summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/mathieu_charv.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/specfunc/mathieu_charv.c')
-rw-r--r--gsl-1.9/specfunc/mathieu_charv.c849
1 files changed, 849 insertions, 0 deletions
diff --git a/gsl-1.9/specfunc/mathieu_charv.c b/gsl-1.9/specfunc/mathieu_charv.c
new file mode 100644
index 0000000..bf28413
--- /dev/null
+++ b/gsl-1.9/specfunc/mathieu_charv.c
@@ -0,0 +1,849 @@
+/* specfunc/mathieu_charv.c
+ *
+ * Copyright (C) 2002 Lowell Johnson
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/* Author: L. Johnson */
+
+#include <config.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <math.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_eigen.h>
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_sf_mathieu.h>
+
+
+/* prototypes */
+static double solve_cubic(double c2, double c1, double c0);
+
+
+static double ceer(int order, double qq, double aa, int nterms)
+{
+
+ double term, term1;
+ int ii, n1;
+
+
+ if (order == 0)
+ term = 0.0;
+ else
+ {
+ term = 2.0*qq*qq/aa;
+
+ if (order != 2)
+ {
+ n1 = order/2 - 1;
+
+ for (ii=0; ii<n1; ii++)
+ term = qq*qq/(aa - 4.0*(ii+1)*(ii+1) - term);
+ }
+ }
+
+ term += order*order;
+
+ term1 = 0.0;
+
+ for (ii=0; ii<nterms; ii++)
+ term1 = qq*qq/
+ (aa - (order + 2.0*(nterms - ii))*(order + 2.0*(nterms - ii)) - term1);
+
+ if (order == 0)
+ term1 *= 2.0;
+
+ return (term + term1 - aa);
+}
+
+
+static double ceor(int order, double qq, double aa, int nterms)
+{
+ double term, term1;
+ int ii, n1;
+
+ term = qq;
+ n1 = (int)((float)order/2.0 - 0.5);
+
+ for (ii=0; ii<n1; ii++)
+ term = qq*qq/(aa - (2.0*ii + 1.0)*(2.0*ii + 1.0) - term);
+ term += order*order;
+
+ term1 = 0.0;
+ for (ii=0; ii<nterms; ii++)
+ term1 = qq*qq/
+ (aa - (order + 2.0*(nterms - ii))*(order + 2.0*(nterms - ii)) - term1);
+
+ return (term + term1 - aa);
+}
+
+
+static double seer(int order, double qq, double aa, int nterms)
+{
+ double term, term1;
+ int ii, n1;
+
+ term = 0.0;
+ n1 = order/2 - 1;
+
+ for (ii=0; ii<n1; ii++)
+ term = qq*qq/(aa - 4.0*(ii + 1)*(ii + 1) - term);
+ term += order*order;
+
+ term1 = 0.0;
+ for (ii=0; ii<nterms; ii++)
+ term1 = qq*qq/
+ (aa - (order + 2.0*(nterms - ii))*(order + 2.0*(nterms - ii)) - term1);
+
+ return (term + term1 - aa);
+}
+
+
+static double seor(int order, double qq, double aa, int nterms)
+{
+ double term, term1;
+ int ii, n1;
+
+
+ term = -1.0*qq;
+ n1 = (int)((float)order/2.0 - 0.5);
+ for (ii=0; ii<n1; ii++)
+ term = qq*qq/(aa - (2.0*ii + 1.0)*(2.0*ii + 1.0) - term);
+ term += order*order;
+
+ term1 = 0.0;
+ for (ii=0; ii<nterms; ii++)
+ term1 = qq*qq/
+ (aa - (order + 2.0*(nterms - ii))*(order + 2.0*(nterms - ii)) - term1);
+
+ return (term + term1 - aa);
+}
+
+
+/*----------------------------------------------------------------------------
+ * Asymptotic and approximation routines for the characteristic value.
