summaryrefslogtreecommitdiff
path: root/gsl-1.9/doc/fftalgorithms.tex
blob: 4f4a72533c2f4257cb9c61fea42639b6e8e9d987 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
\documentclass[fleqn,12pt]{article}
%
\setlength{\oddsidemargin}{-0.25in}
\setlength{\textwidth}{7.0in}
\setlength{\topmargin}{-0.25in}
\setlength{\textheight}{9.5in}
%
\usepackage{algorithmic}
\newenvironment{algorithm}{\begin{quote} %\vspace{1em}
\begin{algorithmic}\samepage}{\end{algorithmic} %\vspace{1em} 
\end{quote}}
\newcommand{\Real}{\mathop{\mathrm{Re}}}
\newcommand{\Imag}{\mathop{\mathrm{Im}}}

\begin{document}
\title{FFT Algorithms}
\author{Brian Gough, {\tt bjg@network-theory.co.uk}}
\date{May 1997}
\maketitle

\section{Introduction}

Fast Fourier Transforms (FFTs) are efficient algorithms for
calculating the discrete fourier transform (DFT),
%
\begin{eqnarray}
h_a &=& \mathrm{DFT}(g_b) \\
    &=& \sum_{b=0}^{N-1} g_b \exp(-2\pi i a b /N) \qquad 0 \leq a \leq N-1\\
    &=& \sum_{b=0}^{N-1} g_b W_N^{ab} \qquad W_N= \exp(-2\pi i/N)
\end{eqnarray}
%
The DFT usually arises as an approximation to the continuous fourier
transform when functions are sampled at discrete intervals in space or
time. The naive evaluation of the discrete fourier transform is a
matrix-vector multiplication ${\mathbf W}\vec{g}$, and would take
$O(N^2)$ operations for $N$ data-points. The general principle of the
Fast Fourier Transform algorithms is to use a divide-and-conquer
strategy to factorize the matrix $W$ into smaller sub-matrices,
typically reducing the operation count to $O(N \sum f_i)$ if $N$ can
be factorized into smaller integers, $N=f_1 f_2 \dots f_n$.

This chapter explains the algorithms used in the GSL FFT routines
and provides some information on how to extend them. To learn more about
the FFT you should read the review article {\em Fast Fourier
Transforms: A Tutorial Review and A State of the Art} by Duhamel and
Vetterli~\cite{duhamel90}. There are several introductory books on the
FFT with example programs, such as {\em The Fast Fourier Transform} by
Brigham~\cite{brigham74} and {\em DFT/FFT and Convolution Algorithms}
by Burrus and Parks~\cite{burrus84}. In 1979 the IEEE published a
compendium of carefully-reviewed Fortran FFT programs in {\em Programs
for Digital Signal Processing}~\cite{committee79} which is a useful
reference for implementations of many different FFT algorithms. If you
are interested in using DSPs then the {\em Handbook of Real-Time Fast
Fourier Transforms}~\cite{smith95} provides detailed information on
the algorithms and hardware needed to design, build and test DSP
applications. Many FFT algorithms rely on results from number theory.
These results are covered in the books {\em Fast transforms:
algorithms, analyses, applications}, by Elliott and
Rao~\cite{elliott82}, {\em Fast Algorithms for Digital Signal
Processing} by Blahut~\cite{blahut} and {\em Number Theory in Digital
Signal Processing} by McClellan and Rader~\cite{mcclellan79}. There is
also an annotated bibliography of papers on the FFT and related topics
by Burrus~\cite{burrus-note}.

\section{Families of FFT algorithms}
%
There are two main families of FFT algorithms: the Cooley-Tukey
algorithm and the Prime Factor algorithm. These differ in the way they
map the full FFT into smaller sub-transforms. Of the Cooley-Tukey
algorithms there are two types of routine in common use: mixed-radix
(general-$N$) algorithms and radix-2 (power of 2) algorithms. Each
type of algorithm can be further classified by additional characteristics,
such as whether it operates in-place or uses additional scratch space,
whether its output is in a sorted or scrambled order, and whether it
uses decimation-in-time or -frequency iterations.

Mixed-radix algorithms work by factorizing the data vector into
shorter lengths. These can then be transformed by small-$N$ FFTs.
Typical programs include FFTs for small prime factors, such as 2, 3,
5, \dots which are highly optimized. The small-$N$ FFT modules act as
building blocks and can be multiplied together to make longer
transforms. By combining a reasonable set of modules it is possible to
compute FFTs of many different lengths. If the small-$N$ modules are
supplemented by an $O(N^2)$ general-$N$ module then an FFT of any
length can be computed, in principle. Of course, any lengths which
contain large prime factors would perform only as $O(N^2)$.

Radix-2 algorithms, or ``power of two'' algorithms, are simplified
versions of the mixed-radix algorithm. They are restricted to lengths
which are a power of two. The basic radix-2 FFT module only involves
addition and subtraction, so the algorithms are very simple. Radix-2
algorithms have been the subject of much research into optimizing the
FFT. Many of the most efficient radix-2 routines are based on the
``split-radix'' algorithm. This is actually a hybrid which combines
the best parts of both radix-2 and radix-4 (``power of 4'')
algorithms~\cite{sorenson86,duhamel86}.

The prime factor algorithm (PFA) is an alternative form of general-$N$
algorithm based on a different way of recombining small-$N$ FFT
modules~\cite{temperton83pfa,temperton85}. It has a very simple indexing
scheme which makes it attractive. However it only works in the case
where all factors are mutually prime. This requirement makes it more
suitable as a specialized algorithm for given lengths.


\begin{subsection}{FFTs of prime lengths}
%
  Large prime lengths cannot be handled efficiently by any of these
algorithms. However it may still possible to compute a DFT, by using
results from number theory. Rader showed that it is possible to
convert a length-$p$ FFT (where $p$ is prime) into a convolution of
length-($p-1$).  There is a simple identity between the convolution of
length $N$ and the FFT of the same length, so if $p-1$ is easily
factorizable this allows the convolution to be computed efficiently
via the FFT. The idea is presented in the original paper by
Rader~\cite{raderprimes} (also reprinted in~\cite{mcclellan79}), but
for more details see the theoretical books mentioned earlier.
\end{subsection}

%\subsection{In-place algorithms vs algorithms using scratch space}
%%
%For simple algorithms, such as the Radix-2 algorithms, the FFT can be
%performed in-place, without additional memory. For this to be possible
%the index calculations must be simple enough that the calculation of
%the result to be stored in index $k$ can be carried out at the same
%time as the data in $k$ is used, so that no temporary storage is
%needed.

%The mixed-radix algorithm is too complicated for this. It requires an
%area of scratch space sufficient to hold intermediate copies of the
%input data.

%\subsection{Self-sorting algorithms vs scrambling algorithms}
%%
%A self-sorting algorithm At each iteration of the FFT internal permutations are included
%which leave the final iteration in its natural order.


%The mixed-radix algorithm can be made self-sorting. The additional
%scratch space helps here, although it is in fact possible to design
%self-sorting algorithms which do not require scratch
%space. 


%The in-place radix-2 algorithm is not self-sorting. The data is
%permuted, and transformed into bit-reversed order. Note that
%bit-reversal only refers to the order of the array, not the values for
%each index which are of course not changed. More precisely, the data
%stored in location $[b_n \dots b_2 b_1 b_0]$ is moved to location
%$[b_0 b_1 b_2 \dots b_n]$, where $b_0 \dots b_n$ are the raw bits of a
%given index. Placing the data in bit reversed order is easily done,
%using right shifts to extract the least significant bits of the index
%and left-shifts to feed them into a register for the bit-reversed
%location. Simple radix-2 FFT usually recompute the bit reverse
%ordering in the naive way for every call. For repeated calls it might
%be worthwhile to precompute the permutation and cache it. There are
%also more sophisticated algorithms which reduce the number of
%operations needed to perform bit-reversal~\cite{bit-reversal}.


%\begin{subsection}{Decimation-in-time (DIT) vs Decimation-in-Frequency (DIF)}

%\end{subsection}


\subsection{Optimization}
%
There is no such thing as the single fastest FFT {\em algorithm}. FFT
algorithms involve a mixture of floating point calculations, integer
arithmetic and memory access. Each of these operations will have
different relative speeds on different platforms.  The performance of
an algorithm is a function of the hardware it is implemented on.  The
goal of optimization is thus to choose the algorithm best suited to
the characteristics of a given hardware platform.

For example, the Winograd Fourier Transform (WFTA) is an algorithm
which is designed to reduce the number of floating point
multiplications in the FFT. However, it does this at the expense of
using many more additions and data transfers than other algorithms.
As a consequence the WFTA might be a good candidate algorithm for
machines where data transfers occupy a negligible time relative to
floating point arithmetic. However on most modern machines, where the
speed of data transfers is comparable to or slower than floating point
operations, it would be outperformed by an algorithm which used a
better mix of operations (i.e. more floating point operations but
fewer data transfers).

For a study of this sort of effect in detail, comparing the different
algorithms on different platforms consult the paper {\it Effects of
Architecture Implementation on DFT Algorithm Performance} by Mehalic,
Rustan and Route~\cite{mehalic85}. The paper was written in the early
1980's and has data for super- and mini-computers which you are
unlikely to see today, except in a museum. However, the methodology is
still valid and it would be interesting to see similar results for
present day computers.


\section{FFT Concepts}
%
Factorization is the key principle of the mixed-radix FFT divide-and-conquer
strategy. If $N$ can be factorized into a product of $n_f$ integers,
%
\begin{equation}
N = f_1 f_2 ... f_{n_f} ,
\end{equation}
%
then the FFT itself can be divided into smaller FFTs for each factor.
More precisely, an FFT of length $N$ can be broken up into,
%
\begin{quote}
\begin{tabular}{l}
$(N/f_1)$ FFTs of length $f_1$, \\
$(N/f_2)$ FFTs of length $f_2$, \\
\dots \\
$(N/f_{n_f})$ FFTs of length $f_{n_f}$. 
\end{tabular}
\end{quote}
%
The total number of operations for these sub-operations will be $O(
N(f_1 + f_2 + ... + f_{n_f}))$. When the factors of $N$ are all small
integers this will be substantially less than $O(N^2)$. For example,
when $N$ is a power of 2 an FFT of length $N=2^m$ can be reduced to $m
N/2$ FFTs of length 2, or $O(N\log_2 N)$ operations.  Here is a
demonstration which shows this:

We start with the full DFT,
%
\begin{eqnarray}
h_a &=& \sum_{b=0}^{N-1} g_b W_N^{ab}       \qquad W_N=\exp(-2\pi i/N)
\end{eqnarray}
%
and split the sum into even and odd terms,
%
\begin{eqnarray}
\phantom{h_a}
%   &=& \left(\sum_{b=0,2,4,\dots} + \sum_{b=1,3,5,\dots}\right) g_b W_N^{ab}\\
   &=& \sum_{b=0}^{N/2-1} g_{2b} W_N^{a(2b)} + 
      \sum_{b=0}^{N/2-1} g_{2b+1} W_N^{a(2b+1)}.
\end{eqnarray}
%
This converts the original DFT of length $N$ into two DFTs of length
$N/2$,
%
\begin{equation}
h_a = \sum_{b=0}^{N/2-1} g_{2b} W_{(N/2)}^{ab} + 
      W_N^a \sum_{b=0}^{N/2-1} g_{2b+1} W_{(N/2)}^{ab} 
\end{equation}
%
The first term is a DFT of the even elements of $g$. The second term
is a DFT of the odd elements of $g$, premultiplied by an exponential
factor $W_N^k$ (known as a {\em twiddle factor}).
%
\begin{equation}
\mathrm{DFT}(h)  =  \mathrm{DFT}(g_{even}) + W_N^k \mathrm{DFT}(g_{odd})
\end{equation}
%
By splitting the DFT into its even and odd parts we have reduced the
operation count from $N^2$ (for a DFT of length $N$) to $2 (N/2)^2$
(for two DFTs of length $N/2$). The cost of the splitting is that we
need an additional $O(N)$ operations to multiply by the twiddle factor
$W_N^k$ and recombine the two sums.

We can repeat the splitting procedure recursively $\log_2 N$ times
until the full DFT is reduced to DFTs of single terms. The DFT of a
single value is just the identity operation, which costs nothing.
However since $O(N)$ operations were needed at each stage to recombine
the even and odd parts the total number of operations to obtain the
full DFT is $O(N \log_2 N)$. If we had used a length which was a
product of factors $f_1$, $f_2$, $\dots$ we could have split the sum
in a similar way. First we would split terms corresponding to the
factor $f_1$, instead of the even and odd terms corresponding to a
factor of two.  Then we would repeat this procedure for the subsequent
factors. This would lead to a final operation count of $O(N \sum
f_i)$.

This procedure gives some motivation for why the number of operations
in a DFT can in principle be reduced from $O(N^2)$ to $O(N \sum f_i)$.
It does not give a good explanation of how to implement the algorithm
in practice which is what we shall do in the next section.

\section{Radix-2 Algorithms}
%
For radix-2 FFTs it is natural to write array indices in binary form
because the length of the data is a power of two. This is nicely
explained in the article {\em The FFT: Fourier Transforming One Bit at
a Time} by P.B. Visscher~\cite{visscher96}. A binary representation
for indices is the key to deriving the simplest efficient radix-2
algorithms.

We can write an index $b$ ($0 \leq b < 2^{n-1}$) in binary
representation like this,
%
\begin{equation}
b = [b_{n-1} \dots b_1 b_0] = 2^{n-1}b_{n-1} + \dots + 2 b_1 + b_0 .
\end{equation}
%
Each of the $b_0, b_1, \dots, b_{n-1}$ are the bits (either 0 or 1) of
$b$.

Using this notation the original definition of the DFT
can be rewritten as a sum over the bits of $b$,
%
\begin{equation} 
h(a) = \sum_{b=0}^{N-1} g_b \exp(-2\pi i a b /N)
\end{equation}
%
to give an equivalent summation like this,
%
\begin{equation} 
h([a_{n-1} \dots a_1 a_0]) = 
\sum_{b_0=0}^{1} 
\sum_{b_1=0}^{1} 
\dots
\sum_{b_{n-1}=0}^{1} 
 g([b_{n-1} \dots b_1 b_0]) W_N^{ab}
\end{equation}
%
where the bits of $a$ are $a=[a_{n-1} \dots a_1 a_0]$. 

To reduce the number of operations in the sum we will use the
periodicity of the exponential term,
%
\begin{equation}
W_N^{x+N} = W_N^{x}.
\end{equation}
%
Most of the products $ab$ in $W_N^{ab}$ are greater than $N$. By
making use of this periodicity they can all be collapsed down into the
range $0\dots N-1$. This allows us to reduce the number of operations
by combining common terms, modulo $N$. Using this idea we can derive
decimation-in-time or decimation-in-frequency algorithms, depending on
how we break the DFT summation down into common terms. We'll first
consider the decimation-in-time algorithm.

