summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/hyperg_1F1.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/specfunc/hyperg_1F1.c')
-rw-r--r--gsl-1.9/specfunc/hyperg_1F1.c2064
1 files changed, 2064 insertions, 0 deletions
diff --git a/gsl-1.9/specfunc/hyperg_1F1.c b/gsl-1.9/specfunc/hyperg_1F1.c
new file mode 100644
index 0000000..15ffd12
--- /dev/null
+++ b/gsl-1.9/specfunc/hyperg_1F1.c
@@ -0,0 +1,2064 @@
+/* specfunc/hyperg_1F1.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* Author: G. Jungman */
+
+#include <config.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_sf_elementary.h>
+#include <gsl/gsl_sf_exp.h>
+#include <gsl/gsl_sf_bessel.h>
+#include <gsl/gsl_sf_gamma.h>
+#include <gsl/gsl_sf_laguerre.h>
+#include <gsl/gsl_sf_hyperg.h>
+
+#include "error.h"
+#include "hyperg.h"
+
+#define _1F1_INT_THRESHOLD (100.0*GSL_DBL_EPSILON)
+
+
+/* Asymptotic result for 1F1(a, b, x) x -> -Infinity.
+ * Assumes b-a != neg integer and b != neg integer.
+ */
+static
+int
+hyperg_1F1_asymp_negx(const double a, const double b, const double x,
+ gsl_sf_result * result)
+{
+ gsl_sf_result lg_b;
+ gsl_sf_result lg_bma;
+ double sgn_b;
+ double sgn_bma;
+
+ int stat_b = gsl_sf_lngamma_sgn_e(b, &lg_b, &sgn_b);
+ int stat_bma = gsl_sf_lngamma_sgn_e(b-a, &lg_bma, &sgn_bma);
+
+ if(stat_b == GSL_SUCCESS && stat_bma == GSL_SUCCESS) {
+ gsl_sf_result F;
+ int stat_F = gsl_sf_hyperg_2F0_series_e(a, 1.0+a-b, -1.0/x, -1, &F);
+ if(F.val != 0) {
+ double ln_term_val = a*log(-x);
+ double ln_term_err = 2.0 * GSL_DBL_EPSILON * (fabs(a) + fabs(ln_term_val));
+ double ln_pre_val = lg_b.val - lg_bma.val - ln_term_val;
+ double ln_pre_err = lg_b.err + lg_bma.err + ln_term_err;
+ int stat_e = gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err,
+ sgn_bma*sgn_b*F.val, F.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_F);
+ }
+ else {
+ result->val = 0.0;
+ result->err = 0.0;
+ return stat_F;
+ }
+ }
+ else {
+ DOMAIN_ERROR(result);
+ }
+}
+
+
+/* Asymptotic result for 1F1(a, b, x) x -> +Infinity
+ * Assumes b != neg integer and a != neg integer
+ */
+static
+int
+hyperg_1F1_asymp_posx(const double a, const double b, const double x,
+ gsl_sf_result * result)
+{
+ gsl_sf_result lg_b;
+ gsl_sf_result lg_a;
+ double sgn_b;
+ double sgn_a;
+
+ int stat_b = gsl_sf_lngamma_sgn_e(b, &lg_b, &sgn_b);
+ int stat_a = gsl_sf_lngamma_sgn_e(a, &lg_a, &sgn_a);
+
+ if(stat_a == GSL_SUCCESS && stat_b == GSL_SUCCESS) {
+ gsl_sf_result F;
+ int stat_F = gsl_sf_hyperg_2F0_series_e(b-a, 1.0-a, 1.0/x, -1, &F);
+ if(stat_F == GSL_SUCCESS && F.val != 0) {
+ double lnx = log(x);
+ double ln_term_val = (a-b)*lnx;
+ double ln_term_err = 2.0 * GSL_DBL_EPSILON * (fabs(a) + fabs(b)) * fabs(lnx)
+ + 2.0 * GSL_DBL_EPSILON * fabs(a-b);
+ double ln_pre_val = lg_b.val - lg_a.val + ln_term_val + x;
+ double ln_pre_err = lg_b.err + lg_a.err + ln_term_err + 2.0 * GSL_DBL_EPSILON * fabs(x);
+ int stat_e = gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err,
+ sgn_a*sgn_b*F.val, F.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_F);
+ }
+ else {
+ result->val = 0.0;
+ result->err = 0.0;
+ return stat_F;
+ }
+ }
+ else {
+ DOMAIN_ERROR(result);
+ }
+}
+
+/* Asymptotic result from Slater 4.3.7
+ *
+ * To get the general series, write M(a,b,x) as
+ *
+ * M(a,b,x)=sum ((a)_n/(b)_n) (x^n / n!)
+ *
+ * and expand (b)_n in inverse powers of b as follows
+ *
+ * -log(1/(b)_n) = sum_(k=0)^(n-1) log(b+k)
+ * = n log(b) + sum_(k=0)^(n-1) log(1+k/b)
+ *
+ * Do a taylor expansion of the log in 1/b and sum the resulting terms
+ * using the standard algebraic formulas for finite sums of powers of
+ * k. This should then give
+ *
+ * M(a,b,x) = sum_(n=0)^(inf) (a_n/n!) (x/b)^n * (1 - n(n-1)/(2b)
+ * + (n-1)n(n+1)(3n-2)/(24b^2) + ...