+ *
+ * Adapted from F.A. Alhargan's paper,
+ * "Algorithms for the Computation of All Mathieu Functions of Integer
+ * Orders," ACM Transactions on Mathematical Software, Vol. 26, No. 3,
+ * September 2000, pp. 390-407.
+ *--------------------------------------------------------------------------*/
+static double asymptotic(int order, double qq)
+{
+ double asymp;
+ double nn, n2, n4, n6;
+ double hh, ah, ah2, ah3, ah4, ah5;
+
+
+ /* Set up temporary variables to simplify the readability. */
+ nn = 2*order + 1;
+ n2 = nn*nn;
+ n4 = n2*n2;
+ n6 = n4*n2;
+
+ hh = 2*sqrt(qq);
+ ah = 16*hh;
+ ah2 = ah*ah;
+ ah3 = ah2*ah;
+ ah4 = ah3*ah;
+ ah5 = ah4*ah;
+
+ /* Equation 38, p. 397 of Alhargan's paper. */
+ asymp = -2*qq + nn*hh - 0.125*(n2 + 1);
+ asymp -= 0.25*nn*( n2 + 3)/ah;
+ asymp -= 0.25* ( 5*n4 + 34*n2 + 9)/ah2;
+ asymp -= 0.25*nn*( 33*n4 + 410*n2 + 405)/ah3;
+ asymp -= ( 63*n6 + 1260*n4 + 2943*n2 + 486)/ah4;
+ asymp -= nn*(527*n6 + 15617*n4 + 69001*n2 + 41607)/ah5;
+
+ return asymp;
+}
+
+
+/* Solve the cubic x^3 + c2*x^2 + c1*x + c0 = 0 */
+static double solve_cubic(double c2, double c1, double c0)
+{
+ double qq, rr, ww, ss, tt;
+
+
+ qq = (3*c1 - c2*c2)/9;
+ rr = (9*c2*c1 - 27*c0 - 2*c2*c2*c2)/54;
+ ww = qq*qq*qq + rr*rr;
+
+ if (ww >= 0)
+ {
+ double t1 = rr + sqrt(ww);
+ ss = fabs(t1)/t1*pow(fabs(t1), 1/3.);
+ t1 = rr - sqrt(ww);
+ tt = fabs(t1)/t1*pow(fabs(t1), 1/3.);
+ }
+ else
+ {
+ double theta = acos(rr/sqrt(-qq*qq*qq));
+ ss = 2*sqrt(-qq)*cos((theta + 4*M_PI)/3.);
+ tt = 0.0;
+ }
+
+ return (ss + tt - c2/3);
+}
+
+
+/* Compute an initial approximation for the characteristic value. */
+static double approx_c(int order, double qq)
+{
+ double approx;
+ double c0, c1, c2;
+
+
+ if (order < 0)
+ {
+ GSL_ERROR_VAL("Undefined order for Mathieu function", GSL_EINVAL, 0.0);
+ }
+
+ switch (order)
+ {
+ case 0:
+ if (qq <= 4)
+ return (2 - sqrt(4 + 2*qq*qq)); /* Eqn. 31 */
+ else
+ return asymptotic(order, qq);
+ break;
+
+ case 1:
+ if (qq <= 4)
+ return (5 + 0.5*(qq - sqrt(5*qq*qq - 16*qq + 64))); /* Eqn. 32 */
+ else
+ return asymptotic(order, qq);
+ break;
+
+ case 2:
+ if (qq <= 3)
+ {
+ c2 = -8.0; /* Eqn. 33 */
+ c1 = -48 - 3*qq*qq;
+ c0 = 20*qq*qq;
+ }
+ else
+ return asymptotic(order, qq);
+ break;
+
+ case 3:
+ if (qq <= 6.25)
+ {
+ c2 = -qq - 8; /* Eqn. 34 */
+ c1 = 16*qq - 128 - 2*qq*qq;
+ c0 = qq*qq*(qq + 8);
+ }
+ else
+ return asymptotic(order, qq);
+ break;
+
+ default:
+ if (order < 70)
+ {
+ if (1.7*order > 2*sqrt(qq))
+ {
+ /* Eqn. 30 */
+ double n2 = (double)(order*order);
+ double n22 = (double)((n2 - 1)*(n2 - 1));
+ double q2 = qq*qq;
+ double q4 = q2*q2;
+ approx = n2 + 0.5*q2/(n2 - 1);
+ approx += (5*n2 + 7)*q4/(32*n22*(n2 - 1)*(n2 - 4));
+ approx += (9*n2*n2 + 58*n2 + 29)*q4*q2/