\subsection{Radix-2 Decimation-in-Time (DIT)}
%
To derive the the decimation-in-time algorithm we start by separating
out the most significant bit of the index $b$,
%
\begin{equation}
[b_{n-1} \dots b_1 b_0] = 2^{n-1}b_{n-1} + [b_{n-2} \dots b_1 b_0]
\end{equation}
%
Now we can evaluate the innermost sum of the DFT without any
dependence on the remaining bits of $b$ in the exponential,
%
\begin{eqnarray} 
h([a_{n-1} \dots a_1 a_0]) &=& 
\sum_{b_0=0}^{1} 
\sum_{b_1=0}^{1} 
\dots
\sum_{b_{n-1}=0}^{1} 
 g(b) 
W_N^{a(2^{n-1}b_{n-1}+[b_{n-2} \dots b_1 b_0])} \\
 &=& 
\sum_{b_0=0}^{1} 
\sum_{b_1=0}^{1} 
\dots
\sum_{b_{n-2}=0}^{1} 
W_N^{a[b_{n-2} \dots b_1 b_0]}
\sum_{b_{n-1}=0}^{1} 
 g(b) 
W_N^{a(2^{n-1}b_{n-1})}
\end{eqnarray}
%
Looking at the term $W_N^{a(2^{n-1}b_{n-1})}$ we see that we can also
remove most of the dependence on $a$ as well, by using the periodicity of the
exponential,
%
\begin{eqnarray}
W_N^{a(2^{n-1}b_{n-1})} &=&
\exp(-2\pi i [a_{n-1} \dots a_1 a_0] 2^{n-1} b_{n-1}/ 2^n )\\
&=& \exp(-2\pi i [a_{n-1} \dots a_1 a_0] b_{n-1}/ 2 )\\
&=& \exp(-2\pi i ( 2^{n-2}a_{n-1} + \dots + a_1 + (a_0/2)) b_{n-1} )\\
&=& \exp(-2\pi i a_0 b_{n-1}/2 ) \\
&=& W_2^{a_0 b_{n-1}}
\end{eqnarray}
%
Thus the innermost exponential term simplifies so that it only
involves the highest order bit of $b$ and the lowest order bit of $a$,
and the sum can be reduced to,
%
\begin{equation}
h([a_{n-1} \dots a_1 a_0])
= 
\sum_{b_0=0}^{1} 
\sum_{b_1=0}^{1} 
\dots
\sum_{b_{n-2}=0}^{1} 
W_N^{a[b_{n-2} \dots b_1 b_0]}
\sum_{b_{n-1}=0}^{1} 
 g(b) 
W_2^{a_0 b_{n-1}}.
\end{equation}
%
We can repeat this this procedure for the next most significant bit of
$b$, $b_{n-2}$, using a similar identity,
%
\begin{eqnarray}
W_N^{a(2^{n-2}b_{n-2})} 
&=& \exp(-2\pi i [a_{n-1} \dots a_1 a_0] 2^{n-2} b_{n-2}/ 2^n )\\
&=& W_4^{ [a_1 a_0] b_{n-2}}.
\end{eqnarray}
%
to give a formula with even less dependence on the bits of $a$, 
%
\begin{equation}
h([a_{n-1} \dots a_1 a_0])
= 
\sum_{b_0=0}^{1} 
\sum_{b_1=0}^{1} 
\dots
\sum_{b_{n-3}=0}^{1} 
W_N^{a[b_{n-3} \dots b_1 b_0]}
\sum_{b_{n-2}=0}^{1} 
W_4^{[a_1 a_0] b_{n-2}}
\sum_{b_{n-1}=0}^{1} 
 g(b) 
W_2^{a_0 b_{n-1}}.
\end{equation}
%
If we repeat the process for all the remaining bits we obtain a
simplified DFT formula which is the basis of the radix-2
decimation-in-time algorithm,
%
\begin{eqnarray}
h([a_{n-1} \dots a_1 a_0]) &=& 
\sum_{b_0=0}^{1} 
W_{N}^{[a_{n-1} \dots a_1 a_0]b_0} 
%\sum_{b_1=0}^{1} 
%W_{N/2}^{[a_{n-1} \dots a_1 a_0]b_1} 
\dots
\sum_{b_{n-2}=0}^{1} 
W_4^{ [a_1 a_0] b_{n-2}}
\sum_{b_{n-1}=0}^{1} 
W_2^{a_0 b_{n-1}}
g(b)
\end{eqnarray}
%
To convert the formula to an algorithm we expand out the sum
recursively, evaluating each of the intermediate summations, which we
denote by $g_1$, $g_2$, \dots, $g_n$,
%
\begin{eqnarray}
g_1(a_0,  b_{n-2}, b_{n-3}, \dots, b_1, b_0) 
&=& 
\sum_{b_{n-1}=0}^{1} 
W_2^{a_0 b_{n-1}}
g([b_{n-1}  b_{n-2}  b_{n-3}  \dots  b_1  b_0]) \\
g_2(a_0, {}_{\phantom{-2}} a_{1}, b_{n-3}, \dots, b_1, b_0) 
&=& 
\sum_{b_{n-2}=0}^{1} 
W_4^{[a_1 a_0] b_{n-2}}
g_1(a_0, b_{n-2}, b_{n-3}, \dots, b_1, b_0) \\
g_3(a_0, {}_{\phantom{-2}} a_{1}, {}_{\phantom{-3}} a_{2}, \dots, b_1, b_0) 
&=& 
\sum_{b_{n-3}=0}^{1} 
W_8^{[a_2 a_1 a_0] b_{n-2}}
g_2(a_0, a_1, b_{n-3}, \dots, b_1, b_0) \\
\dots &=& \dots \\
g_n(a_0, a_{1}, a_{2}, \dots, a_{n-2}, a_{n-1}) 
&=&
\sum_{b_{0}=0}^{1} 
W_N^{[a_{n-1} \dots a_1 a_0]b_0}
g_{n-1}(a_0, a_1, a_2, \dots, a_{n-2}, b_0) 
\end{eqnarray}
%
After the final sum, we can obtain the transform $h$ from $g_n$,
%
\begin{equation}
h([a_{n-1} \dots a_1 a_0]) 
= 
g_n(a_0, a_1, \dots, a_{n-1}) 
\end{equation}
% 
Note that we left the storage arrangements of the intermediate sums
unspecified by using the bits as function arguments and not as an
index. The storage of intermediate sums is different for the
decimation-in-time and decimation-in-frequency algorithms.

Before deciding on the best storage scheme we'll show that the results
of each stage, $g_1$, $g_2$, \dots, can be carried out {\em
in-place}. For example, in the case of $g_1$, the inputs are,
%
\begin{equation}
g([\underline{b_{n-1}} b_{n-2} b_{n-3} \dots b_1 b_0])
\end{equation}
%
for $b_{n-1}=(0,1)$, and the corresponding outputs are,
%
\begin{equation}
g_1(\underline{a_0},b_{n-2}, b_{n-3}, \dots, b_1, b_0)
\end{equation}
%
for $a_0=(0,1)$.  It's clear that if we hold $b_{n-2}, b_{n-3}, \dots,
b_1, b_0$ fixed and compute the sum over $b_{n-1}$ in memory for both
values of $a_0 = 0,1$ then we can store the result for $a_0=0$ in the
location which originally had $b_0=0$ and the result for $a_0=1$ in
the location which originally had $b_0=1$. The two inputs and two
outputs are known as {\em dual node pairs}. At each stage of the
calculation the sums for each dual node pair are independent of the
others. It is this property which allows an in-place calculation.

So for an in-place pass our storage has to be arranged so that the two
outputs $g_1(a_0,\dots)$ overwrite the two input terms
$g([b_{n-1},\dots])$. Note that the order of $a$ is reversed from the
natural order of $b$. i.e. the least significant bit of $a$
replaces the most significant bit of $b$. This is inconvenient
because $a$ occurs in its natural order in all the exponentials,
$W^{ab}$. We could keep track of both $a$ and its bit-reverse,
$a^{\mathit bit-reversed}$ at all times but there is a neat trick
which avoids this: if we bit-reverse the order of the input data $g$
before we start the calculation we can also bit-reverse the order of
$a$ when storing intermediate results. Since the storage involving $a$
was originally in bit-reversed order the switch in the input $g$ now
allows us to use normal ordered storage for $a$, the same ordering
that occurs in the exponential factors.

This is complicated to explain, so here is an example of the 4 passes
needed for an $N=16$ decimation-in-time FFT, with the initial data
stored in bit-reversed order,
%
\begin{eqnarray}
g_1([b_0 b_1 b_2 a_0]) 
&=& 
\sum_{b_3=0}^{1} W_2^{a_0 b_3} g([b_0 b_1 b_2 b_3])
\\
g_2([b_0 b_1 a_1 a_0]) 
&=& 
\sum_{b_2=0}^{1} W_4^{[a_1 a_0] b_2} g_1([b_0 b_1 b_2 a_0])
\\
g_3([b_0 a_2 a_1 a_0]) 
&=& 
\sum_{b_1=0}^{1} W_8^{[a_2 a_1 a_0] b_1} g_2([b_0 b_1 a_1 a_0])
\\
h(a) = g_4([a_3 a_2 a_1 a_0]) 
&=& 
\sum_{b_0=0}^{1} W_{16}^{[a_3 a_2 a_1 a_0] b_0} g_3([b_0 a_2 a_1 a_0])
\end{eqnarray}
%
We compensate for the bit reversal of the input data by accessing $g$
with the bit-reversed form of $b$ in the first stage. This ensures
that we are still carrying out the same calculation, using the same
data, and not accessing different values. Only single bits of $b$ ever
occur in the exponential so we never need the bit-reversed form of
$b$.

Let's examine the third pass in detail,
%
\begin{equation}
g_3([b_0 a_2 a_1 a_0]) 
=
\sum_{b_1=0}^{1} W_8^{[a_2 a_1 a_0] b_1} g_2([b_0 b_1 a_1 a_0])
\end{equation}
%
First note that only one bit, $b_1$, varies in each summation.  The
other bits of $b$ ($b_0$) and of $a$ ($a_1 a_0$) are essentially
``spectators'' -- we must loop over all combinations of these bits and
carry out the same basic calculation for each, remembering to update
the exponentials involving $W_8$ appropriately.  If we are storing the
results in-place (with $g_3$ overwriting $g_2$ we will need to compute
the sums involving $b_1=0,1$ and $a_2=0,1$ simultaneously.
%
\begin{equation}
\left(
\begin{array}{c}
g_3([b_0 0 a_1 a_0]) \vphantom{W_8^{[]}} \\
g_3([b_0 1 a_1 a_0]) \vphantom{W_8^{[]}} 
\end{array}
\right)
=
\left(
\begin{array}{c}
g_2([b_0 0 a_1 a_0]) + W_8^{[0 a_1 a_0]} g_2([b_2 1 a_1 a_0]) \\
g_2([b_0 0 a_1 a_0]) + W_8^{[1 a_1 a_0]} g_2([b_2 1 a_1 a_0])
\end{array}
\right)
\end{equation}
%
We can write this in a more symmetric form by simplifying the exponential,
%
\begin{equation}
W_8^{[a_2 a_1 a_0]} 
= W_8^{4 a_2 + [a_1 a_0]} 
= (-1)^{a_2} W_8^{[a_1 a_0]}
\end{equation}
%
\begin{equation}
\left(
\begin{array}{c}
g_3([b_0 0 a_1 a_0]) \vphantom{W_8^{[]}} \\
g_3([b_0 1 a_1 a_0]) \vphantom{W_8^{[]}} 
\end{array}
\right)
=
\left(
\begin{array}{c}
g_2([b_0 0 a_1 a_0]) + W_8^{[a_1 a_0]} g_2([b_2 1 a_1 a_0]) \\
g_2([b_0 0 a_1 a_0]) - W_8^{[a_1 a_0]} g_2([b_2 1 a_1 a_0])
\end{array}
\right)
\end{equation}
%
The exponentials $W_8^{[a_1 a_0]}$ are referred to as {\em twiddle
factors}. The form of this calculation, a symmetrical sum and
difference involving a twiddle factor is called {\em a butterfly}.
It is often shown diagrammatically, and in the case $b_0=a_0=a_1=0$
would be drawn like this,
%
\begin{center}
\setlength{\unitlength}{1cm}
\begin{picture}(9,4)
%
%\put(0,0){\line(1,0){8}}
%\put(0,0){\line(0,1){4}}
%\put(8,4){\line(0,-1){4}}
%\put(8,4){\line(-1,0){8}}
%
\put(0,1){$g_2(4)$} \put(4.5,1){$g_3(4)=g_2(0) - W^a_8 g_2(4)$}
\put(0,3){$g_2(0)$} \put(4.5,3){$g_3(0)=g_2(0) + W^a_8 g_2(4)$}
\put(1,1){\vector(1,0){0.5}}
\put(1.5,1){\line(1,0){0.5}}
\put(1.5,0.5){$W^a_8$}
\put(1,3){\vector(1,0){0.5}}\put(1.5,3){\line(1,0){0.5}}
\put(2,1){\circle*{0.1}}
\put(2,3){\circle*{0.1}}
\put(2,1){\vector(1,1){2}} 
\put(2,1){\vector(1,0){1}} 
\put(3,1){\line(1,0){1}}
\put(3,0.5){$-1$}
\put(2,3){\vector(1,-1){2}} 
\put(2,3){\vector(1,0){1}} 
\put(3,3){\line(1,0){1}}
\put(4,1){\circle*{0.1}}
\put(4,3){\circle*{0.1}}
\end{picture}
\end{center}
%
The inputs are shown on the left and the outputs on the right. The
outputs are computed by multiplying the incoming lines by their
accompanying factors (shown next to the lines) and summing the results
at each node.

In general, denoting the bit for dual-node pairs by $\Delta$ and the
remaining bits of $a$ and $b$ by ${\hat a}$ and ${\hat b}$, the
butterfly is,
%
\begin{equation}
\left(
\begin{array}{c}
g({\hat b} + {\hat a}) \\
g({\hat b} + \Delta + {\hat a}) \\
\end{array}
\right)
\leftarrow
\left(
\begin{array}{c}
g({\hat b} + {\hat a}) + W_{2\Delta}^{\hat a} g({\hat b} + \Delta + {\hat a})\\
g({\hat b} + {\hat a}) - W_{2\Delta}^{\hat a} g({\hat b} + \Delta + {\hat a})
\end{array}
\right)
\end{equation}
%
where ${\hat a}$ runs from $0 \dots \Delta-1$ and ${\hat b}$ runs
through $0 \times 2\Delta$, $1\times 2\Delta$, $\dots$, $(N/\Delta -
1)2\Delta$. The value of $\Delta$ is 1 on the first pass, 2 on the
second pass and $2^{n-1}$ on the $n$-th pass.  Each pass requires
$N/2$ in-place computations, each involving two input locations and
two output locations.

In the example above $\Delta = [100] = 4$, ${\hat a} = [a_1 a_0]$ and
${\hat b} = [b_0 0 0 0]$.

This leads to the canonical radix-2 decimation-in-time FFT algorithm
for $2^n$ data points stored in the array $g(0) \dots g(2^n-1)$.
%
\begin{algorithm}
\STATE bit-reverse ordering of $g$
\STATE {$\Delta \Leftarrow 1$}
\FOR {$\mbox{pass} = 1 \dots n$}
  \STATE {$W \Leftarrow \exp(-2 \pi i / 2\Delta)$}
  \FOR {$(a = 0 ; a < \Delta ; a{++})$}
    \FOR{$(b = 0 ; b < N ; b {+=} 2*\Delta)$}
        \STATE{$t_0 \Leftarrow g(b+a) + W^a g(b+\Delta+a)$}
        \STATE{$t_1 \Leftarrow g(b+a) - W^a g(b+\Delta+a)$}
        \STATE{$g(b+a) \Leftarrow t_0$}
        \STATE{$g(b+\Delta+a) \Leftarrow t_1$}
    \ENDFOR
  \ENDFOR
  \STATE{$\Delta \Leftarrow 2\Delta$}
\ENDFOR
\end{algorithm}
%
%This algorithm appears in Numerical Recipes as the routine {\tt
%four1}, where the implementation is attributed to N.M. Brenner.
%
\subsection{Details of the Implementation}
It is straightforward to implement a simple radix-2 decimation-in-time
routine from the algorithm above. Some optimizations can be made by
pulling the special case of $a=0$ out of the loop over $a$, to avoid
unnecessary multiplications when $W^a=1$,
%
\begin{algorithm}
    \FOR{$(b = 0 ; b < N ; b {+=} 2*\Delta)$}
        \STATE{$t_0 \Leftarrow g(b) + g(b+\Delta)$}
        \STATE{$t_1 \Leftarrow g(b) - g(b+\Delta)$}
        \STATE{$g(b) \Leftarrow t_0$}
        \STATE{$g(b+\Delta) \Leftarrow t_1$}
    \ENDFOR
\end{algorithm}
%
There are several algorithms for doing fast bit-reversal. We use the
Gold-Rader algorithm, which is simple and does not require any working
space,
%
\begin{algorithm}
\FOR{$i = 0 \dots n - 2$}
        \STATE {$ k = n / 2 $}
        \IF {$i < j$}
                \STATE {swap $g(i)$ and $g(j)$}
        \ENDIF

        \WHILE {$k \leq j$}
                \STATE{$j \Leftarrow j - k$} 
                \STATE{$k \Leftarrow k / 2$} 
        \ENDWHILE
      
      \STATE{$j \Leftarrow j + k$}
\ENDFOR
\end{algorithm}
%
The Gold-Rader algorithm is typically twice as fast as a naive
bit-reversal algorithm (where the bit reversal is carried out by
left-shifts and right-shifts on the index).  The library also has a
routine for the Rodriguez bit reversal algorithm, which also does not
require any working space~\cite{rodriguez89}. There are faster bit
reversal algorithms, but they all use additional scratch
space~\cite{rosel89}.

