summaryrefslogtreecommitdiff
path: root/gsl-1.9/cdf/beta_inc.c
blob: 8a0165a86f89035ea3d42ae02a062390f8f57036 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/* specfunc/beta_inc.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman */
/* Modified for cdfs by Brian Gough, June 2003 */

static double
beta_cont_frac (const double a, const double b, const double x,
                const double epsabs)
{
  const unsigned int max_iter = 512;    /* control iterations      */
  const double cutoff = 2.0 * GSL_DBL_MIN;      /* control the zero cutoff */
  unsigned int iter_count = 0;
  double cf;

  /* standard initialization for continued fraction */
  double num_term = 1.0;
  double den_term = 1.0 - (a + b) * x / (a + 1.0);

  if (fabs (den_term) < cutoff)
    den_term = GSL_NAN;

  den_term = 1.0 / den_term;
  cf = den_term;

  while (iter_count < max_iter)
    {
      const int k = iter_count + 1;
      double coeff = k * (b - k) * x / (((a - 1.0) + 2 * k) * (a + 2 * k));
      double delta_frac;

      /* first step */
      den_term = 1.0 + coeff * den_term;
      num_term = 1.0 + coeff / num_term;

      if (fabs (den_term) < cutoff)
        den_term = GSL_NAN;

      if (fabs (num_term) < cutoff)
        num_term = GSL_NAN;

      den_term = 1.0 / den_term;

      delta_frac = den_term * num_term;
      cf *= delta_frac;

      coeff = -(a + k) * (a + b + k) * x / ((a + 2 * k) * (a + 2 * k + 1.0));

      /* second step */
      den_term = 1.0 + coeff * den_term;
      num_term = 1.0 + coeff / num_term;

      if (fabs (den_term) < cutoff)
        den_term = GSL_NAN;

      if (fabs (num_term) < cutoff)
        num_term = GSL_NAN;

      den_term = 1.0 / den_term;

      delta_frac = den_term * num_term;
      cf *= delta_frac;

      if (fabs (delta_frac - 1.0) < 2.0 * GSL_DBL_EPSILON)
        break;

      if (cf * fabs (delta_frac - 1.0) < epsabs)
        break;

      ++iter_count;
    }

  if (iter_count >= max_iter)
    return GSL_NAN;

  return cf;
}

/* The function beta_inc_AXPY(A,Y,a,b,x) computes A * beta_inc(a,b,x)
   + Y taking account of possible cancellations when using the
   hypergeometric transformation beta_inc(a,b,x)=1-beta_inc(b,a,1-x).

   It also adjusts the accuracy of beta_inc() to fit the overall
   absolute error when A*beta_inc is added to Y. (e.g. if Y >>
   A*beta_inc then the accuracy of beta_inc can be reduced) */

static double
beta_inc_AXPY (const double A, const double Y,
               const double a, const double b, const double x)
{
  if (x == 0.0)
    {
      return A * 0 + Y;
    }
  else if (x == 1.0)
    {
      return A * 1 + Y;
    }
  else
    {
      double ln_beta = gsl_sf_lnbeta (a, b);
      double ln_pre = -ln_beta + a * log (x) + b * log1p (-x);

      double prefactor = exp (ln_pre);

      if (x < (a + 1.0) / (a + b + 2.0))
        {
          /* Apply continued fraction directly. */
          double epsabs = fabs (Y / (A * prefactor / a)) * GSL_DBL_EPSILON;

          double cf = beta_cont_frac (a, b, x, epsabs);

          return A * (prefactor * cf / a) + Y;
        }
      else
        {
          /* Apply continued fraction after hypergeometric transformation. */
          double epsabs =
            fabs ((A + Y) / (A * prefactor / b)) * GSL_DBL_EPSILON;
          double cf = beta_cont_frac (b, a, 1.0 - x, epsabs);
          double term = prefactor * cf / b;

          if (A == -Y)
            {
              return -A * term;
            }
          else
            {
              return A * (1 - term) + Y;
            }
        }
    }
}

/* Direct series evaluation for testing purposes only */

#if 0
static double
beta_series (const double a, const double b, const double x,
             const double epsabs)
{
  double f = x / (1 - x);
  double c = (b - 1) / (a + 1) * f;
  double s = 1;
  double n = 0;

  s += c;

  do
    {
      n++;
      c *= -f * (2 + n - b) / (2 + n + a);
      s += c;
    }
  while (n < 512 && fabs (c) > GSL_DBL_EPSILON * fabs (s) + epsabs);

  s /= (1 - x);

  return s;
}
#endif