summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/laguerre.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/specfunc/laguerre.c')
-rw-r--r--gsl-1.9/specfunc/laguerre.c334
1 files changed, 334 insertions, 0 deletions
diff --git a/gsl-1.9/specfunc/laguerre.c b/gsl-1.9/specfunc/laguerre.c
new file mode 100644
index 0000000..355b35e
--- /dev/null
+++ b/gsl-1.9/specfunc/laguerre.c
@@ -0,0 +1,334 @@
+/* specfunc/laguerre.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* Author: G. Jungman */
+
+#include <config.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_sf_exp.h>
+#include <gsl/gsl_sf_gamma.h>
+#include <gsl/gsl_sf_laguerre.h>
+
+#include "error.h"
+
+/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/
+
+
+/* based on the large 2b-4a asymptotic for 1F1
+ * [Abramowitz+Stegun, 13.5.21]
+ * L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x)
+ *
+ * The second term (ser_term2) is from Slater,"The Confluent
+ * Hypergeometric Function" p.73. I think there may be an error in
+ * the first term of the expression given there, comparing with AS
+ * 13.5.21 (cf sin(a\pi+\Theta) vs sin(a\pi) + sin(\Theta)) - but the
+ * second term appears correct.
+ *
+ */
+static
+int
+laguerre_large_n(const int n, const double alpha, const double x,
+ gsl_sf_result * result)
+{
+ const double a = -n;
+ const double b = alpha + 1.0;
+ const double eta = 2.0*b - 4.0*a;
+ const double cos2th = x/eta;
+ const double sin2th = 1.0 - cos2th;
+ const double eps = asin(sqrt(cos2th)); /* theta = pi/2 - eps */
+ const double pre_h = 0.25*M_PI*M_PI*eta*eta*cos2th*sin2th;
+ gsl_sf_result lg_b;
+ gsl_sf_result lnfact;
+ int stat_lg = gsl_sf_lngamma_e(b+n, &lg_b);
+ int stat_lf = gsl_sf_lnfact_e(n, &lnfact);
+ double pre_term1 = 0.5*(1.0-b)*log(0.25*x*eta);
+ double pre_term2 = 0.25*log(pre_h);
+ double lnpre_val = lg_b.val - lnfact.val + 0.5*x + pre_term1 - pre_term2;
+ double lnpre_err = lg_b.err + lnfact.err + GSL_DBL_EPSILON * (fabs(pre_term1)+fabs(pre_term2));
+
+ double phi1 = 0.25*eta*(2*eps + sin(2.0*eps));
+ double ser_term1 = -sin(phi1);
+
+ double A1 = (1.0/12.0)*(5.0/(4.0*sin2th)+(3.0*b*b-6.0*b+2.0)*sin2th - 1.0);
+ double ser_term2 = -A1 * cos(phi1)/(0.25*eta*sin(2.0*eps));
+
+ double ser_val = ser_term1 + ser_term2;
+ double ser_err = ser_term2*ser_term2 + GSL_DBL_EPSILON * (fabs(ser_term1) + fabs(ser_term2));
+ int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, ser_val, ser_err, result);
+ result->err += 2.0 * GSL_SQRT_DBL_EPSILON * fabs(result->val);
+ return GSL_ERROR_SELECT_3(stat_e, stat_lf, stat_lg);
+}
+
+
+/* Evaluate polynomial based on confluent hypergeometric representation.