Within the loop for $a$ we can compute $W^a$  using a trigonometric
recursion relation,
%
\begin{eqnarray}
W^{a+1} &=& W W^a \\
        &=& (\cos(2\pi/2\Delta) + i \sin(2\pi/2\Delta)) W^a
\end{eqnarray}
%
This requires only $2 \log_2 N$ trigonometric calls, to compute the
initial values of $\exp(2\pi i /2\Delta)$ for each pass.

\subsection{Radix-2 Decimation-in-Frequency (DIF)}
%
To derive the decimation-in-frequency algorithm we start by separating
out the lowest order bit of the index $a$. Here is an example for the
decimation-in-frequency $N=16$ DFT.
%
\begin{eqnarray}
W_{16}^{[a_3 a_2 a_1 a_0][b_3 b_2 b_1 b_0]} 
&=&
W_{16}^{[a_3 a_2 a_1 a_0][b_2 b_1 b_0]} W_{16}^{[a_3 a_2 a_1 a_0] [b_3
0 0 0]} \\
&=&
W_8^{[a_3 a_2 a_1][b_2 b_1 b_0]} W_{16}^{a_0 [b_2 b_1 b_0]} W_2^{a_0
b_3} \\
&=&
W_8^{[a_3 a_2 a_1][b_2 b_1 b_0]} W_{16}^{a_0 [b_2 b_1 b_0]} (-1)^{a_0 b_3}
\end{eqnarray}
%
By repeating the same type of the expansion on the term,
%
\begin{equation}
W_8^{[a_3 a_2 a_1][b_2 b_1 b_0]}
\end{equation}
%
we can reduce the transform to an alternative simple form,
%
\begin{equation}
h(a) = 
\sum_{b_0=0}^1 (-1)^{a_3 b_0} W_4^{a_2 b_0}
\sum_{b_1=0}^1 (-1)^{a_2 b_1} W_8^{a_1 [b_1 b_0]}
\sum_{b_2=0}^1 (-1)^{a_1 b_2} W_{16}^{a_0 [b_2 b_1 b_0]}
\sum_{b_3=0}^1 (-1)^{a_0 b_3} g(b)
\end{equation}
%
To implement this we can again write the sum recursively. In this case
we do not have the problem of the order of $a$ being bit reversed --
the calculation can be done in-place using the natural ordering of
$a$ and $b$,
%
\begin{eqnarray}
g_1([a_0 b_2 b_1 b_0]) 
&=&
W_{16}^{a_0 [b_2 b_1 b_0]} 
\sum_{b_3=0}^1 (-1)^{a_0 b_3} g([b_3 b_2 b_1 b_0]) \\
g_2([a_0 a_1 b_1 b_0]) 
&=&
W_{8}^{a_1 [b_1 b_0]} 
\sum_{b_2=0}^1 (-1)^{a_1 b_2} g_1([a_0 b_2 b_1 b_0]) \\
g_3([a_0 a_1 a_2 b_0]) 
&=&
W_{4}^{a_2 b_0} 
\sum_{b_1=0}^1 (-1)^{a_2 b_1} g_2([a_0 a_1 b_1 b_0]) \\
h(a)
= 
g_4([a_0 a_1 a_2 a_3]) 
&=&
\sum_{b_0=0}^1 (-1)^{a_3 b_0} g_3([a_0 a_1 a_2 b_0])
\end{eqnarray}
%
The final pass leaves the data for $h(a)$ in bit-reversed order, but
this is easily fixed by a final bit-reversal of the ordering.

The basic in-place calculation or butterfly for each pass is slightly
different from the decimation-in-time version,
%
\begin{equation}
\left(
\begin{array}{c}
g({\hat a} + {\hat b}) \\
g({\hat a} + \Delta + {\hat b}) \\
\end{array}
\right)
\leftarrow
\left(
\begin{array}{c}
g({\hat a} + {\hat b}) +  g({\hat a} + \Delta + {\hat b})\\
W_{\Delta}^{\hat b} 
\left( g({\hat a} + {\hat b}) -  g({\hat a} + \Delta + {\hat b}) \right)
\end{array}
\right)
\end{equation}
%
In each pass ${\hat b}$ runs from $0 \dots \Delta-1$ and ${\hat
a}$ runs from $0, 2\Delta, \dots, (N/\Delta -1) \Delta$. On the first
pass we start with $\Delta=16$, and on subsequent passes $\Delta$ takes
the values $8, 4, \dots, 1$.

This leads to the canonical radix-2 decimation-in-frequency FFT
algorithm for $2^n$ data points stored in the array $g(0) \dots
g(2^n-1)$.
%
\begin{algorithm}
\STATE {$\Delta \Leftarrow 2^{n-1}$}
\FOR {$\mbox{pass} = 1 \dots n$}
  \STATE {$W \Leftarrow \exp(-2 \pi i / 2\Delta)$}
  \FOR {$(b = 0 ; b < \Delta ; b++)$}
    \FOR{$(a = 0 ; a < N ; a += 2*\Delta)$}
        \STATE{$t_0 \Leftarrow g(b+a) + g(a+\Delta+b)$}
        \STATE{$t_1 \Leftarrow W^b \left( g(a+b) - g(a+\Delta+b) \right)$}
        \STATE{$g(a+b) \Leftarrow t_0$}
        \STATE{$g(a+\Delta+b) \Leftarrow t_1$}
    \ENDFOR
  \ENDFOR
  \STATE{$\Delta \Leftarrow \Delta/2$}
\ENDFOR
\STATE bit-reverse ordering of $g$
\end{algorithm}
%

\section{Self-Sorting Mixed-Radix Complex FFTs}
%
This section is based on the review article {\em Self-sorting
Mixed-Radix Fast Fourier Transforms} by Clive
Temperton~\cite{temperton83}. You should consult his article for full
details of all the possible algorithms (there are many
variations). Here I have annotated the derivation of the simplest
mixed-radix decimation-in-frequency algorithm.

For general-$N$ FFT algorithms the simple binary-notation of radix-2
algorithms is no longer useful.  The mixed-radix FFT has to be built
up using products of matrices acting on a data vector.  The aim is to
take the full DFT matrix $W_N$ and factor it into a set of small,
sparse matrices corresponding to each factor of $N$.


We'll denote the components of matrices using either subscripts or
function notation,
%
\begin{equation}
M_{ij} = M(i,j)
\end{equation}
%
with (C-like) indices running from 0 to $N-1$.  Matrix products will be 
denoted using square brackets,
%
\begin{equation}
[AB]_{ij} = \sum_{k} A_{ik} B_{kj}
\end{equation}
%
%
Three special matrices will be needed in the mixed-radix factorization
of the DFT: the identity matrix, $I$, a permutation matrix, $P$ and a
matrix of twiddle factors, $D$, as well as the normal DFT matrices
$W_n$.

We write the identity matrix of order $r$ as $I_r(n,m)$,
%
\begin{equation}
I_r(n,m) = \delta_{nm}
\end{equation}
%
for $0 \leq n,m \leq r-1$.

We also need to define a permutation matrix $P^a_b$ that performs
digit reversal of the ordering of a vector. If the index of a vector
$j= 0\dots N-1$ is factorized into $j = la +m$, with $0 \leq l \leq
b-1$ and $0 \leq m \leq a-1$ then the operation of the matrix $P$ will
exchange positions $la+m$ and $mb+l$ in the vector (this sort of
digit-reversal is the generalization of bit-reversal to a number
system with exponents $a$ and $b$).

In mathematical terms $P$ is a square matrix of size $ab \times ab$
with the property,
%
\begin{eqnarray}
P^a_b(j,k) &=& 1 ~\mbox{if}~ j=ra+s ~\mbox{and}~ k=sb+r \\
           &=& 0 ~\mbox{otherwise}
\end{eqnarray}
%

Finally the FFT algorithm needs a matrix of twiddle factors, $D^a_b$,
for the trigonometric sums. $D^a_b$ is a diagonal square matrix of
size $ab \times ab$ with the definition,
%
\begin{eqnarray}
D^a_b(j,k) &=& \omega^{sr}_{ab} ~\mbox{if}~ j=k=sb+r \\
           &=& 0 ~\mbox{otherwise}
\end{eqnarray}
%
where $\omega_{ab} = e^{-2\pi i/ab}$.


\subsection{The Kronecker Product}
The Kronecker matrix product plays an important role in all the
algorithms for combining operations on different subspaces. The
Kronecker product $A \otimes B$ of two square matrices $A$ and $B$, of
sizes $a \times a$ and $b \times b$ respectively, is a square matrix
of size $a b \times a b$, defined as,
%
\begin{equation}
[A \otimes B] (tb+u, rb+s) = A(t,r) B(u,s)
\end{equation}
%
where $0 \leq u,s < b$ and $0 \leq t,r < a$.  Let's examine a specific
example. If we take a $2 \times 2$ matrix and a $3
\times 3$ matrix,
%
\begin{equation}
\begin{array}{ll}
A = 
\left(
\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22} 
\end{array}
\right)
&
B =
\left(
\begin{array}{ccc}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33} 
\end{array}
\right)
\end{array}
\end{equation}
%
then the Kronecker product $A \otimes B$ is,
%
\begin{eqnarray}
A \otimes B &= &
\left(
\begin{array}{cc}
a_{11} B & a_{12} B \\
a_{12} B & a_{22} B
\end{array}
\right) \\
 &=&
\left(
\begin{array}{cccccc}
a_{11} b_{11} & a_{11} b_{12} & a_{11} b_{13} &
  a_{12} b_{11} & a_{12} b_{12} & a_{12} b_{13} \\
a_{11} b_{21} & a_{11} b_{22} & a_{11} b_{23} &
  a_{12} b_{21} & a_{12} b_{22} & a_{12} b_{23} \\
a_{11} b_{31} & a_{11} b_{32} & a_{11} b_{33} &
  a_{12} b_{31} & a_{12} b_{32} & a_{12} b_{33} \\
a_{21} b_{11} & a_{21} b_{12} & a_{21} b_{13} &
  a_{22} b_{11} & a_{22} b_{12} & a_{22} b_{13} \\
a_{21} b_{21} & a_{21} b_{22} & a_{21} b_{23} &
  a_{22} b_{21} & a_{22} b_{22} & a_{22} b_{23} \\
a_{21} b_{31} & a_{21} b_{32} & a_{21} b_{33} &
  a_{22} b_{31} & a_{22} b_{32} & a_{22} b_{33}
\end{array}
\right)
\end{eqnarray}
%
When the Kronecker product $A \otimes B$ acts on a vector of length
$ab$, each matrix operates on a different subspace of the vector.
Writing the index $i$ as $i=t b + u$, with $0\leq u \leq b-1$
and $0\leq t\leq a$, we can see this explicitly by looking at components,
%
\begin{eqnarray}
[(A \otimes B) v]_{(tb+u)}
& = & \sum_{t'=0}^{a-1} \sum_{u'=0}^{b-1} 
        [A \otimes B]_{(tb+u,t'b+u')} v_{t'b+u'} \\
& = & \sum_{t'u'} A_{tt'} B_{uu'} v_{t'b+u'} 
\end{eqnarray}
%
The matrix $B$ operates on the ``index'' $u'$, for all values of $t'$, and
the matrix $A$ operates on the ``index'' $t'$, for all values of $u'$.
%
The most important property needed for deriving the FFT factorization
is that the matrix product of two Kronecker products is the Kronecker
product of the two matrix products,
%
\begin{equation}
(A \otimes B)(C \otimes D) = (AC \otimes BD)
\end{equation}
%
This follows straightforwardly from the original definition of the
Kronecker product.

\subsection{Two factor case, $N=ab$}
%
First consider the simplest possibility, where the data length $N$ can
be divided into two factors, $N=ab$. The aim is to reduce the DFT
matrix $W_N$ into simpler matrices corresponding to each factor. To
make the derivation easier we will start from the known factorization
and verify it (the initial factorization can be guessed by
generalizing from simple cases). Here is the factorization we are
going to prove,
%
\begin{equation}
W_{ab} = (W_b \otimes I_a) P^a_b D^a_b (W_a \otimes I_b).
\end{equation}
%
We can check it by expanding the product into components,
%
\begin{eqnarray}
\lefteqn{[(W_b \otimes I_a) P^a_b D^a_b (W_a \otimes I_b)](la+m,rb+s)}  \\
& = &
\sum_{u=0}^{b-1} \sum_{t=0}^{a-1}
[(W_b \otimes I_a)](la+m,ua+t) [P^a_b D^a_b (W_a \otimes I_b)](ua+t,rb+s)
\end{eqnarray}
%
where we have split the indices to match the Kronecker product $0 \leq
m, r \leq a$, $0 \leq l, s \leq b$.  The first term in the sum can
easily be reduced to its component form,
%
\begin{eqnarray}
[(W_b \otimes I_a)](la+m,ua+t) 
&=& W_b(l,u) I_a(m,t) \\
&=& \omega_b^{lu} \delta_{mt}
\end{eqnarray}
%
The second term is more complicated. We can expand the Kronecker
product like this,
\begin{eqnarray}
(W_a \otimes I_b)(tb+u,rb+s)
&=& W_a(t,r) I_a(u,s) \\
&=& \omega_a^{tr} \delta_{us}
\end{eqnarray}
%
and use this term to build up the product, $P^a_b D^a_b (W_a \otimes
I_b)$. We first multiply by $D^a_b$,
%
\begin{equation}
[D^a_b (W_a \otimes I_b)](tb+u,rb+s) 
= 
\omega^{tu}_{ab} \omega^{tr}_{a} \delta_{su}
\end{equation}
%
and then apply the permutation matrix, $P^a_b$, which digit-reverses
the ordering of the first index, to obtain,
%
\begin{equation}
[P^a_b D^a_b (W_a \otimes I_b)](ua+t,rb+s) 
= 
\omega^{tu}_{ab} \omega^{tr}_{a} \delta_{su}
\end{equation}
%
Combining the two terms in the matrix product we can obtain the full
expansion in terms of the exponential $\omega$,
%
\begin{eqnarray}
[(W_b \otimes I_a) P^a_b D^a_b (W_a \otimes I_b)](la+m,rb+s)
&=&
\sum_{u=0}^{b-1} \sum_{t=0}^{a-1}
\omega_b^{lu} \delta_{mt} \omega^{tu}_{ab} \omega^{tr}_{a} \delta_{su}
\end{eqnarray}
%
If we evaluate this sum explicitly we can make the connection between
the product involving $W_a$ and $W_b$ (above) and the expansion of the
full DFT matrix $W_{ab}$,
%
\begin{eqnarray}
\sum_{u=0}^{b-1} \sum_{t=0}^{a-1}
\omega_b^{lu} \delta_{mt} \omega^{tu}_{ab} \omega^{tr}_{a} \delta_{su} 
&=& \omega^{ls}_b \omega^{ms}_{ab} \omega^{mr}_a \\
&=& \omega^{als + ms +bmr}_{ab} \\
&=& \omega^{als + ms +bmr}_{ab} \omega^{lrab}_{ab} \quad\mbox{using~} \omega^{ab}_{ab} =1\\
&=& \omega^{(la+m)(rb+s)}_{ab} \\
&=& W_{ab}(la+m,rb+s)
\end{eqnarray}
% 
The final line shows that matrix product given above is identical to
the full two-factor DFT matrix, $W_{ab}$.
%
Thus the full DFT matrix $W_{ab}$ for two factors $a$, $b$ can be
broken down into a product of sub-transforms, $W_a$ and $W_b$, plus
permutations, $P$, and twiddle factors, $D$, according to the formula,
%
\begin{equation}
W_{ab} = (W_b \otimes I_a) P^a_b D^a_b (W_a \otimes I_b).
\end{equation}
%
This relation is the foundation of the general-$N$ mixed-radix FFT algorithm.