+ (64*n22*n22*(n2 - 1)*(n2 - 4)*(n2 - 9));
+ if (1.4*order < 2*sqrt(qq))
+ {
+ approx += asymptotic(order, qq);
+ approx *= 0.5;
+ }
+ }
+ else
+ approx = asymptotic(order, qq);
+
+ return approx;
+ }
+ else
+ return order*order;
+ }
+
+ /* Solve the cubic x^3 + c2*x^2 + c1*x + c0 = 0 */
+ approx = solve_cubic(c2, c1, c0);
+
+ if ( approx < 0 && sqrt(qq) > 0.1*order )
+ return asymptotic(order-1, qq);
+ else
+ return (order*order + fabs(approx));
+}
+
+
+static double approx_s(int order, double qq)
+{
+ double approx;
+ double c0, c1, c2;
+
+
+ if (order < 1)
+ {
+ GSL_ERROR_VAL("Undefined order for Mathieu function", GSL_EINVAL, 0.0);
+ }
+
+ switch (order)
+ {
+ case 1:
+ if (qq <= 4)
+ return (5 - 0.5*(qq + sqrt(5*qq*qq + 16*qq + 64))); /* Eqn. 35 */
+ else
+ return asymptotic(order-1, qq);
+ break;
+
+ case 2:
+ if (qq <= 5)
+ return (10 - sqrt(36 + qq*qq)); /* Eqn. 36 */
+ else
+ return asymptotic(order-1, qq);
+ break;
+
+ case 3:
+ if (qq <= 6.25)
+ {
+ c2 = qq - 8; /* Eqn. 37 */
+ c1 = -128 - 16*qq - 2*qq*qq;
+ c0 = qq*qq*(8 - qq);
+ }
+ else
+ return asymptotic(order-1, qq);
+ break;
+
+ default:
+ if (order < 70)
+ {
+ if (1.7*order > 2*sqrt(qq))
+ {
+ /* Eqn. 30 */
+ double n2 = (double)(order*order);
+ double n22 = (double)((n2 - 1)*(n2 - 1));
+ double q2 = qq*qq;
+ double q4 = q2*q2;
+ approx = n2 + 0.5*q2/(n2 - 1);
+ approx += (5*n2 + 7)*q4/(32*n22*(n2 - 1)*(n2 - 4));
+ approx += (9*n2*n2 + 58*n2 + 29)*q4*q2/
+ (64*n22*n22*(n2 - 1)*(n2 - 4)*(n2 - 9));
+ if (1.4*order < 2*sqrt(qq))
+ {
+ approx += asymptotic(order-1, qq);
+ approx *= 0.5;
+ }
+ }
+ else
+ approx = asymptotic(order-1, qq);
+
+ return approx;
+ }
+ else
+ return order*order;
+ }
+
+ /* Solve the cubic x^3 + c2*x^2 + c1*x + c0 = 0 */
+ approx = solve_cubic(c2, c1, c0);
+
+ if ( approx < 0 && sqrt(qq) > 0.1*order )
+ return asymptotic(order-1, qq);
+ else
+ return (order*order + fabs(approx));
+}
+
+
+int gsl_sf_mathieu_a(int order, double qq, gsl_sf_result *result)
+{
+ int even_odd, nterms = 50, ii, counter = 0, maxcount = 200;
+ double a1, a2, fa, fa1, dela, aa_orig, da = 0.025, aa;
+
+
+ even_odd = 0;
+ if (order % 2 != 0)
+ even_odd = 1;
+
+ /* If the argument is 0, then the coefficient is simply the square of
+ the order. */
+ if (qq == 0)
+ {
+ result->val = order*order;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+
+ /* Use symmetry characteristics of the functions to handle cases with
+ negative order and/or argument q. See Abramowitz & Stegun, 20.8.3. */
+ if (order < 0)
+ order *= -1;
+ if (qq < 0.0)
+ {
+ if (even_odd == 0)
+ return gsl_sf_mathieu_a(order, -qq, result);
+ else
+ return gsl_sf_mathieu_b(order, -qq, result);
+ }
+
+ /* Compute an initial approximation for the characteristic value. */
+ aa = approx_c(order, qq);
+