+ *
+ * which can be summed explicitly. The trick for summing it is to take
+ * derivatives of sum_(i=0)^(inf) a_n*y^n/n! = (1-y)^(-a);
+ *
+ * [BJG 16/01/2007]
+ */
+
+static
+int
+hyperg_1F1_largebx(const double a, const double b, const double x, gsl_sf_result * result)
+{
+ double y = x/b;
+ double f = exp(-a*log1p(-y));
+ double t1 = -((a*(a+1.0))/(2*b))*pow((y/(1.0-y)),2.0);
+ double t2 = (1/(24*b*b))*((a*(a+1)*y*y)/pow(1-y,4))*(12+8*(2*a+1)*y+(3*a*a-a-2)*y*y);
+ double t3 = (-1/(48*b*b*b*pow(1-y,6)))*a*((a + 1)*((y*((a + 1)*(a*(y*(y*((y*(a - 2) + 16)*(a - 1)) + 72)) + 96)) + 24)*pow(y, 2)));
+ result->val = f * (1 + t1 + t2 + t3);
+ result->err = 2*fabs(f*t3) + 2*GSL_DBL_EPSILON*fabs(result->val);
+ return GSL_SUCCESS;
+}
+
+/* Asymptotic result for x < 2b-4a, 2b-4a large.
+ * [Abramowitz+Stegun, 13.5.21]
+ *
+ * assumes 0 <= x/(2b-4a) <= 1
+ */
+static
+int
+hyperg_1F1_large2bm4a(const double a, const double b, const double x, gsl_sf_result * result)
+{
+ double eta = 2.0*b - 4.0*a;
+ double cos2th = x/eta;
+ double sin2th = 1.0 - cos2th;
+ double th = acos(sqrt(cos2th));
+ double pre_h = 0.25*M_PI*M_PI*eta*eta*cos2th*sin2th;
+ gsl_sf_result lg_b;
+ int stat_lg = gsl_sf_lngamma_e(b, &lg_b);
+ double t1 = 0.5*(1.0-b)*log(0.25*x*eta);
+ double t2 = 0.25*log(pre_h);
+ double lnpre_val = lg_b.val + 0.5*x + t1 - t2;
+ double lnpre_err = lg_b.err + 2.0 * GSL_DBL_EPSILON * (fabs(0.5*x) + fabs(t1) + fabs(t2));
+#if SMALL_ANGLE
+ const double eps = asin(sqrt(cos2th)); /* theta = pi/2 - eps */
+ double s1 = (fmod(a, 1.0) == 0.0) ? 0.0 : sin(a*M_PI);
+ double eta_reduc = (fmod(eta + 1, 4.0) == 0.0) ? 0.0 : fmod(eta + 1, 8.0);
+ double phi1 = 0.25*eta_reduc*M_PI;
+ double phi2 = 0.25*eta*(2*eps + sin(2.0*eps));
+ double s2 = sin(phi1 - phi2);
+#else
+ double s1 = sin(a*M_PI);
+ double s2 = sin(0.25*eta*(2.0*th - sin(2.0*th)) + 0.25*M_PI);
+#endif
+ double ser_val = s1 + s2;
+ double ser_err = 2.0 * GSL_DBL_EPSILON * (fabs(s1) + fabs(s2));
+ int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err,
+ ser_val, ser_err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_lg);
+}
+
+
+/* Luke's rational approximation.
+ * See [Luke, Algorithms for the Computation of Mathematical Functions, p.182]
+ *
+ * Like the case of the 2F1 rational approximations, these are
+ * probably guaranteed to converge for x < 0, barring gross
+ * numerical instability in the pre-asymptotic regime.
+ */
+static
+int
+hyperg_1F1_luke(const double a, const double c, const double xin,
+ gsl_sf_result * result)
+{
+ const double RECUR_BIG = 1.0e+50;
+ const int nmax = 5000;
+ int n = 3;
+ const double x = -xin;
+ const double x3 = x*x*x;
+ const double t0 = a/c;
+ const double t1 = (a+1.0)/(2.0*c);
+ const double t2 = (a+2.0)/(2.0*(c+1.0));
+ double F = 1.0;
+ double prec;
+
+ double Bnm3 = 1.0; /* B0 */
+ double Bnm2 = 1.0 + t1 * x; /* B1 */
+ double Bnm1 = 1.0 + t2 * x * (1.0 + t1/3.0 * x); /* B2 */
+
+ double Anm3 = 1.0; /* A0 */
+ double Anm2 = Bnm2 - t0 * x; /* A1 */
+ double Anm1 = Bnm1 - t0*(1.0 + t2*x)*x + t0 * t1 * (c/(c+1.0)) * x*x; /* A2 */
+
+ while(1) {