\subsection{Three factor case, $N=abc$}
%
The result for the two-factor expansion can easily be generalized to
three factors. We first consider $abc$ as being a product of two
factors $a$ and $(bc)$, and then further expand the product $(bc)$ into
$b$ and $c$. The first step of the expansion looks like this,
%
\begin{eqnarray}
W_{abc} &=& W_{a(bc)}\\
&=& (W_{bc} \otimes I_a) P^a_{bc} D^a_{bc} (W_a \otimes I_{bc}) .
\end{eqnarray}
%
And after using the two-factor result to expand out $W_{bc}$ we obtain
the factorization of $W_{abc}$,
%
\begin{eqnarray}
W_{abc} &=& (((W_c \otimes I_b) P^b_c D^b_c (W_b \otimes I_c)) \otimes I_a )
P^a_{bc} D^a_{bc} (W_a \otimes I_{bc}) \\
&=& (W_c \otimes I_{ab}) (P^b_c D^b_c \otimes I_a) (W_b \otimes I_{ac}) P^a_{bc} D^a_{bc} (W_a \otimes I_c)
\end{eqnarray}
%
We can write this factorization in a product form, with one term for
each factor,
%
\begin{equation}
W_{abc} = T_3 T_2 T_1
\end{equation}
%
where we read off $T_1$, $T_2$ and $T_3$,
%
\begin{eqnarray}
T_1 &=& P^a_{bc} D^a_{bc} (W_a \otimes I_{bc}) \\
T_2 &=& (P^b_c D^b_c \otimes I_a) (W_b \otimes I_{ac}) \\
T_3 &=& (W_c \otimes I_{ab} ) 
\end{eqnarray}
%


\subsection{General case, $N=f_1 f_2 \dots f_{n_f}$}
%
If we continue the procedure that we have used for two- and
three-factors then a general pattern begins to emerge in the
factorization of $W_{f_1 f_2 \dots f_{n_f}}$. To see the beginning of
the pattern we can rewrite the three factor case as,
%
\begin{eqnarray}
T_1 &=& (P^a_{bc} D^a_{bc} \otimes I_1) (W_a \otimes I_{bc}) \\
T_2 &=& (P^b_c D^b_c \otimes I_a) (W_b \otimes I_{ac}) \\
T_3 &=& (P^c_1 D^c_1 \otimes I_{ab}) (W_c \otimes I_{ab} ) 
\end{eqnarray}
%
using the special cases $P^c_1 = D^c_1 = I_c$.
%
In general, we can write the factorization of $W_N$ for $N= f_1 f_2
\dots f_{n_f}$ as,
%       
\begin{equation}
W_N = T_{n_f} \dots T_2 T_1
\end{equation}
%
where the matrix factors $T_i$ are,
%
\begin{equation}
T_i = (P^{f_i}_{q_i} D^{f_i}_{q_i} \otimes I_{p_{i-1}}) ( W_{f_i}
\otimes I_{m_i})
\end{equation}
%
We have defined the following three additional variables $p$, $q$ and
$m$ to denote different partial products of the factors,
%
\begin{eqnarray}
p_i &=& f_1 f_2 \dots f_i \quad (p_0 = 1)  \\
q_i &=& N / p_i  \\
m_i &=& N / f_i 
\end{eqnarray}
%
Note that the FFT modules $W$ are applied before the permutations $P$,
which makes this a decimation-in-frequency algorithm.

\subsection{Implementation}
%
Now to the implementation of the algorithm. We start with a vector of
data, $z$, as input and want to apply the transform,
%
\begin{eqnarray}
x &=& W_N z \\
  &=& T_{n_f} \dots T_2 T_1 z
\end{eqnarray}
%
where $T_i = (P^{f_i}_{q_i} D^{f_i}_{q_i} \otimes I_{p_{i-1}}) (
W_{f_i} \otimes I_{m_i})$.

The outer structure of the implementation will be a loop over the
$n_f$ factors, applying each matrix $T_i$ to the vector in turn to
build up the complete transform.
%
\begin{algorithm}
\FOR{$(i = 1 \dots n_f)$}
        \STATE{$v \Leftarrow T_i v $}
\ENDFOR
\end{algorithm}
%
The order of the factors is not important. Now we examine the iteration
$v \Leftarrow T_i v$, which we'll write as,
%
\begin{equation}
v' = 
(P^{f_i}_{q_i} D^{f_i}_{q_i} \otimes I_{p_{i-1}}) ~
( W_{f_i} \otimes I_{m_i}) v
\end{equation}
%
There are two Kronecker product matrices in this iteration. The
rightmost matrix, which is the first to be applied, is a DFT of length
$f_i$ applied to $N/f_i$ subsets of the data. We'll call this $t$,
since it will be a temporary array,
%
\begin{equation}
t = (W_{f_i} \otimes I_{m_i}) v
\end{equation}
%
The second matrix applies a permutation and the exponential
twiddle-factors. We'll call this $v'$, since it is the result of the
full iteration on $v$,
%
\begin{equation}
v' = (P^{f_i}_{q_i} D^{f_i}_{q_i} \otimes I_{p_{i-1}}) t 
\end{equation}

The effect of the matrix $(W_{f_i} \otimes I_{m_i})$ is best seen by
an example. Suppose the factor is $f_i = 3$, and the length of the FFT
is $N=6$, then the relevant Kronecker product is,
%
\begin{equation}
t = (W_3 \otimes I_2) v 
\end{equation}
%
which expands out to,
%
\begin{equation}
\left(
\begin{array}{c}
t_0 \\
t_1 \\
t_2 \\
t_3 \\
t_4 \\
t_5
\end{array}
\right)
=
\left(
\begin{array}{cccccc}
W_3(1,1) & 0 & W_3(1,2) & 0 & W_3(1,3) & 0 \\
0 & W_3(1,1) & 0 & W_3(1,2) & 0 & W_3(1,3) \\
W_3(2,1) & 0 & W_3(2,2) & 0 & W_3(2,3) & 0 \\
0 & W_3(2,1) & 0 & W_3(2,2) & 0 & W_3(2,3) \\
W_3(3,1) & 0 & W_3(3,2) & 0 & W_3(3,3) & 0 \\
0 & W_3(3,1) & 0 & W_3(3,2) & 0 & W_3(3,3) 
\end{array}
\right)
\left(
\begin{array}{c}
v_0 \\
v_1 \\
v_2 \\
v_3 \\
v_4 \\
v_5
\end{array}
\right)
\end{equation}
%
We can rearrange the components in a computationally convenient form,
\begin{equation}
\left(
\begin{array}{c}
t_0 \\
t_2 \\
t_4 \\
t_1 \\
t_3 \\
t_5
\end{array}
\right)
=
\left(
\begin{array}{cccccc}
W_3(1,1) & W_3(1,2) & W_3(1,3) & 0 & 0 & 0 \\
W_3(2,1) & W_3(2,2) & W_3(2,3) & 0 & 0 & 0 \\
W_3(3,1) & W_3(3,2) & W_3(3,3) & 0 & 0 & 0 \\
0 & 0 & 0 & W_3(1,1) & W_3(1,2) & W_3(1,3) \\
0 & 0 & 0 & W_3(2,1) & W_3(2,2) & W_3(2,3) \\
0 & 0 & 0 & W_3(3,1) & W_3(3,2) & W_3(3,3)
\end{array}
\right)
\left(
\begin{array}{c}
v_0 \\
v_2 \\
v_4 \\
v_1 \\
v_3 \\
v_5
\end{array}
\right)
\end{equation}
%
which clearly shows that we just need to apply the $3\times 3$ DFT
matrix $W_3$ twice, once to the sub-vector of elements $(v_0, v_2, v_4)$,
and independently to the remaining sub-vector $(v_1, v_3, v_5)$.

In the general case, if we index $t$ as $t_k = t(\lambda,\mu) =
t_{\lambda m + \mu}$ then $\lambda = 0 \dots f-1$ is an index within
each transform of length $f$ and $\mu = 0 \dots m-1$ labels the
independent subsets of data. We can see this by showing the
calculation with all indices present,
%
\begin{equation}
t = (W_f \otimes I_m) z 
\end{equation}
%
becomes,
%
\begin{eqnarray}
t_{\lambda m + \mu} &=& \sum_{\lambda'=0}^{f-1} \sum_{\mu'=0}^{m-1} 
        (W_f \otimes I_m)_{(\lambda m + \mu)(\lambda' m + \mu')}
        z_{\lambda'm + \mu} \\
&=& \sum_{\lambda'\mu'} (W_f)_{\lambda\lambda'} \delta_{\mu\mu'} 
        z_{\lambda'm+\mu'} \\
&=& \sum_{\lambda'} (W_f)_{\lambda\lambda'} z_{\lambda'm+\mu}
\end{eqnarray}
%
The DFTs on the index $\lambda$ will be computed using
special optimized modules for each $f$.

To calculate the next stage,
%
\begin{equation}
v'=(P^f_q D^f_q \otimes I_{p_{i-1}}) t
\end{equation}
%
we note that the Kronecker product has the property of performing
$p_{i-1}$ independent multiplications of $PD$ on $q_{i-1}$ different
subsets of $t$. The index $\mu$ of $t(\lambda,\mu)$ which runs from 0
to $m$ will include $q_i$ copies of each $PD$ operation because
$m=p_{i-1}q$. i.e. we can split the index $\mu$ further into $\mu = a
p_{i-1} + b$, where $a = 0 \dots q-1$ and $b=0 \dots p_{i-1}$,
%
\begin{eqnarray}
\lambda m + \mu &=& \lambda m + a p_{i-1} + b \\
        &=& (\lambda q + a) p_{i-1} + b.
\end{eqnarray}
%
Now we can expand the second stage,
%
\begin{eqnarray}
v'&=& (P^f_q D^f_q \otimes I_{p_{i-1}}) t \\
v'_{\lambda m + \mu} &=& \sum_{\lambda' \mu'} 
 (P^f_q D^f_q \otimes I_{p_{i-1}})_{(\lambda m + \mu)(\lambda' m + \mu')}
        t_{\lambda' m + \mu'} \\
v'_{(\lambda q + a) p_{i-1} + b} &=& \sum_{\lambda' a' b'}
(
P^f_q D^f_q \otimes I_{p_{i-1}}
)_{((\lambda q+ a)p_{i-1} + b)((\lambda' q+ a')p_{i-1} + b')} 
t_{(\lambda' q + a')p_{i-1} +b'} 
\end{eqnarray}
%
The first step in removing redundant indices is to take advantage of
the identity matrix $I$ and separate the subspaces of the Kronecker
product,
%
\begin{equation}
(
P^f_q D^f_q \otimes I_{p_{i-1}}
)_{((\lambda q+ a)p_{i-1} + b)((\lambda' q+ a')p_{i-1} + b')} 
=
(P^f_q D^f_q)_{(\lambda q + a)(\lambda' q + a')}
\delta_{bb'}
\end{equation}
%
This eliminates one sum, leaving us with,
%
\begin{equation}
v'_{(\lambda q + a) p_{i-1} + b} 
= 
\sum_{\lambda' a' }
(P^f_q D^f_q)_{(\lambda q + a)(\lambda' q + a')} t_{(\lambda'q+a')p_{i-1} + b}
\end{equation}
%
We can insert the definition of $D^f_q$ to give,
%
\begin{equation}
\phantom{v'_{(\lambda q + a) p_{i-1} + b}}
= \sum_{\lambda'a'} (P^f_q)_{(\lambda q + a)(\lambda'q + a')} 
\omega^{\lambda'a'}_{q_{i-1}} t_{(\lambda'q+a')p_{i-1}+b}
\end{equation}
%
Using the definition of $P^f_q$, which exchanges an index of $\lambda
q + a$ with $a f + \lambda$, we get a final result with no matrix
multiplication,
%
\begin{equation}
v'_{(a f + \lambda) p_{i-1} + b}
= \omega^{\lambda a}_{q_{i-1}} t_{(\lambda q + a)p_{i-1} + b}
\end{equation}
%
All we have to do is premultiply each element of the temporary vector
$t$ by an exponential twiddle factor and store the result in another
index location, according to the digit reversal permutation of $P$.

Here is the algorithm to implement the mixed-radix FFT,
%
\begin{algorithm}
\FOR{$i = 1 \dots n_f$}
\FOR{$a = 0 \dots q-1$}
\FOR{$b = 0 \dots p_{i-1} - 1$}
\FOR{$\lambda = 0 \dots f-1$}
\STATE{$t_\lambda \Leftarrow 
       \sum_{\lambda'=0}^{f-1} W_f(\lambda,\lambda') v_{b+\lambda'm+ap_{i-1}}$}
       \COMMENT{DFT matrix-multiply module}
\ENDFOR
\FOR{$\lambda = 0 \dots f-1$}
\STATE{$v'_{(af+\lambda)p_{i-1}+b} 
        \Leftarrow \omega^{\lambda a}_{q_{i-1}} t_\lambda$}
\ENDFOR
\ENDFOR
\ENDFOR
\STATE{$v \Leftarrow v'$}
\ENDFOR
\end{algorithm}
%
\subsection{Details of the implementation}
%
First the function {\tt gsl\_fft\_complex\_wavetable\_alloc} allocates
$n$ elements of scratch space (to hold the vector $v'$ for each
iteration) and $n$ elements for a trigonometric lookup table of
twiddle factors.

Then the length $n$ must be factorized. There is a general
factorization function {\tt gsl\_fft\_factorize} which takes a list of
preferred factors. It first factors out the preferred factors and then
removes general remaining prime factors.

The algorithm used to generate the trigonometric lookup table is
%
\begin{algorithm}
\FOR {$a = 1 \dots n_f$}
\FOR {$b = 1 \dots f_i - 1$}
\FOR {$c = 1 \dots q_i$}
\STATE $\mbox{trig[k++]} = \exp(- 2\pi i b c p_{a-1}/N)$
\ENDFOR
\ENDFOR
\ENDFOR
\end{algorithm}
%
Note that $\sum_{1}^{n_f} \sum_{0}^{f_i-1} \sum_{1}^{q_i} =
\sum_{1}^{n_f} (f_i-1)q_i = n - 1$ so $n$ elements are always
sufficient to store the lookup table. This is chosen because we need
to compute $\omega_{q_i-1}^{\lambda a} t_\lambda$ in
the FFT. In terms of the lookup table we can write this as,
%
\begin{eqnarray}
\omega_{q_{i-1}}^{\lambda a} t_\lambda 
&=&  \exp(-2\pi i \lambda a/q_{i-1}) t_\lambda \\
&=&  \exp(-2\pi i \lambda a p_{i-1}/N) t_\lambda \\
&=& \left\{
    \begin{array}{ll}
    t_\lambda & a=0 \\
    \mbox{trig}[\mbox{twiddle[i]}+\lambda q+(a-1)] t_\lambda & a\not=0
\end{array}
\right.
\end{eqnarray}
%
\begin{sloppypar}
\noindent 
The array {\tt twiddle[i]} maintains a set of pointers into {\tt trig}
for the starting points for the outer loop.  The core of the
implementation is {\tt gsl\_fft\_complex}. This function loops over
the chosen factors of $N$, computing the iteration $v'=T_i v$ for each
pass. When the DFT for a factor is implemented the iteration is
handed-off to a dedicated small-$N$ module, such as {\tt
gsl\_fft\_complex\_pass\_3} or {\tt
gsl\_fft\_complex\_pass\_5}.  Unimplemented factors are handled
by the general-$N$ routine {\tt gsl\_fft\_complex\_pass\_n}. The
structure of one of the small-$N$ modules is a simple transcription of
the basic algorithm given above.  Here is an example for {\tt
gsl\_fft\_complex\_pass\_3}. For a pass with a factor of 3 we have to
calculate the following expression,
\end{sloppypar}%
\begin{equation}
v'_{(a f + \lambda) p_{i-1} + b} 
= 
\sum_{\lambda' = 0,1,2} 
\omega^{\lambda a}_{q_{i-1}} W^{\lambda \lambda'}_{3} 
v_{b + \lambda' m + a p_{i-1}}
\end{equation}
%
for $b = 0 \dots p_{i-1} - 1$, $a = 0 \dots q_{i} - 1$ and $\lambda =
0, 1, 2$.  This is implemented as,
%
\begin{algorithm}
\FOR {$a = 0 \dots q-1$}
\FOR {$b = 0 \dots p_{i-1} - 1$}
\STATE {$
        \left(
        \begin{array}{c}
        t_0 \\ t_1 \\ t_2
        \end{array}
        \right)
        =
        \left(
        \begin{array}{ccc}
        W^{0}_3 & W^{0}_3 & W^{0}_3 \\
        W^{0}_3 & W^{1}_3 & W^{2}_3 \\
        W^{0}_3 & W^{2}_3 & W^{4}_3
        \end{array}
        \right)
        \left(
        \begin{array}{l}
        v_{b + a p_{i-1}} \\ 
        v_{b + a p_{i-1} + m} \\ 
        v_{b + a p_{i-1} +2m}
        \end{array}
        \right)$}
        \STATE {$ v'_{a p_{i} + b}  = t_0$}
        \STATE {$ v'_{a p_{i} + b + p_{i-1}} = \omega^{a}_{q_{i-1}} t_1$} 
        \STATE {$ v'_{a p_{i} + b + 2 p_{i-1}} = \omega^{2a}_{q_{i-1}} t_2$}
\ENDFOR
\ENDFOR
\end{algorithm}
%
In the code we use the variables {\tt from0}, {\tt from1}, {\tt from2}
to index the input locations,
%
\begin{eqnarray}
\mbox{\tt from0} &=& b + a p_{i-1} \\
\mbox{\tt from1} &=& b + a p_{i-1} + m \\
\mbox{\tt from2} &=& b + a p_{i-1} + 2m
\end{eqnarray}
%
and the variables {\tt to0}, {\tt to1}, {\tt to2} to index the output
locations in the scratch vector $v'$,
%
\begin{eqnarray}
\mbox{\tt to0} &=& b + a p_{i} \\
\mbox{\tt to1} &=& b + a p_{i} + p_{i-1} \\
\mbox{\tt to2} &=& b + a p_{i} + 2 p_{i-1}
\end{eqnarray}
%
The DFT matrix multiplication is computed using the optimized
sub-transform modules given in the next section. The twiddle factors
$\omega^a_{q_{i-1}}$ are taken out of the {\tt trig} array.

