summaryrefslogtreecommitdiff
path: root/gsl-1.9/sum/levin_u.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/sum/levin_u.c')
-rw-r--r--gsl-1.9/sum/levin_u.c255
1 files changed, 255 insertions, 0 deletions
diff --git a/gsl-1.9/sum/levin_u.c b/gsl-1.9/sum/levin_u.c
new file mode 100644
index 0000000..06f188a
--- /dev/null
+++ b/gsl-1.9/sum/levin_u.c
@@ -0,0 +1,255 @@
+/* sum/levin_u.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <config.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_test.h>
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_sum.h>
+
+int
+gsl_sum_levin_u_accel (const double *array, const size_t array_size,
+ gsl_sum_levin_u_workspace * w,
+ double *sum_accel, double *abserr)
+{
+ return gsl_sum_levin_u_minmax (array, array_size,
+ 0, array_size - 1, w, sum_accel, abserr);
+}
+
+int
+gsl_sum_levin_u_minmax (const double *array, const size_t array_size,
+ const size_t min_terms, const size_t max_terms,
+ gsl_sum_levin_u_workspace * w,
+ double *sum_accel, double *abserr)
+{
+ if (array_size == 0)
+ {
+ *sum_accel = 0.0;
+ *abserr = 0.0;
+ w->sum_plain = 0.0;
+ w->terms_used = 0;
+ return GSL_SUCCESS;
+ }
+ else if (array_size == 1)
+ {
+ *sum_accel = array[0];
+ *abserr = 0.0;
+ w->sum_plain = array[0];
+ w->terms_used = 1;
+ return GSL_SUCCESS;
+ }
+ else
+ {
+ const double SMALL = 0.01;
+ const size_t nmax = GSL_MAX (max_terms, array_size) - 1;
+ double noise_n = 0.0, noise_nm1 = 0.0;
+ double trunc_n = 0.0, trunc_nm1 = 0.0;
+ double actual_trunc_n = 0.0, actual_trunc_nm1 = 0.0;
+ double result_n = 0.0, result_nm1 = 0.0;
+ double variance = 0;
+ size_t n;
+ unsigned int i;
+ int better = 0;
+ int before = 0;
+ int converging = 0;
+ double least_trunc = GSL_DBL_MAX;
+ double least_trunc_noise = GSL_DBL_MAX;
+ double least_trunc_result;
+
+ /* Calculate specified minimum number of terms. No convergence
+ tests are made, and no truncation information is stored. */
+
+ for (n = 0; n < min_terms; n++)
+ {
+ const double t = array[n];
+ result_nm1 = result_n;
+ gsl_sum_levin_u_step (t, n, nmax, w, &result_n);
+ }
+
+ least_trunc_result = result_n;
+
+ variance = 0;
+ for (i = 0; i < n; i++)
+ {
+ double dn = w->dsum[i] * GSL_MACH_EPS * array[i];
+ variance += dn * dn;
+ }
+ noise_n = sqrt (variance);
+
+ /* Calculate up to maximum number of terms. Check truncation
+ condition. */
+
+ for (; n <= nmax; n++)
+ {
+ const double t = array[n];
+
+ result_nm1 = result_n;
+ gsl_sum_levin_u_step (t, n, nmax, w, &result_n);
+
+ /* Compute the truncation error directly */
+
+ actual_trunc_nm1 = actual_trunc_n;
+ actual_trunc_n = fabs (result_n - result_nm1);
+
+ /* Average results to make a more reliable estimate of the
+ real truncation error */
+
+ trunc_nm1 = trunc_n;
+ trunc_n = 0.5 * (actual_trunc_n + actual_trunc_nm1);