+ /* Save the original approximation for later comparison. */
+ aa_orig = aa;
+
+ /* Loop as long as the final value is not near the approximate value
+ (with a max limit to avoid potential infinite loop). */
+ while (counter < maxcount)
+ {
+ a1 = aa + 0.001;
+ ii = 0;
+ if (even_odd == 0)
+ fa1 = ceer(order, qq, a1, nterms);
+ else
+ fa1 = ceor(order, qq, a1, nterms);
+
+ for (;;)
+ {
+ if (even_odd == 0)
+ fa = ceer(order, qq, aa, nterms);
+ else
+ fa = ceor(order, qq, aa, nterms);
+
+ a2 = a1;
+ a1 = aa;
+
+ if (fa == fa1)
+ {
+ result->err = GSL_DBL_EPSILON;
+ break;
+ }
+ aa -= (aa - a2)/(fa - fa1)*fa;
+ dela = fabs(aa - a2);
+ if (dela < GSL_DBL_EPSILON)
+ {
+ result->err = GSL_DBL_EPSILON;
+ break;
+ }
+ if (ii > 20)
+ {
+ result->err = dela;
+ break;
+ }
+ fa1 = fa;
+ ii++;
+ }
+
+ /* If the solution found is not near the original approximation,
+ tweak the approximate value, and try again. */
+ if (fabs(aa - aa_orig) > (3 + 0.01*order*fabs(aa_orig)))
+ {
+ counter++;
+ if (counter == maxcount)
+ {
+ result->err = fabs(aa - aa_orig);
+ break;
+ }
+ if (aa > aa_orig)
+ aa = aa_orig - da*counter;
+ else
+ aa = aa_orig + da*counter;
+
+ continue;
+ }
+ else
+ break;
+ }
+
+ result->val = aa;
+
+ /* If we went through the maximum number of retries and still didn't
+ find the solution, let us know. */
+ if (counter == maxcount)
+ {
+ GSL_ERROR("Wrong characteristic Mathieu value", GSL_EFAILED);
+ }
+
+ return GSL_SUCCESS;
+}
+
+
+int gsl_sf_mathieu_b(int order, double qq, gsl_sf_result *result)
+{
+ int even_odd, nterms = 50, ii, counter = 0, maxcount = 200;
+ double a1, a2, fa, fa1, dela, aa_orig, da = 0.025, aa;
+
+
+ even_odd = 0;
+ if (order % 2 != 0)
+ even_odd = 1;
+
+ /* The order cannot be 0. */
+ if (order == 0)
+ {
+ GSL_ERROR("Characteristic value undefined for order 0", GSL_EFAILED);
+ }
+
+ /* If the argument is 0, then the coefficient is simply the square of
+ the order. */
+ if (qq == 0)
+ {
+ result->val = order*order;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+
+ /* Use symmetry characteristics of the functions to handle cases with
+ negative order and/or argument q. See Abramowitz & Stegun, 20.8.3. */
+ if (order < 0)
+ order *= -1;
+ if (qq < 0.0)
+ {
+ if (even_odd == 0)
+ return gsl_sf_mathieu_b(order, -qq, result);
+ else
+ return gsl_sf_mathieu_a(order, -qq, result);
+ }
+
+ /* Compute an initial approximation for the characteristic value. */
+ aa = approx_s(order, qq);
+
+ /* Save the original approximation for later comparison. */
+ aa_orig = aa;
+
+ /* Loop as long as the final value is not near the approximate value
+ (with a max limit to avoid potential infinite loop). */
+ while (counter < maxcount)
+ {
+ a1 = aa + 0.001;
+ ii = 0;
+ if (even_odd == 0)
+ fa1 = seer(order, qq, a1, nterms);