To compute the inverse transform we go back to the definition of the
fourier transform and note that the inverse matrix is just the complex
conjugate of the forward matrix (with a factor of $1/N$),
%
\begin{equation}
W^{-1}_N = W^*_N / N 
\end{equation}
%
Therefore we can easily compute the inverse transform by conjugating
all the complex elements of the DFT matrices and twiddle factors that
we apply. (An alternative strategy is to conjugate the input data,
take a forward transform, and then conjugate the output data).

\section{Fast Sub-transform Modules}
%
To implement the mixed-radix FFT we still need to compute the
small-$N$ DFTs for each factor. Fortunately many highly-optimized
small-$N$ modules are available, following the work of Winograd who
showed how to derive efficient small-$N$ sub-transforms by number
theoretic techniques.

The algorithms in this section all compute,
%
\begin{equation}
x_a = \sum_{b=0}^{N-1} W_N^{ab} z_b
\end{equation}
%
The sub-transforms given here are the ones recommended by Temperton
and differ slightly from the canonical Winograd modules. According to
Temperton~\cite{temperton83} they are slightly more robust against
rounding errors and trade off some additions for multiplications.
%
For the $N=2$ DFT,
%
\begin{equation}
\begin{array}{ll}
x_0 = z_0 + z_1, &
x_1 = z_0 - z_1. 
\end{array}
\end{equation}
%
For the $N=3$ DFT,
%
\begin{equation}
\begin{array}{lll}
t_1 = z_1 + z_2, &
t_2 = z_0 - t_1/2, &
t_3 = \sin(\pi/3) (z_1 - z_2), 
\end{array}
\end{equation}
\begin{equation}
\begin{array}{lll}
x_0 = z_0 + t_1, &
x_1 = t_2 + i t_3, &
x_2 = t_2 - i t_3. 
\end{array}
\end{equation}
%
The $N=4$ transform involves only additions and subtractions,
%
\begin{equation}
\begin{array}{llll}
t_1 = z_0 + z_2, &
t_2 = z_1 + z_3, &
t_3 = z_0 - z_2, &
t_4 = z_1 - z_3,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{llll}
x_0 = t_1 + t_2, &
x_1 = t_3 + i t_4, &
x_2 = t_1 - t_2, &
x_3 = t_3 - i t_4.
\end{array}
\end{equation}
%
For the $N=5$ DFT,
%
\begin{equation}
\begin{array}{llll}
t_1 = z_1 + z_4, &
t_2 = z_2 + z_3, &
t_3 = z_1 - z_4, &
t_4 = z_2 - z_3,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{llll}
t_5 = t_1 + t_2, &
t_6 = (\sqrt{5}/4) (t_1 - t_2), &
t_7 = z_0 - t_5/4, \\
\end{array}
\end{equation}
\begin{equation}
\begin{array}{llll}
t_8 = t_7 + t_6, &
t_9 = t_7 - t_6, \\
\end{array}
\end{equation}
\begin{equation}
\begin{array}{llll}
t_{10} = \sin(2\pi/5) t_3 + \sin(2\pi/10) t_4, &
t_{11} = \sin(2\pi/10) t_3 - \sin(2\pi/5) t_4,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{llll}
x_0 = z_0 + t_5,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{llll}
x_1 = t_8 + i t_{10}, &
x_2 = t_9 + i t_{11},
\end{array}
\end{equation}
\begin{equation}
\begin{array}{llll}
x_3 = t_9 - i t_{11}, &
x_4 = t_8 - i t_{10}.
\end{array}
\end{equation}
%
The DFT matrix for $N=6$ can be written as a combination of $N=3$ and
$N=2$ transforms with index permutations,
%
\begin{equation}
\left(
\begin{array}{c}
x_0 \\
x_4 \\
x_2 \\
\hline x_3 \\
x_1 \\
x_5
\end{array}
\right)
= 
\left(
\begin{array}{ccc|ccc}
  &   &  &  &   & \\
  &W_3&  &  &W_3& \\
  &   &  &  &   & \\
\hline  &   &  &  &   & \\
  &W_3&  &  &-W_3& \\
  &   &  &  &   & 
\end{array}
\right)
\left(
\begin{array}{c}
z_0 \\
z_2 \\
z_4 \\
\hline z_3 \\
z_5 \\
z_1 
\end{array}
\right)
\end{equation}
%
This simplification is an example of the Prime Factor Algorithm, which
can be used because the factors 2 and 3 are mutually prime.  For more
details consult one of the books on number theory for
FFTs~\cite{elliott82,blahut}. We can take advantage of the simple
indexing scheme of the PFA to write the $N=6$ DFT as,
%
\begin{equation}
\begin{array}{lll}
t_1 = z_2 + z_4, &
t_2 = z_0 - t_1/2, &
t_3 = \sin(\pi/3) (z_2 - z_4),
\end{array}
\end{equation}
\begin{equation}
\begin{array}{lll}
t_4 = z_5 + z_1, &
t_5 = z_3 - t_4/2, &
t_6 = \sin(\pi/3) (z_5 - z_1), 
\end{array}
\end{equation}
\begin{equation}
\begin{array}{lll}
t_7 = z_0 + t_1, &
t_8 = t_2 + i t_3, &
t_9 = t_2 - i t_3,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{lll}
t_{10} = z_3 + t_4, &
t_{11} = t_5 + i t_6, &
t_{12} = t_5 - i t_6, 
\end{array}
\end{equation}
\begin{equation}
\begin{array}{lll}
x_0 = t_7 + t_{10}, &
x_4 = t_8 + t_{11}, &
x_2 = t_9 + t_{12}, 
\end{array}
\end{equation}
\begin{equation}
\begin{array}{lll}
x_3 = t_7 - t_{10}, &
x_1 = t_8 - t_{11}, &
x_5 = t_9 - t_{12}.
\end{array}
\end{equation}

For any remaining general factors we use Singleton's efficient method
for computing a DFT~\cite{singleton}. Although it is an $O(N^2)$
algorithm it does reduce the number of multiplications by a factor of
4 compared with a naive evaluation of the DFT. If we look at the
general stucture of a DFT matrix, shown schematically below,
%
\begin{equation}
\left(
\begin{array}{c}
h_0 \\
h_1 \\
h_2 \\
\vdots \\
h_{N-2} \\
h_{N-1}
\end{array}
\right)
=
\left(
\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
1 & W & W & \cdots & W & W \\
1 & W & W & \cdots & W & W \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
1 & W & W & \cdots & W & W \\
1 & W & W & \cdots & W & W 
\end{array}
\right)
\left(
\begin{array}{c}
g_0 \\
g_1 \\
g_2 \\
\vdots \\
g_{N-2} \\
g_{N-1}
\end{array}
\right)
\end{equation}
%
we see that the outer elements of the DFT matrix are all unity. We can
remove these trivial multiplications but we will still be left with an
$(N-1) \times (N-1)$ sub-matrix of complex entries, which would appear
to require $(N-1)^2$ complex multiplications.  Singleton's method,
uses symmetries of the DFT matrix to convert the complex
multiplications to an equivalent number of real multiplications. We
start with the definition of the DFT in component form,
%
\begin{equation}
a_k + i b_k = \sum_{j=0} (x_j+iy_j)(\cos(2\pi jk/f) - i\sin(2\pi jk/f))
\end{equation}
%
The zeroth component can be computed using only additions,
%
\begin{equation}
a_0 + i b_0 = \sum_{j=0}^{(f-1)} x_j + i y_j
\end{equation}
%
We can rewrite the remaining components as,
%
\begin{eqnarray}
a_k + i b_k & =   x_0 + i y_0 & + 
  \sum_{j=1}^{(f-1)/2} (x_j + x_{f-j}) \cos(2\pi jk/f)
 + (y_j - y_{f-j}) \sin(2\pi jk/f) \\
& & + i\sum_{j=1}^{(f-1)/2} (y_j + y_{f-j}) \cos(2\pi jk/f) 
 - (x_j - x_{f-j}) \sin(2\pi jk/f)
\end{eqnarray}
%
by using the following trigonometric identities,
%
\begin{eqnarray}
 \cos(2\pi(f-j)k/f) &=& \phantom{-}\cos(2\pi jk/f) \\
 \sin(2\pi(f-j)k/f) &=&  -\sin(2\pi jk/f)
\end{eqnarray}
%
These remaining components can all be computed using four partial
sums,
%
\begin{eqnarray}
a_k + i b_k & = & (a^+_k - a^-_k) + i (b^+_k + b^-_k) \\
a_{f-k} + i b_{f-k} & = & (a^+_k + a^-_k) + i (b^+_k - b^-_k)
\end{eqnarray}
%
for $k = 1, 2, \dots, (f-1)/2$, where,
%
\begin{eqnarray}
a^+_k &=& x_0 + \sum_{j=1}^{(f-1)/2} (x_j + x_{f-j}) \cos(2\pi jk/f) \\
a^-_k &=& \phantom{x_0} - \sum_{j=1}^{(f-1)/2} (y_j - y_{f-j}) \sin(2\pi jk/f) \\
b^+_k &=& y_0 + \sum_{j=1}^{(f-1)/2} (y_j + y_{f-j}) \cos(2\pi jk/f) \\
b^-_k &=& \phantom{y_0} - \sum_{j=1}^{(f-1)/2} (x_j - x_{f-j}) \sin(2\pi jk/f)
\end{eqnarray}
%
Note that the higher components $k'=f-k$ can be obtained directly
without further computation once $a^+$, $a^-$, $b^+$ and $b^-$ are
known. There are $4 \times (f-1)/2$ different sums, each involving
$(f-1)/2$ real multiplications, giving a total of $(f-1)^2$ real
multiplications instead of $(f-1)^2$ complex multiplications.

To implement Singleton's method we make use of the input and output
vectors $v$ and $v'$ as scratch space, copying data back and forth
between them to obtain the final result.  First we use $v'$ to store
the terms of the symmetrized and anti-symmetrized vectors of the form
$x_j + x_{f-j}$ and $x_j - y_{f-j}$. Then we multiply these by the
appropriate trigonometric factors to compute the partial sums $a^+$,
$a^-$, $b^+$ and $b^-$, storing the results $a_k + i b_k$ and $a_{f-k}
+ i b_{f-k}$ back in $v$. Finally we multiply the DFT output by any
necessary twiddle factors and place the results in $v'$.

\section{FFTs for real data}
%
This section is based on the articles {\em Fast Mixed-Radix Real
  Fourier Transforms} by Clive Temperton~\cite{temperton83real} and
{\em Real-Valued Fast Fourier Transform Algorithms} by Sorensen,
Jones, Heideman and Burrus~\cite{burrus87real}. The DFT of a real
sequence has a special symmetry, called a {\em conjugate-complex} or
{\em half-complex} symmetry,
%
\begin{equation}
h(a) = h(N-a)^*
\end{equation}
%
The element $h(0)$ is real, and when $N$ is even $h(N/2)$ is also
real. It is straightforward to prove the symmetry,
%
\begin{eqnarray}
h(a) &=& \sum W^{ab}_N g(b) \\
h(N-a)^* &=& \sum W^{-(N-a)b}_N g(b)^*  \\
         &=& \sum W^{-Nb}_N W^{ab}_N g(b) \qquad{(W^N_N=1)} \\
         &=& \sum W^{ab}_N g(b)
\end{eqnarray}
%
Real-valued data is very common in practice (perhaps more common that
complex data) so it is worth having efficient FFT routines for real
data. In principle an FFT for real data should need half the
operations of an FFT on the equivalent complex data (where the
imaginary parts are set to zero). There are two different strategies
for computing FFTs of real-valued data:

One strategy is to ``pack'' the real data (of length $N$) into a
complex array (of length $N/2$) by index transformations. A complex
FFT routine can then be used to compute the transform of that array.
By further index transformations the result can actually by
``unpacked'' to the FFT of the original real data. It is also possible
to do two real FFTs simultaneously by packing one in the real part and
the other in the imaginary part of the complex array.  These
techniques have some disadvantages. The packing and unpacking
procedures always add $O(N)$ operations, and packing a real array of
length $N$ into a complex array of length $N/2$ is only possible if
$N$ is even. In addition, if two unconnected datasets with very
different magnitudes are packed together in the same FFT there could
be ``cross-talk'' between them due to a loss of precision.

A more straightforward strategy is to start with an FFT algorithm,
such as the complex mixed-radix algorithm, and prune out all the
operations involving the zero imaginary parts of the initial data. The
FFT is linear so the imaginary part of the data can be decoupled from
the real part. This procedure leads to a dedicated FFT for real-valued
data which works for any length and does not perform any unnecessary
operations. It also allows us to derive a corresponding inverse FFT
routine which transforms a half-complex sequence back into real data.

\subsection{Radix-2 FFTs for real data}
%
Before embarking on the full mixed-radix real FFT we'll start with the
radix-2 case. It contains all the essential features of the
general-$N$ algorithm. To make it easier to see the analogy between
the two we will use the mixed-radix notation to describe the
factors. The factors are all 2,
%
\begin{equation}
f_1 = 2, f_2 = 2, \dots, f_{n_f} = 2
\end{equation}
%
and the products $p_i$ are powers of 2,
%
\begin{eqnarray}
p_0 & = & 1 \\
p_1 & = & f_1 = 2 \\
p_2 & = & f_1 f_2 = 4 \\
\dots &=& \dots \\
p_i & = & f_1 f_2 \dots f_i = 2^i 
\end{eqnarray}
%
Using this notation we can rewrite the radix-2 decimation-in-time
algorithm as,
%
\begin{algorithm}
\STATE bit-reverse ordering of $g$
\FOR {$i = 1 \dots n$}
  \FOR {$a = 0 \dots p_{i-1} - 1$}
    \FOR{$b = 0 \dots q_i - 1$}
        \STATE{$
                \left(
                \begin{array}{c} 
                g(b p_i + a) \\
                g(b p_i + p_{i-1} + a)
                \end{array}
                \right)
                =
                \left(
                \begin{array}{c}
                g(b p_i + a) + W^a_{p_i} g(b p_i + p_{i-1} + a) \\
                g(b p_i + a) - W^a_{p_i} g(b p_i + p_{i-1} + a)
                \end{array}
                \right) $}
     \ENDFOR
  \ENDFOR
\ENDFOR
\end{algorithm}
%
where we have used $p_i = 2 \Delta$, and factored $2 \Delta$ out of
the original definition of $b$ ($b \to b p_i$).