+ double npam1 = n + a - 1;
+ double npcm1 = n + c - 1;
+ double npam2 = n + a - 2;
+ double npcm2 = n + c - 2;
+ double tnm1 = 2*n - 1;
+ double tnm3 = 2*n - 3;
+ double tnm5 = 2*n - 5;
+ double F1 = (n-a-2) / (2*tnm3*npcm1);
+ double F2 = (n+a)*npam1 / (4*tnm1*tnm3*npcm2*npcm1);
+ double F3 = -npam2*npam1*(n-a-2) / (8*tnm3*tnm3*tnm5*(n+c-3)*npcm2*npcm1);
+ double E = -npam1*(n-c-1) / (2*tnm3*npcm2*npcm1);
+
+ double An = (1.0+F1*x)*Anm1 + (E + F2*x)*x*Anm2 + F3*x3*Anm3;
+ double Bn = (1.0+F1*x)*Bnm1 + (E + F2*x)*x*Bnm2 + F3*x3*Bnm3;
+ double r = An/Bn;
+
+ prec = fabs((F - r)/F);
+ F = r;
+
+ if(prec < GSL_DBL_EPSILON || n > nmax) break;
+
+ if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
+ An /= RECUR_BIG;
+ Bn /= RECUR_BIG;
+ Anm1 /= RECUR_BIG;
+ Bnm1 /= RECUR_BIG;
+ Anm2 /= RECUR_BIG;
+ Bnm2 /= RECUR_BIG;
+ Anm3 /= RECUR_BIG;
+ Bnm3 /= RECUR_BIG;
+ }
+ else if(fabs(An) < 1.0/RECUR_BIG || fabs(Bn) < 1.0/RECUR_BIG) {
+ An *= RECUR_BIG;
+ Bn *= RECUR_BIG;
+ Anm1 *= RECUR_BIG;
+ Bnm1 *= RECUR_BIG;
+ Anm2 *= RECUR_BIG;
+ Bnm2 *= RECUR_BIG;
+ Anm3 *= RECUR_BIG;
+ Bnm3 *= RECUR_BIG;
+ }
+
+ n++;
+ Bnm3 = Bnm2;
+ Bnm2 = Bnm1;
+ Bnm1 = Bn;
+ Anm3 = Anm2;
+ Anm2 = Anm1;
+ Anm1 = An;
+ }
+
+ result->val = F;
+ result->err = 2.0 * fabs(F * prec);
+ result->err += 2.0 * GSL_DBL_EPSILON * (n-1.0) * fabs(F);
+
+ return GSL_SUCCESS;
+}
+
+/* Series for 1F1(1,b,x)
+ * b > 0
+ */
+static
+int
+hyperg_1F1_1_series(const double b, const double x, gsl_sf_result * result)
+{
+ double sum_val = 1.0;
+ double sum_err = 0.0;
+ double term = 1.0;
+ double n = 1.0;
+ while(fabs(term/sum_val) > 0.25*GSL_DBL_EPSILON) {
+ term *= x/(b+n-1);
+ sum_val += term;
+ sum_err += 8.0*GSL_DBL_EPSILON*fabs(term) + GSL_DBL_EPSILON*fabs(sum_val);
+ n += 1.0;
+ }
+ result->val = sum_val;
+ result->err = sum_err;
+ result->err += 2.0 * fabs(term);
+ return GSL_SUCCESS;
+}
+
+
+/* 1F1(1,b,x)
+ * b >= 1, b integer
+ */
+static
+int
+hyperg_1F1_1_int(const int b, const double x, gsl_sf_result * result)
+{
+ if(b < 1) {
+ DOMAIN_ERROR(result);
+ }
+ else if(b == 1) {
+ return gsl_sf_exp_e(x, result);
+ }
+ else if(b == 2) {
+ return gsl_sf_exprel_e(x, result);
+ }
+ else if(b == 3) {
+ return gsl_sf_exprel_2_e(x, result);
+ }
+ else {
+ return gsl_sf_exprel_n_e(b-1, x, result);
+ }
+}
+
+
+/* 1F1(1,b,x)
+ * b >=1, b real
+ *
+ * checked OK: [GJ] Thu Oct 1 16:46:35 MDT 1998
+ */
+static
+int
+hyperg_1F1_1(const double b, const double x, gsl_sf_result * result)
+{
+ double ax = fabs(x);
+ double ib = floor(b + 0.1);
+
+ if(b < 1.0) {
+ DOMAIN_ERROR(result);
+ }
+ else if(b == 1.0) {
+ return gsl_sf_exp_e(x, result);
+ }
+ else if(b >= 1.4*ax) {
+ return hyperg_1F1_1_series(b, x, result);
+ }
+ else if(fabs(b - ib) < _1F1_INT_THRESHOLD && ib < INT_MAX) {
+ return hyperg_1F1_1_int((int)ib, x, result);
+ }
+ else if(x > 0.0) {
+ if(x > 100.0 && b < 0.75*x) {
+ return hyperg_1F1_asymp_posx(1.0, b, x, result);
+ }
+ else if(b < 1.0e+05) {
+ /* Recurse backward on b, from a
+ * chosen offset point. For x > 0,
+ * which holds here, this should
+ * be a stable direction.