+ else
+ fa1 = seor(order, qq, a1, nterms);
+
+ for (;;)
+ {
+ if (even_odd == 0)
+ fa = seer(order, qq, aa, nterms);
+ else
+ fa = seor(order, qq, aa, nterms);
+
+ a2 = a1;
+ a1 = aa;
+
+ if (fa == fa1)
+ {
+ result->err = GSL_DBL_EPSILON;
+ break;
+ }
+ aa -= (aa - a2)/(fa - fa1)*fa;
+ dela = fabs(aa - a2);
+ if (dela < 1e-18)
+ {
+ result->err = GSL_DBL_EPSILON;
+ break;
+ }
+ if (ii > 20)
+ {
+ result->err = dela;
+ break;
+ }
+ fa1 = fa;
+ ii++;
+ }
+
+ /* If the solution found is not near the original approximation,
+ tweak the approximate value, and try again. */
+ if (fabs(aa - aa_orig) > (3 + 0.01*order*fabs(aa_orig)))
+ {
+ counter++;
+ if (counter == maxcount)
+ {
+ result->err = fabs(aa - aa_orig);
+ break;
+ }
+ if (aa > aa_orig)
+ aa = aa_orig - da*counter;
+ else
+ aa = aa_orig + da*counter;
+
+ continue;
+ }
+ else
+ break;
+ }
+
+ result->val = aa;
+
+ /* If we went through the maximum number of retries and still didn't
+ find the solution, let us know. */
+ if (counter == maxcount)
+ {
+ GSL_ERROR("Wrong characteristic Mathieu value", GSL_EFAILED);
+ }
+
+ return GSL_SUCCESS;
+}
+
+
+/* Eigenvalue solutions for characteristic values below. */
+
+
+/* figi.c converted from EISPACK Fortran FIGI.F.
+ *
+ * given a nonsymmetric tridiagonal matrix such that the products
+ * of corresponding pairs of off-diagonal elements are all
+ * non-negative, this subroutine reduces it to a symmetric
+ * tridiagonal matrix with the same eigenvalues. if, further,
+ * a zero product only occurs when both factors are zero,
+ * the reduced matrix is similar to the original matrix.
+ *
+ * on input
+ *
+ * n is the order of the matrix.
+ *
+ * t contains the input matrix. its subdiagonal is
+ * stored in the last n-1 positions of the first column,
+ * its diagonal in the n positions of the second column,
+ * and its superdiagonal in the first n-1 positions of
+ * the third column. t(1,1) and t(n,3) are arbitrary.
+ *
+ * on output
+ *
+ * t is unaltered.
+ *
+ * d contains the diagonal elements of the symmetric matrix.
+ *
+ * e contains the subdiagonal elements of the symmetric
+ * matrix in its last n-1 positions. e(1) is not set.
+ *
+ * e2 contains the squares of the corresponding elements of e.
+ * e2 may coincide with e if the squares are not needed.
+ *
+ * ierr is set to
+ * zero for normal return,
+ * n+i if t(i,1)*t(i-1,3) is negative,
+ * -(3*n+i) if t(i,1)*t(i-1,3) is zero with one factor
+ * non-zero. in this case, the eigenvectors of
+ * the symmetric matrix are not simply related
+ * to those of t and should not be sought.
+ *
+ * questions and comments should be directed to burton s. garbow,
+ * mathematics and computer science div, argonne national laboratory
+ *
+ * this version dated august 1983.