If we go back to the original recurrence relations we can see how to
write the intermediate results in a way which make the
real/half-complex symmetries explicit at each step. The first pass is
just a set of FFTs of length-2 on real values,
%
\begin{equation}
g_1([b_0 b_1 b_2 a_0]) = \sum_{b_3} W^{a_0 b_3}_2 g([b_0 b_1 b_2 b_3])
\end{equation}
%
Using the symmetry $FFT(x)_k = FFT(x)^*_{N-k}$ we have the reality
condition,
%
\begin{eqnarray}
g_1([b_0 b_1 b_2 0]) &=& \mbox{real} \\
g_1([b_0 b_1 b_2 1]) &=& \mbox{real'} 
\end{eqnarray}
%
In the next pass we have a set of length-4 FFTs on the original data,
%
\begin{eqnarray}
g_2([b_0 b_1 b_1 a_0]) 
&=&
\sum_{b_2}\sum_{b_3} 
W^{[a_1 a_0]b_2}_4 W^{a_0 b_3}_2 
g([b_0 b_1 b_2 b_3]) \\
&=&
\sum_{b_2}\sum_{b_3} 
W^{[a_1 a_0][b_3 b_2]}_4
g([b_0 b_1 b_2 b_3])
\end{eqnarray}
%
This time symmetry gives us the following conditions on the
transformed data,
%
\begin{eqnarray}
g_2([b_0 b_1 0 0]) &=& \mbox{real} \\
g_2([b_0 b_1 0 1]) &=& x + i y  \\
g_2([b_0 b_1 1 0]) &=& \mbox{real'} \\
g_2([b_0 b_1 1 1]) &=& x - i y 
\end{eqnarray}
%
We can see a pattern emerging here: the $i$-th pass computes a set of
independent length-$2^i$ FFTs on the original real data,
%
\begin{eqnarray}
g_i ( b p_i  + a ) = \sum_{a' = 0}^{p_i-1} W_{p_i}^{aa'} g(b p_i + a') 
\quad 
\mbox{for $b = 0 \dots q_i - 1$}
\end{eqnarray}
%
As a consequence the we can apply the symmetry for an FFT of real data
to all the intermediate results -- not just the final result.
In general after the $i$-th pass we will
have the symmetry,
%
\begin{eqnarray}
g_i(b p_i) &=& \mbox{real} \\
g_i(b p_i + a) &=& g_i(b p_i + p_i - a)^* \qquad a = 1 \dots p_{i}/2 - 1  \\
g_i(b p_i + p_{i}/2) &=& \mbox{real'} 
\end{eqnarray}
%
In the next section we'll show that this is a general property of
decimation-in-time algorithms. The same is not true for the
decimation-in-frequency algorithm, which does not have any simple
symmetries in the intermediate results.

Since we can obtain the values of $g_i(b p_i + a)$ for $a > p_i/2$
from the values for $a < p_i/2$ we can cut our computation and
storage in half compared with the full-complex case.
%
We can easily rewrite the algorithm to show how the computation can be
halved, simply by limiting all terms to involve only values for $a
\leq p_{i}/2$. Whenever we encounter a term $g_i(b p_i + a)$ with $a >
p_{i}/2$ we rewrite it in terms of its complex symmetry partner,
$g_i(b p_i + a')^*$, where $a' = p_i - a$.  The butterfly computes two
values for each value of $a$, $b p_i + a$ and $b p_i + p_{i-1} - a$,
so we actually only need to compute from $a = 0$ to $p_{i-1}/2$.  This
gives the following algorithm,
%
\begin{algorithm}
\FOR {$a = 0 \dots p_{i-1}/2$}
  \FOR{$b = 0 \dots q_i - 1$}
        \STATE{$
                \left(
                \begin{array}{c} 
                g(b p_i + a) \\
                g(b p_i + p_{i-1} - a)^*
                \end{array}
                \right)
                =
                \left(
                \begin{array}{c}
                g(b p_{i} + a) + W^a_{p_i} g(b p_i + p_{i-1} + a) \\
                g(b p_{i} + a) - W^a_{p_i} g(b p_i + p_{i-1} + a)
                \end{array}
                \right) $}
     \ENDFOR
  \ENDFOR
\end{algorithm}
%
Although we have halved the number of operations we also need a
storage arrangement which will halve the memory requirement. The
algorithm above is still formulated in terms of a complex array $g$,
but the input to our routine will naturally be an array of $N$ real
values which we want to use in-place.

Therefore we need a storage scheme which lays out the real and
imaginary parts within the real array, in a natural way so that there
is no need for complicated index calculations. In the radix-2
algorithm we do not have any additional scratch space. The storage
scheme has to be designed to accommodate the in-place calculation
taking account of dual node pairs.

Here is a scheme which takes these restrictions into account: On the
$i$-th pass we store the real part of $g(b p_i + a)$ in location $b
p_i + a$. We store the imaginary part in location $b p_i + p_i -
a$. This is the redundant location which corresponds to the conjugate
term $g(b p_i + a)^* = g(b p_i + p_i -a)$, so it is not needed.  When
the results are purely real (as in the case $a = 0$ and $a = p_i/2$ we
store only the real part and drop the zero imaginary part).

This storage scheme has to work in-place, because the radix-2 routines
should not use any scratch space. We will now check the in-place
property for each butterfly.  A crucial point is that the scheme is
pass-dependent. Namely, when we are computing the result for pass $i$
we are reading the results of pass $i-1$, and we must access them
using the scheme from the previous pass, i.e. we have to remember that
the results from the previous pass were stored using $b p_{i-1} + a$,
not $b p_i + a$, and the symmetry for these results will be $g_{i-1}(b
p_{i-1} + a) = g_{i-1}(b p_{i-1} + p_{i-1} - a)^*$. To take this into
account we'll write the right hand side of the iteration, $g_{i-1}$,
in terms of $p_{i-1}$. For example, instead of $b p_i$, which occurs
naturally in $g_i(b p_i + a)$ we will use $2 b p_{i-1}$, since $p_i =
2 p_{i-1}$.

Let's start with the butterfly for $a = 0$,
%
\begin{equation}
\left(
\begin{array}{c} 
g(b p_i) \\
g(b p_i + p_{i-1})^*
\end{array}
\right)
=
\left(
\begin{array}{c}
g(2 b p_{i-1}) + g((2 b + 1) p_{i-1}) \\
g(2 b p_{i-1}) - g((2 b + 1) p_{i-1})
\end{array}
\right)
\end{equation}
% 
By the symmetry $g_{i-1}(b p_{i-1} + a) = g_{i-1}(b p_{i-1} + p_{i-1}
- a)^*$ all the inputs are purely real.  The input $g(2 b p_{i-1})$ is
read from location $2 b p_{i-1}$ and $g((2 b + 1) p_{i-1})$ is read
from the location $(2 b + 1) p_{i-1}$. Here is the full breakdown,
%
\begin{center}
\renewcommand{\arraystretch}{1.5}
\begin{tabular}{|l|lll|}
\hline Term & & Location & \\
\hline
$g(2 b p_{i-1})$        
        & real part & $2 b p_{i-1} $ &$= b p_i$ \\
        & imag part & --- & \\
$g((2 b+1) p_{i-1})$ 
        & real part & $(2 b + 1) p_{i-1}  $&$= b p_i + p_{i-1} $ \\
        & imag part & --- & \\
\hline
$g(b p_{i})$ 
        & real part & $b p_i$ &\\
        & imag part & --- & \\
$g(b p_{i} + p_{i-1})$ 
        & real part & $b p_i + p_{i-1}$& \\
        & imag part & --- &  \\
\hline
\end{tabular}
\end{center}
%
The conjugation of the output term $g(b p_i + p_{i-1})^*$ is
irrelevant here since the results are purely real. The real results
are stored in locations $b p_i$ and $b p_i + p_{i-1}$, which
overwrites the inputs in-place.

The general butterfly for $a = 1 \dots p_{i-1}/2 - 1$ is,
%
\begin{equation}
\left(
\begin{array}{c} 
g(b p_i + a) \\
g(b p_i + p_{i-1} - a)^*
\end{array}
\right)
=
\left(
\begin{array}{c}
g(2 b p_{i-1} + a) + W^a_{p_i} g((2 b + 1) p_{i-1} + a) \\
g(2 b p_{i-1} + a) - W^a_{p_i} g((2 b + 1) p_{i-1} + a)
\end{array}
\right)
\end{equation}
%
All the terms are complex. To store a conjugated term like $g(b' p_i +
a')^*$ where $a > p_i/2$ we take the real part and store it in
location $b' p_i + a'$ and then take imaginary part, negate it, and
store the result in location $b' p_i + p_i - a'$.

Here is the full breakdown of the inputs and outputs from the
butterfly,
%
\begin{center}
\renewcommand{\arraystretch}{1.5}
\begin{tabular}{|l|lll|}
\hline Term & & Location & \\
\hline
$g(2 b p_{i-1} + a)$    
        & real part & $2 b p_{i-1} + a $ &$= b p_i + a$ \\
        & imag part & $2 b p_{i-1} + p_{i-1} - a$ &$= b p_i + p_{i-1} - a$ \\
$g((2 b+1) p_{i-1} + a)$ 
        & real part & $(2 b+1) p_{i-1} + a $&$= b p_i + p_{i-1} + a $ \\
        & imag part & $(2 b+1) p_{i-1} + p_{i-1} - a $&$= b p_i + p_i - a$\\
\hline
$g(b p_{i} + a)$ 
        & real part & $b p_i + a$ &\\
        & imag part & $b p_i + p_i - a$& \\
$g(b p_{i} + p_{i-1} - a)$ 
        & real part & $b p_i + p_{i-1} - a$& \\
        & imag part & $b p_i + p_{i-1} + a$&  \\
\hline
\end{tabular}
\end{center}
%
By comparing the input locations and output locations we can see
that the calculation is done in place.

The final butterfly for $a = p_{i-1}/2$ is,
%
\begin{equation}
\left(
\begin{array}{c} 
g(b p_i + p_{i-1}/2) \\
g(b p_i + p_{i-1} - p_{i-1}/2)^*
\end{array}
\right)
=
\left(
\begin{array}{c}
g(2 b p_{i-1} + p_{i-1}/2) - i g((2 b + 1) p_{i-1} + p_{i-1}/2) \\
g(2 b p_{i-1} + p_{i-1}/2) + i g((2 b + 1) p_{i-1} + p_{i-1}/2)
\end{array}
\right)
\end{equation}
%
where we have substituted for the twiddle factor, $W^a_{p_i} = -i$,
%
\begin{eqnarray}
W^{p_{i-1}/2}_{p_i} &=& \exp(-2\pi i p_{i-1}/2 p_i) \\
                    &=& \exp(-2\pi i /4) \\
                    &=& -i 
\end{eqnarray}
%
For this butterfly the second line is just the conjugate of the first,
because $p_{i-1} - p_{i-1}/2 = p_{i-1}/2$. Therefore we only need to
consider the first line. The breakdown of the inputs and outputs is,
%
\begin{center}
\renewcommand{\arraystretch}{1.5}
\begin{tabular}{|l|lll|}
\hline Term & & Location & \\
\hline
$g(2 b p_{i-1} + p_{i-1}/2)$    
        & real part & $2 b p_{i-1} + p_{i-1}/2 $ &$= b p_i + p_{i-1}/2$ \\
        & imag part & --- & \\
$g((2 b + 1) p_{i-1} + p_{i-1}/2)$ 
        & real part & $(2 b + 1) p_{i-1} + p_{i-1}/2 $&$= b p_i + p_{i} - p_{i-1}/2 $ \\
        & imag part & --- & \\
\hline
$g(b p_{i} + p_{i-1}/2)$ 
        & real part & $b p_i + p_{i-1}/2$ &\\
        & imag part & $b p_i + p_i - p_{i-1}/2$& \\
\hline
\end{tabular}
\end{center}
%
By comparing the locations of the inputs and outputs with the
operations in the butterfly we find that this computation is very
simple: the effect of the butterfly is to negate the location $b p_i +
p_i - p_{i-1}/2$ and leave other locations unchanged. This is clearly
an in-place operation.

Here is the radix-2 algorithm for real data, in full, with the cases
of $a=0$, $a=1\dots p_{i-1}/2 - 1$ and $a = p_{i-1}/2$ in separate
blocks,
%
\begin{algorithm}
\STATE bit-reverse ordering of $g$
\FOR {$i = 1 \dots n$}
  \FOR{$b = 0 \dots q_i - 1$}
  \STATE{$\left(
          \begin{array}{c} 
          g(b p_i) \\
          g(b p_i + p_{i-1})
          \end{array}
          \right)
          \Leftarrow
          \left(
          \begin{array}{c}
          g(b p_{i}) + g(b p_{i} + p_{i-1}) \\
          g(b p_{i}) - g(b p_{i} + p_{i-1})
          \end{array}
          \right)$}
  \ENDFOR

  \FOR {$a = 1 \dots p_{i-1}/2 - 1$}
    \FOR{$b = 0 \dots q_i - 1$}
        \STATE{$(\Real z_0, \Imag z_0) \Leftarrow 
                (g(b p_i + a),  g(b p_i + p_{i-1} - a))$}
        \STATE{$(\Real z_1, \Imag z_1) \Leftarrow 
                (g(b p_i + p_{i-1} + a), g(b p_i + p_{i} - a))$}
        \STATE{$t_0 \Leftarrow z_0 + W^a_{p_i} z_1$}
        \STATE{$t_1 \Leftarrow z_0 - W^a_{p_i} z_1$}
        \STATE{$(g(b p_{i} + a),g(b p_{i} + p_i - a) \Leftarrow 
                (\Real t_0, \Imag t_0)$}
        \STATE{$(g(b p_{i} + p_{i-1} - a), g(b p_{i} + p_{i-1} + a))
                 \Leftarrow 
                (\Real t_1, -\Imag t_1)$}
     \ENDFOR
  \ENDFOR

  \FOR{$b = 0 \dots q_i - 1$}
        \STATE{$g(b p_{i} - p_{i-1}/2) \Leftarrow -g(b p_{i} - p_{i-1}/2)$}
  \ENDFOR

\ENDFOR
\end{algorithm}
%
We split the loop over $a$ into three parts, $a=0$, $a=1\dots
p_{i-1}/2-1$ and $a = p_{i-1}/2$ for efficiency.  When $a=0$ we have
$W^a_{p_i}=1$ so we can eliminate a complex multiplication within the
loop over $b$. When $a=p_{i-1}/2$ we have $W^a_{p_i} = -i$ which does
not require a full complex multiplication either.


\subsubsection{Calculating the Inverse}
%
The inverse FFT of complex data was easy to calculate, simply by
taking the complex conjugate of the DFT matrix. The input data and
output data were both complex and did not have any special
symmetry. For real data the inverse FFT is more complicated because
the half-complex symmetry of the transformed data is 
different from the purely real input data.