+ */
+ const double off = ceil(1.4*x-b) + 1.0;
+ double bp = b + off;
+ gsl_sf_result M;
+ int stat_s = hyperg_1F1_1_series(bp, x, &M);
+ const double err_rat = M.err / fabs(M.val);
+ while(bp > b+0.1) {
+ /* M(1,b-1) = x/(b-1) M(1,b) + 1 */
+ bp -= 1.0;
+ M.val = 1.0 + x/bp * M.val;
+ }
+ result->val = M.val;
+ result->err = err_rat * fabs(M.val);
+ result->err += 2.0 * GSL_DBL_EPSILON * (fabs(off)+1.0) * fabs(M.val);
+ return stat_s;
+ } else if (fabs(x) < fabs(b) && fabs(x) < sqrt(fabs(b)) * fabs(b-x)) {
+ return hyperg_1F1_largebx(1.0, b, x, result);
+ } else if (fabs(x) > fabs(b)) {
+ return hyperg_1F1_1_series(b, x, result);
+ } else {
+ return hyperg_1F1_large2bm4a(1.0, b, x, result);
+ }
+ }
+ else {
+ /* x <= 0 and b not large compared to |x|
+ */
+ if(ax < 10.0 && b < 10.0) {
+ return hyperg_1F1_1_series(b, x, result);
+ }
+ else if(ax >= 100.0 && GSL_MAX_DBL(fabs(2.0-b),1.0) < 0.99*ax) {
+ return hyperg_1F1_asymp_negx(1.0, b, x, result);
+ }
+ else {
+ return hyperg_1F1_luke(1.0, b, x, result);
+ }
+ }
+}
+
+
+/* 1F1(a,b,x)/Gamma(b) for b->0
+ * [limit of Abramowitz+Stegun 13.3.7]
+ */
+static
+int
+hyperg_1F1_renorm_b0(const double a, const double x, gsl_sf_result * result)
+{
+ double eta = a*x;
+ if(eta > 0.0) {
+ double root_eta = sqrt(eta);
+ gsl_sf_result I1_scaled;
+ int stat_I = gsl_sf_bessel_I1_scaled_e(2.0*root_eta, &I1_scaled);
+ if(I1_scaled.val <= 0.0) {
+ result->val = 0.0;
+ result->err = 0.0;
+ return GSL_ERROR_SELECT_2(stat_I, GSL_EDOM);
+ }
+ else {
+ /* Note that 13.3.7 contains higher terms which are zeroth order
+ in b. These make a non-negligible contribution to the sum.
+ With the first correction term, the I1 above is replaced by
+ I1 + (2/3)*a*(x/(4a))**(3/2)*I2(2*root_eta). We will add
+ this as part of the result and error estimate. */
+
+ const double corr1 =(2.0/3.0)*a*pow(x/(4.0*a),1.5)*gsl_sf_bessel_In_scaled(2, 2.0*root_eta)
+ ;
+ const double lnr_val = 0.5*x + 0.5*log(eta) + fabs(2.0*root_eta) + log(I1_scaled.val+corr1);
+ const double lnr_err = GSL_DBL_EPSILON * (1.5*fabs(x) + 1.0) + fabs((I1_scaled.err+corr1)/I1_scaled.val);
+ return gsl_sf_exp_err_e(lnr_val, lnr_err, result);
+ }
+ }
+ else if(eta == 0.0) {
+ result->val = 0.0;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+ else {
+ /* eta < 0 */
+ double root_eta = sqrt(-eta);
+ gsl_sf_result J1;
+ int stat_J = gsl_sf_bessel_J1_e(2.0*root_eta, &J1);
+ if(J1.val <= 0.0) {
+ result->val = 0.0;
+ result->err = 0.0;
+ return GSL_ERROR_SELECT_2(stat_J, GSL_EDOM);
+ }
+ else {
+ const double t1 = 0.5*x;
+ const double t2 = 0.5*log(-eta);
+ const double t3 = fabs(x);
+ const double t4 = log(J1.val);
+ const double lnr_val = t1 + t2 + t3 + t4;
+ const double lnr_err = GSL_DBL_EPSILON * (1.5*fabs(x) + 1.0) + fabs(J1.err/J1.val);
+ gsl_sf_result ex;
+ int stat_e = gsl_sf_exp_err_e(lnr_val, lnr_err, &ex);
+ result->val = -ex.val;
+ result->err = ex.err;
+ return stat_e;
+ }
+ }
+
+}
+
+
+/* 1F1'(a,b,x)/1F1(a,b,x)
+ * Uses Gautschi's version of the CF.
+ * [Gautschi, Math. Comp. 31, 994 (1977)]
+ *
+ * Supposedly this suffers from the "anomalous convergence"
+ * problem when b < x. I have seen anomalous convergence
+ * in several of the continued fractions associated with
+ * 1F1(a,b,x). This particular CF formulation seems stable
+ * for b > x. However, it does display a painful artifact
+ * of the anomalous convergence; the convergence plateaus
+ * unless b >>> x. For example, even for b=1000, x=1, this
+ * method locks onto a ratio which is only good to about
+ * 4 digits. Apparently the rest of the digits are hiding
+ * way out on the plateau, but finite-precision lossage
+ * means you will never get them.