+ */
+static int figi(int nn, double *tt, double *dd, double *ee,
+ double *e2)
+{
+ int ii;
+
+ for (ii=0; ii<nn; ii++)
+ {
+ if (ii != 0)
+ {
+ e2[ii] = tt[3*ii]*tt[3*(ii-1)+2];
+
+ if (e2[ii] < 0.0)
+ {
+ /* set error -- product of some pair of off-diagonal
+ elements is negative */
+ return (nn + ii);
+ }
+
+ if (e2[ii] == 0.0 && (tt[3*ii] != 0.0 || tt[3*(ii-1)+2] != 0.0))
+ {
+ /* set error -- product of some pair of off-diagonal
+ elements is zero with one member non-zero */
+ return (-1*(3*nn + ii));
+ }
+
+ ee[ii] = sqrt(e2[ii]);
+ }
+
+ dd[ii] = tt[3*ii+1];
+ }
+
+ return 0;
+}
+
+
+int gsl_sf_mathieu_a_array(int order_min, int order_max, double qq, gsl_sf_mathieu_workspace *work, double result_array[])
+{
+ unsigned int even_order = work->even_order, odd_order = work->odd_order,
+ extra_values = work->extra_values, ii, jj;
+ int status;
+ double *tt = work->tt, *dd = work->dd, *ee = work->ee, *e2 = work->e2,
+ *zz = work->zz, *aa = work->aa;
+ gsl_matrix_view mat, evec;
+ gsl_vector_view eval;
+ gsl_eigen_symmv_workspace *wmat = work->wmat;
+
+ if (order_max > work->size || order_max <= order_min || order_min < 0)
+ {
+ GSL_ERROR ("invalid range [order_min,order_max]", GSL_EINVAL);
+ }
+
+ /* Convert the nonsymmetric tridiagonal matrix to a symmetric tridiagonal
+ form. */
+
+ tt[0] = 0.0;
+ tt[1] = 0.0;
+ tt[2] = qq;
+ for (ii=1; ii<even_order-1; ii++)
+ {
+ tt[3*ii] = qq;
+ tt[3*ii+1] = 4*ii*ii;
+ tt[3*ii+2] = qq;
+ }
+ tt[3*even_order-3] = qq;
+ tt[3*even_order-2] = 4*(even_order - 1)*(even_order - 1);
+ tt[3*even_order-1] = 0.0;
+
+ tt[3] *= 2;
+
+ status = figi((signed int)even_order, tt, dd, ee, e2);
+
+ if (status)
+ {
+ GSL_ERROR("Internal error in tridiagonal Mathieu matrix", GSL_EFAILED);
+ }
+
+ /* Fill the period \pi matrix. */
+ for (ii=0; ii<even_order*even_order; ii++)
+ zz[ii] = 0.0;
+
+ zz[0] = dd[0];
+ zz[1] = ee[1];
+ for (ii=1; ii<even_order-1; ii++)
+ {
+ zz[ii*even_order+ii-1] = ee[ii];
+ zz[ii*even_order+ii] = dd[ii];
+ zz[ii*even_order+ii+1] = ee[ii+1];
+ }
+ zz[even_order*(even_order-1)+even_order-2] = ee[even_order-1];
+ zz[even_order*even_order-1] = dd[even_order-1];
+
+ /* Compute (and sort) the eigenvalues of the matrix. */
+ mat = gsl_matrix_view_array(zz, even_order, even_order);
+ eval = gsl_vector_subvector(work->eval, 0, even_order);
+ evec = gsl_matrix_submatrix(work->evec, 0, 0, even_order, even_order);
+ gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat);
+ gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC);
+
+ for (ii=0; ii<even_order-extra_values; ii++)
+ aa[2*ii] = gsl_vector_get(&eval.vector, ii);
+
+ /* Fill the period 2\pi matrix. */
+ for (ii=0; ii<odd_order*odd_order; ii++)
+ zz[ii] = 0.0;
+ for (ii=0; ii<odd_order; ii++)
+ for (jj=0; jj<odd_order; jj++)
+ {
+ if (ii == jj)
+ zz[ii*odd_order+jj] = (2*ii + 1)*(2*ii + 1);
+ else if (ii == jj + 1 || ii + 1 == jj)