+ *
+ * L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x)
+ *
+ * assumes n > 0 and a != negative integer greater than -n
+ */
+static
+int
+laguerre_n_cp(const int n, const double a, const double x, gsl_sf_result * result)
+{
+ gsl_sf_result lnfact;
+ gsl_sf_result lg1;
+ gsl_sf_result lg2;
+ double s1, s2;
+ int stat_f = gsl_sf_lnfact_e(n, &lnfact);
+ int stat_g1 = gsl_sf_lngamma_sgn_e(a+1.0+n, &lg1, &s1);
+ int stat_g2 = gsl_sf_lngamma_sgn_e(a+1.0, &lg2, &s2);
+ double poly_1F1_val = 1.0;
+ double poly_1F1_err = 0.0;
+ int stat_e;
+ int k;
+
+ double lnpre_val = (lg1.val - lg2.val) - lnfact.val;
+ double lnpre_err = lg1.err + lg2.err + lnfact.err + 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val);
+
+ for(k=n-1; k>=0; k--) {
+ double t = (-n+k)/(a+1.0+k) * (x/(k+1));
+ double r = t + 1.0/poly_1F1_val;
+ if(r > 0.9*GSL_DBL_MAX/poly_1F1_val) {
+ /* internal error only, don't call the error handler */
+ INTERNAL_OVERFLOW_ERROR(result);
+ }
+ else {
+ /* Collect the Horner terms. */
+ poly_1F1_val = 1.0 + t * poly_1F1_val;
+ poly_1F1_err += GSL_DBL_EPSILON + fabs(t) * poly_1F1_err;
+ }
+ }
+
+ stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err,
+ poly_1F1_val, poly_1F1_err,
+ result);
+
+ return GSL_ERROR_SELECT_4(stat_e, stat_f, stat_g1, stat_g2);
+}
+
+
+/* Evaluate the polynomial based on the confluent hypergeometric
+ * function in a safe way, with no restriction on the arguments.
+ *
+ * assumes x != 0
+ */
+static
+int
+laguerre_n_poly_safe(const int n, const double a, const double x, gsl_sf_result * result)
+{
+ const double b = a + 1.0;
+ const double mx = -x;
+ const double tc_sgn = (x < 0.0 ? 1.0 : (GSL_IS_ODD(n) ? -1.0 : 1.0));
+ gsl_sf_result tc;
+ int stat_tc = gsl_sf_taylorcoeff_e(n, fabs(x), &tc);
+
+ if(stat_tc == GSL_SUCCESS) {
+ double term = tc.val * tc_sgn;
+ double sum_val = term;
+ double sum_err = tc.err;
+ int k;
+ for(k=n-1; k>=0; k--) {
+ term *= ((b+k)/(n-k))*(k+1.0)/mx;
+ sum_val += term;
+ sum_err += 4.0 * GSL_DBL_EPSILON * fabs(term);
+ }
+ result->val = sum_val;
+ result->err = sum_err + 2.0 * GSL_DBL_EPSILON * fabs(result->val);
+ return GSL_SUCCESS;
+ }
+ else if(stat_tc == GSL_EOVRFLW) {
+ result->val = 0.0; /* FIXME: should be Inf */
+ result->err = 0.0;
+ return stat_tc;
+ }
+ else {
+ result->val = 0.0;
+ result->err = 0.0;
+ return stat_tc;
+ }
+}
+
+
+
+/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*/
+
+int
+gsl_sf_laguerre_1_e(const double a, const double x, gsl_sf_result * result)
+{
+ /* CHECK_POINTER(result) */
+
+ {
+ result->val = 1.0 + a - x;
+ result->err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(a) + fabs(x));
+ return GSL_SUCCESS;
+ }
+}
+
+int
+gsl_sf_laguerre_2_e(const double a, const double x, gsl_sf_result * result)
+{
+ /* CHECK_POINTER(result) */
+
+ if(a == -2.0) {
+ result->val = 0.5*x*x;
+ result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
+ return GSL_SUCCESS;
+ }
+ else {
+ double c0 = 0.5 * (2.0+a)*(1.0+a);
+ double c1 = -(2.0+a);
+ double c2 = -0.5/(2.0+a);
+ result->val = c0 + c1*x*(1.0 + c2*x);
+ result->err = 2.0 * GSL_DBL_EPSILON * (fabs(c0) + 2.0 * fabs(c1*x) * (1.0 + 2.0 * fabs(c2*x)));
+ result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
+ return GSL_SUCCESS;
+ }
+}
+
+int
+gsl_sf_laguerre_3_e(const double a, const double x, gsl_sf_result * result)
+{
+ /* CHECK_POINTER(result) */