+ */
+#if 0
+static
+int
+hyperg_1F1_CF1_p(const double a, const double b, const double x, double * result)
+{
+ const double RECUR_BIG = GSL_SQRT_DBL_MAX;
+ const int maxiter = 5000;
+ int n = 1;
+ double Anm2 = 1.0;
+ double Bnm2 = 0.0;
+ double Anm1 = 0.0;
+ double Bnm1 = 1.0;
+ double a1 = 1.0;
+ double b1 = 1.0;
+ double An = b1*Anm1 + a1*Anm2;
+ double Bn = b1*Bnm1 + a1*Bnm2;
+ double an, bn;
+ double fn = An/Bn;
+
+ while(n < maxiter) {
+ double old_fn;
+ double del;
+ n++;
+ Anm2 = Anm1;
+ Bnm2 = Bnm1;
+ Anm1 = An;
+ Bnm1 = Bn;
+ an = (a+n)*x/((b-x+n-1)*(b-x+n));
+ bn = 1.0;
+ An = bn*Anm1 + an*Anm2;
+ Bn = bn*Bnm1 + an*Bnm2;
+
+ if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
+ An /= RECUR_BIG;
+ Bn /= RECUR_BIG;
+ Anm1 /= RECUR_BIG;
+ Bnm1 /= RECUR_BIG;
+ Anm2 /= RECUR_BIG;
+ Bnm2 /= RECUR_BIG;
+ }
+
+ old_fn = fn;
+ fn = An/Bn;
+ del = old_fn/fn;
+
+ if(fabs(del - 1.0) < 10.0*GSL_DBL_EPSILON) break;
+ }
+
+ *result = a/(b-x) * fn;
+
+ if(n == maxiter)
+ GSL_ERROR ("error", GSL_EMAXITER);
+ else
+ return GSL_SUCCESS;
+}
+#endif /* 0 */
+
+
+/* 1F1'(a,b,x)/1F1(a,b,x)
+ * Uses Gautschi's series transformation of the
+ * continued fraction. This is apparently the best
+ * method for getting this ratio in the stable region.
+ * The convergence is monotone and supergeometric
+ * when b > x.
+ * Assumes a >= -1.
+ */
+static
+int
+hyperg_1F1_CF1_p_ser(const double a, const double b, const double x, double * result)
+{
+ if(a == 0.0) {
+ *result = 0.0;
+ return GSL_SUCCESS;
+ }
+ else {
+ const int maxiter = 5000;
+ double sum = 1.0;
+ double pk = 1.0;
+ double rhok = 0.0;
+ int k;
+ for(k=1; k<maxiter; k++) {
+ double ak = (a + k)*x/((b-x+k-1.0)*(b-x+k));
+ rhok = -ak*(1.0 + rhok)/(1.0 + ak*(1.0+rhok));
+ pk *= rhok;
+ sum += pk;
+ if(fabs(pk/sum) < 2.0*GSL_DBL_EPSILON) break;
+ }
+ *result = a/(b-x) * sum;
+ if(k == maxiter)
+ GSL_ERROR ("error", GSL_EMAXITER);
+ else
+ return GSL_SUCCESS;
+ }
+}
+
+
+/* 1F1(a+1,b,x)/1F1(a,b,x)
+ *
+ * I think this suffers from typical "anomalous convergence".
+ * I could not find a region where it was truly useful.
+ */
+#if 0
+static
+int
+hyperg_1F1_CF1(const double a, const double b, const double x, double * result)
+{
+ const double RECUR_BIG = GSL_SQRT_DBL_MAX;
+ const int maxiter = 5000;
+ int n = 1;
+ double Anm2 = 1.0;
+ double Bnm2 = 0.0;
+ double Anm1 = 0.0;
+ double Bnm1 = 1.0;
+ double a1 = b - a - 1.0;
+ double b1 = b - x - 2.0*(a+1.0);
+ double An = b1*Anm1 + a1*Anm2;
+ double Bn = b1*Bnm1 + a1*Bnm2;
+ double an, bn;
+ double fn = An/Bn;
+
+ while(n < maxiter) {
+ double old_fn;
+ double del;
+ n++;
+ Anm2 = Anm1;
+ Bnm2 = Bnm1;
+ Anm1 = An;
+ Bnm1 = Bn;
+ an = (a + n - 1.0) * (b - a - n);
+ bn = b - x - 2.0*(a+n);
+ An = bn*Anm1 + an*Anm2;
+ Bn = bn*Bnm1 + an*Bnm2;
+
+ if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
+ An /= RECUR_BIG;
+ Bn /= RECUR_BIG;
+ Anm1 /= RECUR_BIG;
+ Bnm1 /= RECUR_BIG;
+ Anm2 /= RECUR_BIG;
+ Bnm2 /= RECUR_BIG;
+ }
+
+ old_fn = fn;
+ fn = An/Bn;
+ del = old_fn/fn;
+
+ if(fabs(del - 1.0) < 10.0*GSL_DBL_EPSILON) break;
+ }
+
+ *result = fn;
+ if(n == maxiter)
+ GSL_ERROR ("error", GSL_EMAXITER);
+ else
+ return GSL_SUCCESS;
+}
+#endif /* 0 */
+
+
+/* 1F1(a,b+1,x)/1F1(a,b,x)
+ *
+ * This seemed to suffer from "anomalous convergence".
+ * However, I have no theory for this recurrence.