+ zz[ii*odd_order+jj] = qq;
+ }
+ zz[0] += qq;
+
+ /* Compute (and sort) the eigenvalues of the matrix. */
+ mat = gsl_matrix_view_array(zz, odd_order, odd_order);
+ eval = gsl_vector_subvector(work->eval, 0, odd_order);
+ evec = gsl_matrix_submatrix(work->evec, 0, 0, odd_order, odd_order);
+ gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat);
+ gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC);
+
+ for (ii=0; ii<odd_order-extra_values; ii++)
+ aa[2*ii+1] = gsl_vector_get(&eval.vector, ii);
+
+ for (ii = order_min ; ii <= order_max ; ii++)
+ {
+ result_array[ii - order_min] = aa[ii];
+ }
+
+ return GSL_SUCCESS;
+}
+
+
+int gsl_sf_mathieu_b_array(int order_min, int order_max, double qq, gsl_sf_mathieu_workspace *work, double result_array[])
+{
+ unsigned int even_order = work->even_order-1, odd_order = work->odd_order,
+ extra_values = work->extra_values, ii, jj;
+ double *zz = work->zz, *bb = work->bb;
+ gsl_matrix_view mat, evec;
+ gsl_vector_view eval;
+ gsl_eigen_symmv_workspace *wmat = work->wmat;
+
+ if (order_max > work->size || order_max <= order_min || order_min < 0)
+ {
+ GSL_ERROR ("invalid range [order_min,order_max]", GSL_EINVAL);
+ }
+
+ /* Fill the period \pi matrix. */
+ for (ii=0; ii<even_order*even_order; ii++)
+ zz[ii] = 0.0;
+ for (ii=0; ii<even_order; ii++)
+ for (jj=0; jj<even_order; jj++)
+ {
+ if (ii == jj)
+ zz[ii*even_order+jj] = 4*(ii + 1)*(ii + 1);
+ else if (ii == jj + 1 || ii + 1 == jj)
+ zz[ii*even_order+jj] = qq;
+ }
+
+ /* Compute (and sort) the eigenvalues of the matrix. */
+ mat = gsl_matrix_view_array(zz, even_order, even_order);
+ eval = gsl_vector_subvector(work->eval, 0, even_order);
+ evec = gsl_matrix_submatrix(work->evec, 0, 0, even_order, even_order);
+ gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat);
+ gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC);
+
+ bb[0] = 0.0;
+ for (ii=0; ii<even_order-extra_values; ii++)
+ bb[2*(ii+1)] = gsl_vector_get(&eval.vector, ii);
+
+ /* Fill the period 2\pi matrix. */
+ for (ii=0; ii<odd_order*odd_order; ii++)
+ zz[ii] = 0.0;
+ for (ii=0; ii<odd_order; ii++)
+ for (jj=0; jj<odd_order; jj++)
+ {
+ if (ii == jj)
+ zz[ii*odd_order+jj] = (2*ii + 1)*(2*ii + 1);
+ else if (ii == jj + 1 || ii + 1 == jj)
+ zz[ii*odd_order+jj] = qq;
+ }
+
+ zz[0] -= qq;
+
+ /* Compute (and sort) the eigenvalues of the matrix. */
+ mat = gsl_matrix_view_array(zz, odd_order, odd_order);
+ eval = gsl_vector_subvector(work->eval, 0, odd_order);
+ evec = gsl_matrix_submatrix(work->evec, 0, 0, odd_order, odd_order);
+ gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat);
+ gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC);
+
+ for (ii=0; ii<odd_order-extra_values; ii++)
+ bb[2*ii+1] = gsl_vector_get(&eval.vector, ii);
+
+ for (ii = order_min ; ii <= order_max ; ii++)
+ {
+ result_array[ii - order_min] = bb[ii];
+ }
+
+ return GSL_SUCCESS;
+}