We can compute an inverse by stepping backwards through the forward
transform.  To simplify the inversion it's convenient to write the
forward algorithm with the butterfly in matrix form,
%
\begin{algorithm}
\FOR {$i = 1 \dots n$}
  \FOR {$a = 0 \dots p_{i-1}/2$}
    \FOR{$b = 0 \dots q_i - 1$}
        \STATE{$
                \left(
                \begin{array}{c} 
                g(b p_i + a) \\
                g(b p_i + p_{i-1} + a)
                \end{array}
                \right)
                =
                \left(
                \begin{array}{cc}
                1 & W^a_{p_{i}} \\
                1 & -W^a_{p_{i}}
                \end{array}
                \right)
                \left(
                \begin{array}{c}
                g(2 b p_{i-1} + a) \\
                g((2 b + 1) p_{i-1} + a)
                \end{array}
                \right) $}
     \ENDFOR
  \ENDFOR
\ENDFOR
\end{algorithm}
%
To invert the algorithm we run the iterations backwards and invert the
matrix multiplication in the innermost loop,
%
\begin{algorithm}
\FOR {$i = n \dots 1$}
  \FOR {$a = 0 \dots p_{i-1}/2$}
    \FOR{$b = 0 \dots q_i - 1$}
        \STATE{$
                \left(
                \begin{array}{c}
                g(2 b p_{i-1} + a) \\
                g((2 b + 1) p_{i-1} + a)
                \end{array}
                \right)
                =
                \left(
                \begin{array}{cc}
                1 & W^a_{p_{i}} \\
                1 & -W^a_{p_{i}}
                \end{array}
                \right)^{-1}
                \left(
                \begin{array}{c}
                g(b p_i + a) \\
                g(b p_i + p_{i-1} + a)
                \end{array}
                \right) $}
     \ENDFOR
  \ENDFOR
\ENDFOR
\end{algorithm}
%
There is no need to reverse the loops over $a$ and $b$ because the
result is independent of their order. The inverse of the matrix that
appears is,
%
\begin{equation}
\left(
\begin{array}{cc}
1 & W^a_{p_{i}} \\
1 & -W^a_{p_{i}}
\end{array}
\right)^{-1}
=
{1 \over 2}
\left(
\begin{array}{cc}
1 & 1 \\
W^{-a}_{p_{i}} & -W^{-a}_{p_{i}}
\end{array}
\right)
\end{equation}
%
To save divisions we remove the factor of $1/2$ inside the loop. This
computes the unnormalized inverse, and the normalized inverse can be
retrieved by dividing the final result by $N = 2^n$.

Here is the radix-2 half-complex to real inverse FFT algorithm, taking
into account the radix-2 storage scheme,
%
\begin{algorithm}
\FOR {$i = n \dots 1$}
  \FOR{$b = 0 \dots q_i - 1$}
  \STATE{$\left(
          \begin{array}{c} 
          g(b p_i) \\
          g(b p_i + p_{i-1})
          \end{array}
          \right)
          \Leftarrow
          \left(
          \begin{array}{c}
          g(b p_{i}) + g(b p_{i} + p_{i-1}) \\
          g(b p_{i}) - g(b p_{i} + p_{i-1})
          \end{array}
          \right)$}
  \ENDFOR

  \FOR {$a = 1 \dots p_{i-1}/2 - 1$}
    \FOR{$b = 0 \dots q_i - 1$}
        \STATE{$(\Real z_0, \Imag z_0)
                \Leftarrow 
                (g(b p_i + a), g(b p_i + p_{i} - a))$}
        \STATE{$(\Real z_1, \Imag z_1) 
                \Leftarrow 
                (g(b p_i + p_{i-1} - a),  -g(b p_i + p_{i-1} + a))$}
        \STATE{$t_0 \Leftarrow z_0 + z_1$}
        \STATE{$t_1 \Leftarrow z_0 - z_1$}
        \STATE{$(g(b p_{i} + a), g(b p_{i} + p_{i-1} - a))
                 \Leftarrow 
                (\Real t_0, \Imag t_0) $}
        \STATE{$(g(b p_{i} + p_{i-1} + a),g(b p_{i} + p_{i} - a)) 
                \Leftarrow 
                (\Real(W^a_{p_i}t_1), \Imag(W^a_{p_i}t_1))$}
     \ENDFOR
  \ENDFOR

  \FOR{$b = 0 \dots q_i - 1$}
        \STATE{$g(b p_{i} + p_{i-1}/2) \Leftarrow 2 g(b p_{i} + p_{i-1}/2)$}
        \STATE{$g(b p_{i} + p_{i-1} + p_{i-1}/2) \Leftarrow -2 g(b p_{i} + p_{i-1} + p_{i-1}/2)$}
  \ENDFOR

\ENDFOR
\STATE bit-reverse ordering of $g$
\end{algorithm}



\subsection{Mixed-Radix FFTs for real data}
%
As discussed earlier the radix-2 decimation-in-time algorithm had the
special property that its intermediate passes are interleaved fourier
transforms of the original data, and this generalizes to the
mixed-radix algorithm. The complex mixed-radix algorithm that we
derived earlier was a decimation-in-frequency algorithm, but we can
obtain a decimation-in-time version by taking the transpose of the
decimation-in-frequency DFT matrix like this,
%
\begin{eqnarray}
W_N &=& W_N^T  \\
&=& (T_{n_f} \dots T_2 T_1)^T \\
&=& T_1^T T_2^T \dots T_{n_f}^T
\end{eqnarray}
%
with,
%
\begin{eqnarray}
T_i^T &=& \left( (P^{f_i}_{q_i} D^{f_i}_{q_i} \otimes I_{p_{i-1}})
        (W_{f_i} \otimes I_{m_i}) \right)^T \\
        &=&     (W_{f_i} \otimes I_{m_i})
                ( D^{f_i}_{q_i} (P^{f_i}_{q_i})^T \otimes I_{p_{i-1}}).
\end{eqnarray}
%
We have used the fact that $W$, $D$ and $I$ are symmetric and that the
permutation matrix $P$ obeys,
%
\begin{equation}
(P^a_b)^T = P^b_a.
\end{equation}
%
From the definitions of $D$ and $P$ we can derive the following identity,
%
\begin{equation}
D^a_b P^b_a = P^b_a D^b_a.
\end{equation}
%
This allows us to put the transpose into a simple form,
%
\begin{equation}
T_i^T =         (W_{f_i} \otimes I_{m_i})
                (P^{q_i}_{f_i} D^{q_i}_{f_i} \otimes I_{p_{i-1}}).
\end{equation}
%
The transposed matrix, $T^T$ applies the digit-reversal $P$ before the
DFT $W$, giving the required decimation-in-time algorithm.  The
transpose reverses the order of the factors --- $T_{n_f}$ is applied
first and $T_1$ is applied last. For convenience we can reverse the
order of the factors, $f_1 \leftrightarrow f_{n_f}$, $f_2
\leftrightarrow f_{n_f-1}$, \dots and make the corresponding
substitution $p_{i-1} \leftrightarrow q_i$. These substitutions give
us a decimation-in-time algorithm with the same ordering as the
decimation-in-frequency algorithm,
%
\begin{equation}
W_N = T_{n_f} \dots T_2 T_1
\end{equation}
%
\begin{equation}
T_i = (W_{f_i} \otimes I_{m_i}) 
        (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i} \otimes I_{q_i})
\end{equation}
%
where $p_i$, $q_i$ and $m_i$ now have the same meanings as before,
namely,
%
\begin{eqnarray}
p_i &=& f_1 f_2 \dots f_i \quad (p_0 = 1)  \\
q_i &=& N / p_i \\
m_i &=& N / f_i 
\end{eqnarray}
%
Now we would like to prove that the iteration for computing $x = W z =
T_{n_f} \dots T_2 T_1 z$ has the special property interleaving
property. If we write the result of each intermediate pass as
$v^{(i)}$,
%
\begin{eqnarray}
v^{(0)} &=& z \\
v^{(1)} &=& T_1 v^{(0)} \\
v^{(2)} &=& T_2 v^{(1)} \\
\dots   &=& \dots \\
v^{(i)} &=& T_i v^{(i-1)} 
\end{eqnarray}
%
then we will show that the intermediate results $v^{(i)}$ on any pass
can be written as,
%
\begin{equation}
v^{(i)} = (W_{p_i} \otimes I_{q_i}) z
\end{equation}
%
Each intermediate stage will be a set of $q_i$ interleaved fourier
transforms, each of length $p_i$. We can prove this result by
induction. First we assume that the result is true for $v^{(i-1)}$,
%
\begin{equation}
v^{(i-1)} = (W_{p_{i-1}} \otimes I_{q_{i-1}}) z \qquad \mbox{(assumption)}
\end{equation}
%
And then we examine the next iteration using this assumption,
%
\begin{eqnarray}
v^{(i)} &=& T_i v^{(i-1)} \\
        &=& T_i (W_{p_{i-1}} \otimes I_{q_{i-1}}) z \\
        &=& (W_{f_i} \otimes I_{m_i}) 
                (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i} \otimes I_{q_i})
                (W_{p_{i-1}} \otimes I_{q_{i-1}}) z \label{dit-induction}
\end{eqnarray}
%
Using the relation $m_i = p_{i-1} q_i$, we can write $I_{m_i}$ as
$I_{p_{i-1} q_i}$ and $I_{q_{i-1}}$ as $I_{f_i q_i}$. By combining these
with the basic matrix identity,
%
\begin{equation}
I_{ab} = I_a \otimes I_b
\end{equation}
%
we can rewrite $v^{(i)}$ in the following form,
%
\begin{equation}
v^{(i)} =  (((W_{f_i} \otimes I_{p_{i-1}}) 
                (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i})
                (W_{p_{i-1}} \otimes I_{f_i})) \otimes I_{q_i}) z .
\end{equation}
%
The first part of this matrix product is the two-factor expansion of
$W_{ab}$, for $a = p_{i-1}$ and $b = f_i$,
%
\begin{equation}
W_{p_{i-1} f_i} = ((W_{f_i} \otimes I_{p_{i-1}}) 
                  (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i})
                  (W_{p_{i-1}} \otimes I_{f_i})).
\end{equation}
%
If we substitute this result, remembering that $p_i = p_{i-1} f_i$, we
obtain,
%
\begin{equation}
v^{(i)} = (W_{p_i} \otimes I_{q_i}) z
\end{equation}
%
which is the desired result. The case $i=1$ can be verified
explicitly, and induction then shows that the result is true for all
$i$.  As discussed for the radix-2 algorithm this result is important
because if the initial data $z$ is real then each intermediate pass is
a set of interleaved fourier transforms of $z$, having half-complex
symmetries (appropriately applied in the subspaces of the Kronecker
product). Consequently only $N$ real numbers are needed to store the
intermediate and final results.

\subsection{Implementation}
%
The implementation of the mixed-radix real FFT algorithm follows the
same principles as the full complex transform. Some of the steps are
applied in the opposite order because we are dealing with a decimation
in time algorithm instead of a decimation in frequency algorithm, but
the basic outer structure of the algorithm is the same. We want to
apply the factorized version of the DFT matrix $W_N$ to the input
vector $z$,
%
\begin{eqnarray}
x &=& W_N z \\
  &=& T_{n_f} \dots T_2 T_1 z
\end{eqnarray}
%
We loop over the $n_f$ factors, applying each matrix $T_i$ to the
vector in turn to build up the complete transform,
%
\begin{algorithm}
\FOR{$(i = 1 \dots n_f)$}
        \STATE{$v \Leftarrow T_i v $}
\ENDFOR
\end{algorithm}
%
In this case the definition of $T_i$ is different because we have
taken the transpose,
%
\begin{equation}
T_i = 
  (W_{f_i} \otimes I_{m_i}) 
  (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i} \otimes I_{q_i}).
\end{equation}
%
We'll define a temporary vector $t$ to denote the results of applying the
rightmost matrix,
%
\begin{equation}
t = (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i} \otimes I_{q_i}) v
\end{equation}
%
If we expand this out into individual components, as before, we find a
similar simplification,
%
\begin{eqnarray}
t_{aq+b} 
&=&
\sum_{a'b'} 
(P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i} \otimes I_{q_i})_{(aq+b)(a'q+b')}
v_{a'q+b'} \\
&=&
\sum_{a'} 
(P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i})_{a a'}
v_{a'q+b} 
\end{eqnarray}
%
We have factorized the indices into the form $aq+b$, with $0 \leq a <
p_{i}$ and $0 \leq b < q$.  Just as in the decimation in frequency
algorithm we can split the index $a$ to remove the matrix
multiplication completely. We have to write $a$ as $\mu f + \lambda$,
where $0 \leq \mu < p_{i-1}$ and $0 \leq \lambda < f$,
%
\begin{eqnarray}
t_{(\mu f + \lambda)q+b} 
&=&
\sum_{\mu'\lambda'} 
(P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i})_{(\mu f + \lambda)(\mu' f + \lambda')}
v_{(\mu' f + \lambda')q+b} 
\\
&=&
\sum_{\mu'\lambda'} 
(P^{p_{i-1}}_{f_i})_{(\mu f + \lambda)(\mu' f + \lambda')}
\omega^{\mu'\lambda'}_{p_{i}}
v_{(\mu' f + \lambda')q+b}
\end{eqnarray}
%
The matrix $P^{p_{i-1}}_{f_i}$ exchanges an index of $(\mu f +
\lambda) q + b$ with $(\lambda p_{i-1} + \mu) q + b$, giving a final
result of,
%
\begin{eqnarray}
t_{(\lambda p_{i-1} + \mu) q + b} 
= 
w^{\mu\lambda}_{p_i} v_{(\mu f + \lambda)q +b}
\end{eqnarray}
%
To calculate the next stage,
%
\begin{equation}
v' = (W_{f_i} \otimes I_{m_i}) t,
\end{equation}
%
we temporarily rearrange the index of $t$ to separate the $m_{i}$
independent DFTs in the Kronecker product,
%
\begin{equation}
v'_{(\lambda p_{i-1} + \mu) q + b} 
=
\sum_{\lambda' \mu' b'}
(W_{f_i} \otimes I_{m_i})_{
((\lambda p_{i-1} + \mu) q + b)
((\lambda' p_{i-1} + \mu') q + b')}
t_{(\lambda' p_{i-1} + \mu') q + b'}
\end{equation}
%
If we use the identity $m = p_{i-1} q$ to rewrite the index of $t$
like this,
%
\begin{equation}
t_{(\lambda p_{i-1} + \mu) q + b} = t_{\lambda m + (\mu q + b)}
\end{equation}
%
we can split the Kronecker product,
%
\begin{eqnarray}
v'_{(\lambda p_{i-1} + \mu) q + b}
&=&
\sum_{\lambda' \mu' b'}
(W_{f_i} \otimes I_{m_i})_{
((\lambda p_{i-1} + \mu) q + b)
((\lambda' p_{i-1} + \mu') q + b')}
t_{(\lambda' p_{i-1} + \mu') q + b'}\\
&=&
\sum_{\lambda'}
(W_{f_i})_{\lambda \lambda'}
t_{\lambda' m_i + (\mu q + b)} 
\end{eqnarray}
%
If we switch back to the original form of the index in the last line we obtain,
%
\begin{eqnarray}
\phantom{v'_{(\lambda p_{i-1} + \mu) q + b}}
&=&
\sum_{\lambda'}
(W_{f_i})_{\lambda \lambda'}
t_{(\lambda p_{i-1} + \mu) q + b}
\end{eqnarray}
%
which allows us to substitute our previous result for $t$,
%
\begin{equation}
v'_{(\lambda p_{i-1} + \mu) q + b} 
= 
\sum_{\lambda'}
(W_{f_i})_{\lambda \lambda'}
w^{\mu\lambda'}_{p_i} v_{(\mu f + \lambda')q + b}
\end{equation}
%
This gives us the basic decimation-in-time mixed-radix algorithm for
complex data which we will be able to specialize to real data,
%
\begin{algorithm}
\FOR{$i = 1 \dots n_f$}
\FOR{$\mu = 0 \dots p_{i-1} - 1$}
\FOR{$b = 0 \dots q-1$}
\FOR{$\lambda = 0 \dots f-1$}
\STATE{$t_\lambda \Leftarrow 
               \omega^{\mu\lambda'}_{p_{i}} v_{(\mu f + \lambda')q + b}$}
\ENDFOR
\FOR{$\lambda = 0 \dots f-1$}
\STATE{$v'_{(\lambda p_{i-1} + \mu)q + b} =
       \sum_{\lambda'=0}^{f-1}  W_f(\lambda,\lambda') t_{\lambda'}$}
       \COMMENT{DFT matrix-multiply module}
\ENDFOR
\ENDFOR
\ENDFOR
\STATE{$v \Leftarrow v'$}
\ENDFOR
\end{algorithm}
%
We are now at the point where we can convert an algorithm formulated
in terms of complex variables to one in terms of real variables by
choosing a suitable storage scheme.  We will adopt the FFTPACK storage
convention. FFTPACK uses a scheme where individual FFTs are
contiguous, not interleaved, and real-imaginary pairs are stored in
neighboring locations. This has better locality than was possible for
the radix-2 case.