+ */
+#if 0
+static
+int
+hyperg_1F1_CF1_b(const double a, const double b, const double x, double * result)
+{
+ const double RECUR_BIG = GSL_SQRT_DBL_MAX;
+ const int maxiter = 5000;
+ int n = 1;
+ double Anm2 = 1.0;
+ double Bnm2 = 0.0;
+ double Anm1 = 0.0;
+ double Bnm1 = 1.0;
+ double a1 = b + 1.0;
+ double b1 = (b + 1.0) * (b - x);
+ double An = b1*Anm1 + a1*Anm2;
+ double Bn = b1*Bnm1 + a1*Bnm2;
+ double an, bn;
+ double fn = An/Bn;
+
+ while(n < maxiter) {
+ double old_fn;
+ double del;
+ n++;
+ Anm2 = Anm1;
+ Bnm2 = Bnm1;
+ Anm1 = An;
+ Bnm1 = Bn;
+ an = (b + n) * (b + n - 1.0 - a) * x;
+ bn = (b + n) * (b + n - 1.0 - x);
+ An = bn*Anm1 + an*Anm2;
+ Bn = bn*Bnm1 + an*Bnm2;
+
+ if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) {
+ An /= RECUR_BIG;
+ Bn /= RECUR_BIG;
+ Anm1 /= RECUR_BIG;
+ Bnm1 /= RECUR_BIG;
+ Anm2 /= RECUR_BIG;
+ Bnm2 /= RECUR_BIG;
+ }
+
+ old_fn = fn;
+ fn = An/Bn;
+ del = old_fn/fn;
+
+ if(fabs(del - 1.0) < 10.0*GSL_DBL_EPSILON) break;
+ }
+
+ *result = fn;
+ if(n == maxiter)
+ GSL_ERROR ("error", GSL_EMAXITER);
+ else
+ return GSL_SUCCESS;
+}
+#endif /* 0 */
+
+
+/* 1F1(a,b,x)
+ * |a| <= 1, b > 0
+ */
+static
+int
+hyperg_1F1_small_a_bgt0(const double a, const double b, const double x, gsl_sf_result * result)
+{
+ const double bma = b-a;
+ const double oma = 1.0-a;
+ const double ap1mb = 1.0+a-b;
+ const double abs_bma = fabs(bma);
+ const double abs_oma = fabs(oma);
+ const double abs_ap1mb = fabs(ap1mb);
+
+ const double ax = fabs(x);
+
+ if(a == 0.0) {
+ result->val = 1.0;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+ else if(a == 1.0 && b >= 1.0) {
+ return hyperg_1F1_1(b, x, result);
+ }
+ else if(a == -1.0) {
+ result->val = 1.0 + a/b * x;
+ result->err = GSL_DBL_EPSILON * (1.0 + fabs(a/b * x));
+ result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
+ return GSL_SUCCESS;
+ }
+ else if(b >= 1.4*ax) {
+ return gsl_sf_hyperg_1F1_series_e(a, b, x, result);
+ }
+ else if(x > 0.0) {
+ if(x > 100.0 && abs_bma*abs_oma < 0.5*x) {
+ return hyperg_1F1_asymp_posx(a, b, x, result);
+ }
+ else if(b < 5.0e+06) {
+ /* Recurse backward on b from
+ * a suitably high point.
+ */
+ const double b_del = ceil(1.4*x-b) + 1.0;
+ double bp = b + b_del;
+ gsl_sf_result r_Mbp1;
+ gsl_sf_result r_Mb;
+ double Mbp1;
+ double Mb;
+ double Mbm1;
+ int stat_0 = gsl_sf_hyperg_1F1_series_e(a, bp+1.0, x, &r_Mbp1);
+ int stat_1 = gsl_sf_hyperg_1F1_series_e(a, bp, x, &r_Mb);
+ const double err_rat = fabs(r_Mbp1.err/r_Mbp1.val) + fabs(r_Mb.err/r_Mb.val);
+ Mbp1 = r_Mbp1.val;
+ Mb = r_Mb.val;
+ while(bp > b+0.1) {
+ /* Do backward recursion. */
+ Mbm1 = ((x+bp-1.0)*Mb - x*(bp-a)/bp*Mbp1)/(bp-1.0);
+ bp -= 1.0;
+ Mbp1 = Mb;
+ Mb = Mbm1;
+ }
+ result->val = Mb;
+ result->err = err_rat * (fabs(b_del)+1.0) * fabs(Mb);
+ result->err += 2.0 * GSL_DBL_EPSILON * fabs(Mb);
+ return GSL_ERROR_SELECT_2(stat_0, stat_1);
+ }
+ else if (fabs(x) < fabs(b) && fabs(a*x) < sqrt(fabs(b)) * fabs(b-x)) {
+ return hyperg_1F1_largebx(a, b, x, result);
+ } else {
+ return hyperg_1F1_large2bm4a(a, b, x, result);
+ }
+ }
+ else {
+ /* x < 0 and b not large compared to |x|
+ */
+ if(ax < 10.0 && b < 10.0) {
+ return gsl_sf_hyperg_1F1_series_e(a, b, x, result);
+ }
+ else if(ax >= 100.0 && GSL_MAX(abs_ap1mb,1.0) < 0.99*ax) {
+ return hyperg_1F1_asymp_negx(a, b, x, result);
+ }
+ else {
+ return hyperg_1F1_luke(a, b, x, result);
+ }
+ }
+}
+
+
+/* 1F1(b+eps,b,x)
+ * |eps|<=1, b > 0
+ */
+static
+int
+hyperg_1F1_beps_bgt0(const double eps, const double b, const double x, gsl_sf_result * result)
+{
+ if(b > fabs(x) && fabs(eps) < GSL_SQRT_DBL_EPSILON) {
+ /* If b-a is very small and x/b is not too large we can
+ * use this explicit approximation.
+ *
+ * 1F1(b+eps,b,x) = exp(ax/b) (1 - eps x^2 (v2 + v3 x + ...) + ...)
+ *
+ * v2 = a/(2b^2(b+1))
+ * v3 = a(b-2a)/(3b^3(b+1)(b+2))
+ * ...
