and multiple-parameter fits.  The functions
are declared in the header file `gsl_fit.h'.

* Menu:

* Fitting Overview::
* Linear regression::
* Linear fitting without a constant term::
* Multi-parameter fitting::
* Fitting Examples::
* Fitting References and Further Reading::


File: gsl-ref.info,  Node: Fitting Overview,  Next: Linear regression,  Up: Least-Squares Fitting

36.1 Overview
=============

Least-squares fits are found by minimizing \chi^2 (chi-squared), the
weighted sum of squared residuals over n experimental datapoints (x_i,
y_i) for the model Y(c,x),

     \chi^2 = \sum_i w_i (y_i - Y(c, x_i))^2

The p parameters of the model are c = {c_0, c_1, ...}.  The weight
factors w_i are given by w_i = 1/\sigma_i^2, where \sigma_i is the
experimental error on the data-point y_i.  The errors are assumed to be
gaussian and uncorrelated.  For unweighted data the chi-squared sum is
computed without any weight factors.

   The fitting routines return the best-fit parameters c and their p
\times p covariance matrix.  The covariance matrix measures the
statistical errors on the best-fit parameters resulting from the errors
on the data, \sigma_i, and is defined as C_{ab} = <\delta c_a \delta
c_b> where < > denotes an average over the gaussian error distributions
of the underlying datapoints.

   The covariance matrix is calculated by error propagation from the
data errors \sigma_i.  The change in a fitted parameter \delta c_a
caused by a small change in the data \delta y_i is given by

     \delta c_a = \sum_i (dc_a/dy_i) \delta y_i

allowing the covariance matrix to be written in terms of the errors on
the data,

     C_{ab} = \sum_{i,j} (dc_a/dy_i) (dc_b/dy_j) <\delta y_i \delta y_j>

For uncorrelated data the fluctuations of the underlying datapoints
satisfy <\delta y_i \delta y_j> = \sigma_i^2 \delta_{ij}, giving a
corresponding parameter covariance matrix of

     C_{ab} = \sum_i (1/w_i) (dc_a/dy_i) (dc_b/dy_i)

When computing the covariance matrix for unweighted data, i.e. data
with unknown errors, the weight factors w_i in this sum are replaced by
the single estimate w = 1/\sigma^2, where \sigma^2 is the computed
variance of the residuals about the best-fit model, \sigma^2 = \sum
(y_i - Y(c,x_i))^2 / (n-p).  This is referred to as the
"variance-covariance matrix".  

   The standard deviations of the best-fit parameters are given by the
square root of the corresponding diagonal elements of the covariance
matrix, \sigma_{c_a} = \sqrt{C_{aa}}.


File: gsl-ref.info,  Node: Linear regression,  Next: Linear fitting without a constant term,  Prev: Fitting Overview,  Up: Least-Squares Fitting

36.2 Linear regression
======================

The functions described in this section can be used to perform
least-squares fits to a straight line model, Y(c,x) = c_0 + c_1 x.

 -- Function: int gsl_fit_linear (const double * X, const size_t
          XSTRIDE, const double * Y, const size_t YSTRIDE, size_t N,
          double * C0, double * C1, double * COV00, double * COV01,
          double * COV11, double * SUMSQ)
     This function computes the best-fit linear regression coefficients
     (C0,C1) of the model Y = c_0 + c_1 X for the dataset (X, Y), two
     vectors of length N with strides XSTRIDE and YSTRIDE.  The errors
     on Y are assumed unknown so the variance-covariance matrix for the
     parameters (C0, C1) is estimated from the scatter of the points
     around the best-fit line and returned via the parameters (COV00,
     COV01, COV11).  The sum of squares of the residuals from the
     best-fit line is returned in SUMSQ.

 -- Function: int gsl_fit_wlinear (const double * X, const size_t
          XSTRIDE, const double * W, const size_t WSTRIDE, const double
          * Y, const size_t YSTRIDE, size_t N, double * C0, double *
          C1, double * COV00, double * COV01, double * COV11, double *
          CHISQ)
     This function computes the best-fit linear regression coefficients
     (C0,C1) of the model Y = c_0 + c_1 X for the weighted dataset (X,
     Y), two vectors of length N with strides XSTRIDE and YSTRIDE.  The
     vector W, of length N and stride WSTRIDE, specifies the weight of
     each datapoint. The weight is the reciprocal of the variance for
     each datapoint in Y.

     The covariance matrix for the parameters (C0, C1) is computed
     using the weights and returned via the parameters (COV00, COV01,
     COV11).  The weighted sum of squares of the residuals from the
     best-fit line, \chi^2, is returned in CHISQ.

 -- Function: int gsl_fit_linear_est (double X, double C0, double C1,
          double C00, double C01, double C11, double * Y, double *
          Y_ERR)
     This function uses the best-fit linear regression coefficients
     C0,C1 and their covariance COV00,COV01,COV11 to compute the fitted
     function Y and its standard deviation Y_ERR for the model Y = c_0
     + c_1 X at the point X.