The interleaving of the intermediate FFTs results from the Kronecker
product, $W_p \otimes I_q$. The FFTs can be made contiguous if we
reorder the Kronecker product on the intermediate passes,
%
\begin{equation}
W_p \otimes I_q \Rightarrow I_q \otimes W_p
\end{equation}
%
This can be implemented by a simple change in indexing.  On pass-$i$
we store element $v_{a q_i + b}$ in location $v_{b p_i+a}$. We
compensate for this change by making the same transposition when
reading the data. Note that this only affects the indices of the
intermediate passes.  On the zeroth iteration the transposition has no
effect because $p_0 = 1$. Similarly there is no effect on the last
iteration, which has $q_{n_f} = 1$. This is how the algorithm above
looks after this index transformation,
%
\begin{algorithm}
\FOR{$i = 1 \dots n_f$}
\FOR{$\mu = 0 \dots p_{i-1} - 1$}
\FOR{$b = 0 \dots q-1$}
\FOR{$\lambda = 0 \dots f-1$}
\STATE{$t_\lambda \Leftarrow 
               \omega^{\mu\lambda'}_{p_{i}} v_{(\lambda'q + b)p_{i-1} + \mu}$}
\ENDFOR
\FOR{$\lambda = 0 \dots f-1$}
\STATE{$v'_{b p + (\lambda p_{i-1} + \mu)} =
       \sum_{\lambda'=0}^{f-1}  W_f(\lambda,\lambda') t_{\lambda'}$}
       \COMMENT{DFT matrix-multiply module}
\ENDFOR
\ENDFOR
\ENDFOR
\STATE{$v \Leftarrow v'$}
\ENDFOR
\end{algorithm}
%
We transpose the input terms by writing the index in the form $a
q_{i-1} + b$, to take account of the pass-dependence of the scheme,
%
\begin{equation}
v_{(\mu f + \lambda')q + b} = v_{\mu q_{i-1} + \lambda'q + b}
\end{equation}
%
We used the identity $q_{i-1} = f q$ to split the index. Note that in
this form $\lambda'q + b$ runs from 0 to $q_{i-1} - 1$ as $b$ runs
from 0 to $q-1$ and $\lambda'$ runs from 0 to $f-1$. The transposition
for the input terms then gives,
%
\begin{equation}
v_{\mu q_{i-1} + \lambda'q + b} \Rightarrow  v_{(\lambda'q + b) p_{i-1} + \mu}
\end{equation}
%
In the FFTPACK scheme the intermediate output data have the same
half-complex symmetry as the radix-2 example, namely,
%
\begin{equation}
v^{(i)}_{b p + a} = v^{(i)*}_{b p + (p - a)}
\end{equation}
%
and on the input data from the previous pass have the symmetry,
%
\begin{equation}
v^{(i-1)}_{(\lambda' q + b) p_{i-1} + \mu} = v^{(i-1)*}_{(\lambda' q +
b) p_{i-1} + (p_{i-1} - \mu)}
\end{equation}
%
Using these symmetries we can halve the storage and computation
requirements for each pass. Compared with the radix-2 algorithm we
have more freedom because the computation does not have to be done in
place. The storage scheme adopted by FFTPACK places elements
sequentially with real and imaginary parts in neighboring
locations. Imaginary parts which are known to be zero are not
stored. Here are the full details of the scheme,
%
\begin{center}
\renewcommand{\arraystretch}{1.5}
\begin{tabular}{|l|lll|}
\hline Term & & Location & \\
\hline
$g(b p_i)$        
        & real part & $b p_{i} $ & \\
        & imag part & --- & \\
\hline
$g(b p_i + a)$ 
        & real part & $b p_{i} + 2a - 1 $& for $a = 1 \dots p_i/2 - 1$ \\
        & imag part & $b p_{i} + 2a$ & \\
\hline
$g(b p_{i} + p_{i}/2)$ 
        & real part & $b p_i + p_{i} - 1$ & if $p_i$ is even\\
        & imag part & --- & \\
\hline
\end{tabular}
\end{center}
%
The real element for $a=0$ is stored in location $bp$.  The real parts
for $a = 1 \dots p/2 - 1$ are stored in locations $bp + 2a -1$ and the
imaginary parts are stored in locations $b p + 2 a$.  When $p$ is even
the term for $a = p/2$ is purely real and we store it in location $bp
+ p - 1$. The zero imaginary part is not stored.

When we compute the basic iteration,
%
\begin{equation}
v^{(i)}_{b p + (\lambda p_{i-1} + \mu)} = \sum_{\lambda'} 
W^{\lambda \lambda'}_f
\omega^{\mu\lambda'}_{p_i} v^{(i-1)}_{(\lambda' q + b)p_{i-1} + \mu}
\end{equation}
%
we eliminate the redundant conjugate terms with $a > p_{i}/2$ as we
did in the radix-2 algorithm. Whenever we need to store a term with $a
> p_{i}/2$ we consider instead the corresponding conjugate term with
$a' = p - a$. Similarly when reading data we replace terms with $\mu >
p_{i-1}/2$ with the corresponding conjugate term for $\mu' = p_{i-1} -
\mu$.

Since the input data on each stage has half-complex symmetry we only
need to consider the range $\mu=0 \dots p_{i-1}/2$. We can consider
the best ways to implement the basic iteration for each pass, $\mu = 0
\dots p_{i-1}/2$.

On the first pass where $\mu=0$ we will be accessing elements which
are the zeroth components of the independent transforms $W_{p_{i-1}}
\otimes I_{q_{i-1}}$, and are purely real.
%
We can code the pass with $\mu=0$ as a special case for real input
data, and conjugate-complex output. When $\mu=0$ the twiddle factors
$\omega^{\mu\lambda'}_{p_i}$ are all unity, giving a further saving.
We can obtain small-$N$ real-data DFT modules by removing the
redundant operations from the complex modules.
%
For example the $N=3$ module was,
%
\begin{equation}
\begin{array}{lll}
t_1 = z_1 + z_2, &
t_2 = z_0 - t_1/2, &
t_3 = \sin(\pi/3) (z_1 - z_2), 
\end{array}
\end{equation}
\begin{equation}
\begin{array}{lll}
x_0 = z_0 + t_1, &
x_1 = t_2 + i t_3, &
x_2 = t_2 - i t_3. 
\end{array}
\end{equation}
%
In the complex case all the operations were complex, for complex input
data $z_0$, $z_1$, $z_2$. In the real case $z_0$, $z_1$ and $z_2$ are
all real. Consequently $t_1$, $t_2$ and $t_3$ are also real, and the
symmetry $x_1 = t_1 + i t_2 = x^*_2$ means that we do not have to
compute $x_2$ once we have computed $x_1$.

For subsequent passes $\mu = 1 \dots p_{i-1}/2 - 1$ the input data is
complex and we have to compute full complex DFTs using the same
modules as in the complex case. Note that the inputs are all of the
form $v_{(\lambda q + b) p_{i-1} + \mu}$ with $\mu < p_{i-1}/2$ so we
never need to use the symmetry to access the conjugate elements with
$\mu > p_{i-1}/2$.

If $p_{i-1}$ is even then we reach the halfway point $\mu=p_{i-1}/2$,
which is another special case. The input data in this case is purely
real because $\mu = p_{i-1} - \mu$ for $\mu = p_{i-1}/2$. We can code
this as a special case, using real inputs and real-data DFT modules as
we did for $\mu=0$. However, for $\mu = p_{i-1}/2$ the twiddle factors
are not unity,
%
\begin{eqnarray}
\omega^{\mu\lambda'}_{p_i} &=& \omega^{(p_{i-1}/2)\lambda'}_{p_i} \\
&=& \exp(-i\pi\lambda'/f_i) 
\end{eqnarray}
%
These twiddle factors introduce an additional phase which modifies the
symmetry of the outputs. Instead of the conjugate-complex symmetry
which applied for $\mu=0$ there is a shifted conjugate-complex
symmetry,
%
\begin{equation}
t_\lambda = t^*_{f-(\lambda+1)}
\end{equation}
%
This is easily proved,
%
\begin{eqnarray}
t_\lambda 
&=& 
\sum e^{-2\pi i \lambda\lambda'/f_i} e^{-i\pi \lambda'/f_i} r_{\lambda'} \\
t_{f - (\lambda + 1)}
&=& 
\sum e^{-2\pi i (f-\lambda-1)\lambda'/f_i} e^{-i\pi \lambda'/f_i} r_{\lambda'} \\
&=& 
\sum e^{2\pi i \lambda\lambda'/f_i} e^{i\pi \lambda'/f_i} r_{\lambda'} \\
&=& t^*_\lambda
\end{eqnarray}
%
The symmetry of the output means that we only need to compute half of
the output terms, the remaining terms being conjugates or zero
imaginary parts. For example, when $f=4$ the outputs are $(x_0 + i
y_0, x_1 + i y_1, x_1 - i y_1, x_0 - i y_0)$. For $f=5$ the outputs
are $(x_0 + i y_0, x_1 + i y_1, x_2, x_1 - i y_1, x_0 - i y_0)$. By
combining the twiddle factors and DFT matrix we can make a combined
module which applies both at the same time. By starting from the
complex DFT modules and bringing in twiddle factors we can derive
optimized modules. Here are the modules given by Temperton for $z = W
\Omega x$ where $x$ is real and $z$ has the shifted conjugate-complex
symmetry. The matrix of twiddle factors, $\Omega$, is given by,
%
\begin{equation}
\Omega = \mathrm{diag}(1, e^{-i\pi/f}, e^{-2\pi i/f}, \dots, e^{-i\pi(f-1)/f})
\end{equation}
%
We write $z$ in terms of two real vectors $z = a + i b$.
%
For $N=2$,
%
\begin{equation}
\begin{array}{ll}
a_0 = x_0, & 
b_0 = - x_1.
\end{array}
\end{equation}
%
For $N=3$,
%
\begin{equation}
\begin{array}{l}
t_1 = x_1 - x_2,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
a_0 = x_0 + t_1/2, & b_0 = x_0 - t_1,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{l}
a_1 = - \sin(\pi/3) (x_1 + x_2)
\end{array}
\end{equation}
%
For $N=4$,
%
\begin{equation}
\begin{array}{ll}
t_1 = (x_1 - x_3)/\sqrt{2}, & t_2 = (x_1 + x_3)/\sqrt{2},
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
a_0 = x_0 + t_1, & b_0 = -x_2 - t_2,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
a_1 = x_0 - t_1, & b_1 = x_2 - t_2.
\end{array}
\end{equation}
%
For $N=5$,
%
\begin{equation}
\begin{array}{ll}
t_1 = x_1 - x_4, & t_2 = x_1 + x_4,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
t_3 = x_2 - x_3, & t_4 = x_2 + x_3,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
t_5 = t_1 - t_3, & t_6 = x_0 + t_5 / 4,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
t_7 = (\sqrt{5}/4)(t_1 + t_3) & 
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
a_0 = t_6 + t_7, & b_0 = -\sin(2\pi/10) t_2 - \sin(2\pi/5) t_4, 
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
a_1 = t_6 - t_7, & b_1 = -\sin(2\pi/5) t_2 + \sin(2\pi/10) t_4,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
a_2 = x_0 - t_5 &
\end{array}
\end{equation}
%
For $N=6$,
%
\begin{equation}
\begin{array}{ll}
t_1 = \sin(\pi/3)(x_5 - x_1), & t_2 = \sin(\pi/3) (x_2 + x_4),
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
t_3 = x_2 - x_4, & t_4 = x_1 + x_5,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
t_5 = x_0 + t_3 / 2, & t_6 = -x_3 - t_4 / 2,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
a_0 = t_5 - t_1, & b_0 = t_6 - t_2,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
a_1 = x_0 - t_3, & b_1 = x_3 - t_4,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
a_2 = t_5 + t_1, & b_2 = t_6 + t_2
\end{array}
\end{equation}

\section{Computing the mixed-radix inverse for real data}
%
To compute the inverse of the mixed-radix FFT on real data we step
through the algorithm in reverse and invert each operation.

This gives the following algorithm using FFTPACK indexing,
%
\begin{algorithm}
\FOR{$i = n_f \dots 1$}
\FOR{$\mu = 0 \dots p_{i-1} - 1$}
\FOR{$b = 0 \dots q-1$}
\FOR{$\lambda = 0 \dots f-1$}
\STATE{$t_{\lambda'} =
       \sum_{\lambda'=0}^{f-1}  W_f(\lambda,\lambda')
       v_{b p + (\lambda p_{i-1} + \mu)}$}
       \COMMENT{DFT matrix-multiply module}
\ENDFOR
\FOR{$\lambda = 0 \dots f-1$}
\STATE{$v'_{(\lambda'q + b)p_{i-1} + \mu} \Leftarrow 
               \omega^{-\mu\lambda'}_{p_{i}} t_\lambda$}
\ENDFOR

\ENDFOR
\ENDFOR
\STATE{$v \Leftarrow v'$}
\ENDFOR
\end{algorithm}
%
When $\mu=0$ we are applying an inverse DFT to half-complex data,
giving a real result. The twiddle factors are all unity. We can code
this as a special case, just as we did for the forward routine. We
start with complex module and eliminate the redundant terms. In this
case it is the final result which has the zero imaginary part, and we
eliminate redundant terms by using the half-complex symmetry of the
input data. 

When $\mu=1 \dots p_{i-1}/2 - 1$ we have full complex transforms on
complex data, so no simplification is possible.

When $\mu = p_{i-1}/2$ (which occurs only when $p_{i-1}$ is even) we
have a combination of twiddle factors and DFTs on data with the
shifted half-complex symmetry which give a real result. We implement
this as a special module, essentially by inverting the system of
equations given for the forward case. We use the modules given by
Temperton, appropriately modified for our version of the algorithm. He
uses a slightly different convention which differs by factors of two
for some terms (consult his paper for details~\cite{temperton83real}).

For $N=2$,
%
\begin{equation}
\begin{array}{ll}
x_0 = 2 a_0, & x_1 = - 2 b_0 .
\end{array}
\end{equation}
%
For $N=3$,
%
\begin{equation}
\begin{array}{ll}
t_1 = a_0 - a_1, & t_2 = \sqrt{3} b_1, \\
\end{array}
\end{equation}
\begin{equation}
\begin{array}{lll}
x_0 = 2 a_0 + a_1, & x_1 = t_1 - t_2, & x_2 = - t_1 - t_2 
\end{array}
\end{equation}
%
For $N=4$,
\begin{equation}
\begin{array}{ll}
t_1 = \sqrt{2} (b_0 + b_1), & t_2 = \sqrt{2} (a_0 - a_1),
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
x_0 = 2(a_0 + a_1), & x_1 = t_2 - t_1 , 
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
x_2 = 2(b_1 - b_0), & x_3 = -(t_2 + t_1).
\end{array}
\end{equation}
%
For $N=5$,
%
\begin{equation}
\begin{array}{ll}
t_1 = 2 (a_0 + a_1), & t_2 = t_1 / 4 - a_2,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
t_3 = (\sqrt{5}/2) (a_0 - a_1), 
\end{array}
\end{equation}
\begin{equation}
\begin{array}{l}
t_4 = 2(\sin(2\pi/10) b_0 + \sin(2\pi/5) b_1),
\end{array}
\end{equation}
\begin{equation}
\begin{array}{l}
t_5 = 2(\sin(2\pi/10) b_0 - \sin(2\pi/5) b_1),
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
t_6 = t_3 + t_2, & t_7 = t_3 - t_2,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
x_0 = t_1 + a_2, & x_1 = t_6 - t_4 ,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
x_2 = t_7 - t_5, & x_3 = - t_7 - t_5,
\end{array}
\end{equation}
\begin{equation}
\begin{array}{ll}
x_4 = -t_6 - t_4.
\end{array}
\end{equation}

\section{Conclusions}
%
We have described the basic algorithms for one-dimensional radix-2 and
mixed-radix FFTs. It would be nice to have a pedagogical explanation
of the split-radix FFT algorithm, which is faster than the simple
radix-2 algorithm we used. We could also have a whole chapter on
multidimensional FFTs.
%
%\section{Multidimensional FFTs}
%\section{Testing FFTs, Numerical Analysis}

%\nocite{*}
\bibliographystyle{unsrt} 
\bibliography{fftalgorithms} 

\end{document}