+ *
+ * See [Luke, Mathematical Functions and Their Approximations, p.292]
+ *
+ * This cannot be used for b near a negative integer or zero.
+ * Also, if x/b is large the deviation from exp(x) behaviour grows.
+ */
+ double a = b + eps;
+ gsl_sf_result exab;
+ int stat_e = gsl_sf_exp_e(a*x/b, &exab);
+ double v2 = a/(2.0*b*b*(b+1.0));
+ double v3 = a*(b-2.0*a)/(3.0*b*b*b*(b+1.0)*(b+2.0));
+ double v = v2 + v3 * x;
+ double f = (1.0 - eps*x*x*v);
+ result->val = exab.val * f;
+ result->err = exab.err * fabs(f);
+ result->err += fabs(exab.val) * GSL_DBL_EPSILON * (1.0 + fabs(eps*x*x*v));
+ result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val);
+ return stat_e;
+ }
+ else {
+ /* Otherwise use a Kummer transformation to reduce
+ * it to the small a case.
+ */
+ gsl_sf_result Kummer_1F1;
+ int stat_K = hyperg_1F1_small_a_bgt0(-eps, b, -x, &Kummer_1F1);
+ if(Kummer_1F1.val != 0.0) {
+ int stat_e = gsl_sf_exp_mult_err_e(x, 2.0*GSL_DBL_EPSILON*fabs(x),
+ Kummer_1F1.val, Kummer_1F1.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_K);
+ }
+ else {
+ result->val = 0.0;
+ result->err = 0.0;
+ return stat_K;
+ }
+ }
+}
+
+
+/* 1F1(a,2a,x) = Gamma(a + 1/2) E(x) (|x|/4)^(-a+1/2) scaled_I(a-1/2,|x|/2)
+ *
+ * E(x) = exp(x) x > 0
+ * = 1 x < 0
+ *
+ * a >= 1/2
+ */
+static
+int
+hyperg_1F1_beq2a_pos(const double a, const double x, gsl_sf_result * result)
+{
+ if(x == 0.0) {
+ result->val = 1.0;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+ else {
+ gsl_sf_result I;
+ int stat_I = gsl_sf_bessel_Inu_scaled_e(a-0.5, 0.5*fabs(x), &I);
+ gsl_sf_result lg;
+ int stat_g = gsl_sf_lngamma_e(a + 0.5, &lg);
+ double ln_term = (0.5-a)*log(0.25*fabs(x));
+ double lnpre_val = lg.val + GSL_MAX_DBL(x,0.0) + ln_term;
+ double lnpre_err = lg.err + GSL_DBL_EPSILON * (fabs(ln_term) + fabs(x));
+ int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err,
+ I.val, I.err,
+ result);
+ return GSL_ERROR_SELECT_3(stat_e, stat_g, stat_I);
+ }
+}
+
+
+/* Determine middle parts of diagonal recursion along b=2a
+ * from two endpoints, i.e.
+ *
+ * given: M(a,b) and M(a+1,b+2)
+ * get: M(a+1,b+1) and M(a,b+1)
+ */
+#if 0
+inline
+static
+int
+hyperg_1F1_diag_step(const double a, const double b, const double x,
+ const double Mab, const double Map1bp2,
+ double * Map1bp1, double * Mabp1)
+{
+ if(a == b) {
+ *Map1bp1 = Mab;
+ *Mabp1 = Mab - x/(b+1.0) * Map1bp2;
+ }
+ else {
+ *Map1bp1 = Mab - x * (a-b)/(b*(b+1.0)) * Map1bp2;
+ *Mabp1 = (a * *Map1bp1 - b * Mab)/(a-b);
+ }
+ return GSL_SUCCESS;
+}
+#endif /* 0 */
+
+
+/* Determine endpoint of diagonal recursion.
+ *
+ * given: M(a,b) and M(a+1,b+2)
+ * get: M(a+1,b) and M(a+1,b+1)
+ */
+#if 0
+inline
+static
+int
+hyperg_1F1_diag_end_step(const double a, const double b, const double x,
+ const double Mab, const double Map1bp2,
+ double * Map1b, double * Map1bp1)
+{
+ *Map1bp1 = Mab - x * (a-b)/(b*(b+1.0)) * Map1bp2;
+ *Map1b = Mab + x/b * *Map1bp1;
+ return GSL_SUCCESS;
+}
+#endif /* 0 */
+
+
+/* Handle the case of a and b both positive integers.
+ * Assumes a > 0 and b > 0.