+
+ if(a == -2.0) {
+ double x2_6 = x*x/6.0;
+ result->val = x2_6 * (3.0 - x);
+ result->err = x2_6 * (3.0 + fabs(x)) * 2.0 * GSL_DBL_EPSILON;
+ result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
+ return GSL_SUCCESS;
+ }
+ else if(a == -3.0) {
+ result->val = -x*x/6.0;
+ result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
+ return GSL_SUCCESS;
+ }
+ else {
+ double c0 = (3.0+a)*(2.0+a)*(1.0+a) / 6.0;
+ double c1 = -c0 * 3.0 / (1.0+a);
+ double c2 = -1.0/(2.0+a);
+ double c3 = -1.0/(3.0*(3.0+a));
+ result->val = c0 + c1*x*(1.0 + c2*x*(1.0 + c3*x));
+ result->err = 1.0 + 2.0 * fabs(c3*x);
+ result->err = 1.0 + 2.0 * fabs(c2*x) * result->err;
+ result->err = 2.0 * GSL_DBL_EPSILON * (fabs(c0) + 2.0 * fabs(c1*x) * result->err);
+ result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
+ return GSL_SUCCESS;
+ }
+}
+
+
+int gsl_sf_laguerre_n_e(const int n, const double a, const double x,
+ gsl_sf_result * result)
+{
+ /* CHECK_POINTER(result) */
+
+ if(n < 0) {
+ DOMAIN_ERROR(result);
+ }
+ else if(n == 0) {
+ result->val = 1.0;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+ else if(n == 1) {
+ result->val = 1.0 + a - x;
+ result->err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(a) + fabs(x));
+ return GSL_SUCCESS;
+ }
+ else if(x == 0.0) {
+ double product = a + 1.0;
+ int k;
+ for(k=2; k<=n; k++) {
+ product *= (a + k)/k;
+ }
+ result->val = product;
+ result->err = 2.0 * (n + 1.0) * GSL_DBL_EPSILON * fabs(product) + GSL_DBL_EPSILON;
+ return GSL_SUCCESS;
+ }
+ else if(x < 0.0 && a > -1.0) {
+ /* In this case all the terms in the polynomial
+ * are of the same sign. Note that this also
+ * catches overflows correctly.
+ */
+ return laguerre_n_cp(n, a, x, result);
+ }
+ else if(n < 5 || (x > 0.0 && a < -n-1)) {
+ /* Either the polynomial will not lose too much accuracy
+ * or all the terms are negative. In any case,
+ * the error estimate here is good. We try both
+ * explicit summation methods, as they have different
+ * characteristics. One may underflow/overflow while the
+ * other does not.
+ */
+ if(laguerre_n_cp(n, a, x, result) == GSL_SUCCESS)
+ return GSL_SUCCESS;
+ else
+ return laguerre_n_poly_safe(n, a, x, result);
+ }
+ else if(n > 1.0e+07 && x > 0.0 && a > -1.0 && x < 2.0*(a+1.0)+4.0*n) {
+ return laguerre_large_n(n, a, x, result);
+ }
+ else if(a > 0.0 || (x > 0.0 && a < -n-1)) {
+ gsl_sf_result lg2;
+ int stat_lg2 = gsl_sf_laguerre_2_e(a, x, &lg2);
+ double Lkm1 = 1.0 + a - x;
+ double Lk = lg2.val;
+ double Lkp1;
+ int k;
+
+ for(k=2; k<n; k++) {
+ Lkp1 = (-(k+a)*Lkm1 + (2.0*k+a+1.0-x)*Lk)/(k+1.0);
+ Lkm1 = Lk;
+ Lk = Lkp1;
+ }
+ result->val = Lk;
+ result->err = (fabs(lg2.err/lg2.val) + GSL_DBL_EPSILON) * n * fabs(Lk);
+ return stat_lg2;
+ }
+ else {
+ /* Despair... or magic? */
+ return laguerre_n_poly_safe(n, a, x, result);
+ }
+}
+
+
+/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
+
+#include "eval.h"
+
+double gsl_sf_laguerre_1(double a, double x)
+{
+ EVAL_RESULT(gsl_sf_laguerre_1_e(a, x, &result));
+}
+
+double gsl_sf_laguerre_2(double a, double x)
+{
+ EVAL_RESULT(gsl_sf_laguerre_2_e(a, x, &result));
+}
+
+double gsl_sf_laguerre_3(double a, double x)
+{
+ EVAL_RESULT(gsl_sf_laguerre_3_e(a, x, &result));
+}
+
+double gsl_sf_laguerre_n(int n, double a, double x)
+{
+ EVAL_RESULT(gsl_sf_laguerre_n_e(n, a, x, &result));
+}