+
+ noise_nm1 = noise_n;
+ variance = 0;
+
+ for (i = 0; i <= n; i++)
+ {
+ double dn = w->dsum[i] * GSL_MACH_EPS * array[i];
+ variance += dn * dn;
+ }
+
+ noise_n = sqrt (variance);
+
+ /* Determine if we are in the convergence region. */
+
+ better = (trunc_n < trunc_nm1 || trunc_n < SMALL * fabs (result_n));
+ converging = converging || (better && before);
+ before = better;
+
+ if (converging)
+ {
+ if (trunc_n < least_trunc)
+ {
+ /* Found a low truncation point in the convergence
+ region. Save it. */
+
+ least_trunc_result = result_n;
+ least_trunc = trunc_n;
+ least_trunc_noise = noise_n;
+ }
+
+ if (noise_n > trunc_n / 3.0)
+ break;
+
+ if (trunc_n < 10.0 * GSL_MACH_EPS * fabs (result_n))
+ break;
+ }
+
+ }
+
+ if (converging)
+ {
+ /* Stopped in the convergence region. Return result and
+ error estimate. */
+
+ *sum_accel = least_trunc_result;
+ *abserr = GSL_MAX_DBL (least_trunc, least_trunc_noise);
+ w->terms_used = n;
+ return GSL_SUCCESS;
+ }
+ else
+ {
+ /* Never reached the convergence region. Use the last
+ calculated values. */
+
+ *sum_accel = result_n;
+ *abserr = GSL_MAX_DBL (trunc_n, noise_n);
+ w->terms_used = n;
+ return GSL_SUCCESS;
+ }
+ }
+}
+
+
+int
+gsl_sum_levin_u_step (const double term, const size_t n, const size_t nmax,
+ gsl_sum_levin_u_workspace * w, double *sum_accel)
+{
+
+#define I(i,j) ((i)*(nmax+1) + (j))
+
+ if (n == 0)
+ {
+ *sum_accel = term;
+ w->sum_plain = term;
+
+ w->q_den[0] = 1.0 / term;
+ w->q_num[0] = 1.0;
+
+ w->dq_den[I (0, 0)] = -1.0 / (term * term);
+ w->dq_num[I (0, 0)] = 0.0;
+
+ w->dsum[0] = 1.0;
+
+ return GSL_SUCCESS;
+ }
+ else
+ {
+ double result;
+ double factor = 1.0;
+ double ratio = (double) n / (n + 1.0);
+ unsigned int i;
+ int j;
+
+ w->sum_plain += term;
+
+ w->q_den[n] = 1.0 / (term * (n + 1.0) * (n + 1.0));
+ w->q_num[n] = w->sum_plain * w->q_den[n];
+
+ for (i = 0; i < n; i++)
+ {
+ w->dq_den[I (i, n)] = 0;
+ w->dq_num[I (i, n)] = w->q_den[n];
+ }
+
+ w->dq_den[I (n, n)] = -w->q_den[n] / term;
+ w->dq_num[I (n, n)] =
+ w->q_den[n] + w->sum_plain * (w->dq_den[I (n, n)]);
+
+ for (j = n - 1; j >= 0; j--)
+ {
+ double c = factor * (j + 1) / (n + 1);
+ factor *= ratio;
+ w->q_den[j] = w->q_den[j + 1] - c * w->q_den[j];
+ w->q_num[j] = w->q_num[j + 1] - c * w->q_num[j];
+
+ for (i = 0; i < n; i++)
+ {
+ w->dq_den[I (i, j)] =
+ w->dq_den[I (i, j + 1)] - c * w->dq_den[I (i, j)];
+ w->dq_num[I (i, j)] =
+ w->dq_num[I (i, j + 1)] - c * w->dq_num[I (i, j)];
+ }
+
+ w->dq_den[I (n, j)] = w->dq_den[I (n, j + 1)];
+ w->dq_num[I (n, j)] = w->dq_num[I (n, j + 1)];
+ }
+
+ result = w->q_num[0] / w->q_den[0];
+
+ *sum_accel = result;
+
+ for (i = 0; i <= n; i++)
+ {
+ w->dsum[i] =
+ (w->dq_num[I (i, 0)] -
+ result * w->dq_den[I (i, 0)]) / w->q_den[0];
+ }
+
+ return GSL_SUCCESS;
+ }
+}