+ */
+static
+int
+hyperg_1F1_ab_posint(const int a, const int b, const double x, gsl_sf_result * result)
+{
+ double ax = fabs(x);
+
+ if(a == b) {
+ return gsl_sf_exp_e(x, result); /* 1F1(a,a,x) */
+ }
+ else if(a == 1) {
+ return gsl_sf_exprel_n_e(b-1, x, result); /* 1F1(1,b,x) */
+ }
+ else if(b == a + 1) {
+ gsl_sf_result K;
+ int stat_K = gsl_sf_exprel_n_e(a, -x, &K); /* 1F1(1,1+a,-x) */
+ int stat_e = gsl_sf_exp_mult_err_e(x, 2.0 * GSL_DBL_EPSILON * fabs(x),
+ K.val, K.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_K);
+ }
+ else if(a == b + 1) {
+ gsl_sf_result ex;
+ int stat_e = gsl_sf_exp_e(x, &ex);
+ result->val = ex.val * (1.0 + x/b);
+ result->err = ex.err * (1.0 + x/b);
+ result->err += ex.val * GSL_DBL_EPSILON * (1.0 + fabs(x/b));
+ result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
+ return stat_e;
+ }
+ else if(a == b + 2) {
+ gsl_sf_result ex;
+ int stat_e = gsl_sf_exp_e(x, &ex);
+ double poly = (1.0 + x/b*(2.0 + x/(b+1.0)));
+ result->val = ex.val * poly;
+ result->err = ex.err * fabs(poly);
+ result->err += ex.val * GSL_DBL_EPSILON * (1.0 + fabs(x/b) * (2.0 + fabs(x/(b+1.0))));
+ result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
+ return stat_e;
+ }
+ else if(b == 2*a) {
+ return hyperg_1F1_beq2a_pos(a, x, result); /* 1F1(a,2a,x) */
+ }
+ else if( ( b < 10 && a < 10 && ax < 5.0 )
+ || ( b > a*ax )
+ || ( b > a && ax < 5.0 )
+ ) {
+ return gsl_sf_hyperg_1F1_series_e(a, b, x, result);
+ }
+ else if(b > a && b >= 2*a + x) {
+ /* Use the Gautschi CF series, then
+ * recurse backward to a=0 for normalization.
+ * This will work for either sign of x.
+ */
+ double rap;
+ int stat_CF1 = hyperg_1F1_CF1_p_ser(a, b, x, &rap);
+ double ra = 1.0 + x/a * rap;
+ double Ma = GSL_SQRT_DBL_MIN;
+ double Map1 = ra * Ma;
+ double Mnp1 = Map1;
+ double Mn = Ma;
+ double Mnm1;
+ int n;
+ for(n=a; n>0; n--) {
+ Mnm1 = (n * Mnp1 - (2*n-b+x) * Mn) / (b-n);
+ Mnp1 = Mn;
+ Mn = Mnm1;
+ }
+ result->val = Ma/Mn;
+ result->err = 2.0 * GSL_DBL_EPSILON * (fabs(a) + 1.0) * fabs(Ma/Mn);
+ return stat_CF1;
+ }
+ else if(b > a && b < 2*a + x && b > x) {
+ /* Use the Gautschi series representation of
+ * the continued fraction. Then recurse forward
+ * to the a=b line for normalization. This will
+ * work for either sign of x, although we do need
+ * to check for b > x, for when x is positive.
+ */
+ double rap;
+ int stat_CF1 = hyperg_1F1_CF1_p_ser(a, b, x, &rap);
+ double ra = 1.0 + x/a * rap;
+ gsl_sf_result ex;
+ int stat_ex;
+
+ double Ma = GSL_SQRT_DBL_MIN;
+ double Map1 = ra * Ma;
+ double Mnm1 = Ma;
+ double Mn = Map1;
+ double Mnp1;
+ int n;
+ for(n=a+1; n<b; n++) {
+ Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n;
+ Mnm1 = Mn;
+ Mn = Mnp1;
+ }
+
+ stat_ex = gsl_sf_exp_e(x, &ex); /* 1F1(b,b,x) */
+ result->val = ex.val * Ma/Mn;
+ result->err = ex.err * fabs(Ma/Mn);
+ result->err += 4.0 * GSL_DBL_EPSILON * (fabs(b-a)+1.0) * fabs(result->val);
+ return GSL_ERROR_SELECT_2(stat_ex, stat_CF1);
+ }
+ else if(x >= 0.0) {
+
+ if(b < a) {
+ /* The point b,b is below the b=2a+x line.
+ * Forward recursion on a from b,b+1 is possible.
+ * Note that a > b + 1 as well, since we already tried a = b + 1.
+ */
+ if(x + log(fabs(x/b)) < GSL_LOG_DBL_MAX-2.0) {
+ double ex = exp(x);
+ int n;
+ double Mnm1 = ex; /* 1F1(b,b,x) */
+ double Mn = ex * (1.0 + x/b); /* 1F1(b+1,b,x) */
+ double Mnp1;
+ for(n=b+1; n<a; n++) {
+ Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n;
+ Mnm1 = Mn;
+ Mn = Mnp1;
+ }
+ result->val = Mn;
+ result->err = (x + 1.0) * GSL_DBL_EPSILON * fabs(Mn);
+ result->err *= fabs(a-b)+1.0;
+ return GSL_SUCCESS;
+ }
+ else {
+ OVERFLOW_ERROR(result);
+ }
+ }
+ else {
+ /* b > a
+ * b < 2a + x
+ * b <= x (otherwise we would have finished above)
+ *
+ * Gautschi anomalous convergence region. However, we can
+ * recurse forward all the way from a=0,1 because we are
+ * always underneath the b=2a+x line.
+ */
+ gsl_sf_result r_Mn;
+ double Mnm1 = 1.0; /* 1F1(0,b,x) */
+ double Mn; /* 1F1(1,b,x) */
+ double Mnp1;
+ int n;
+ gsl_sf_exprel_n_e(b-1, x, &r_Mn);
+ Mn = r_Mn.val;
+ for(n=1; n<a; n++) {
+ Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n;
+ Mnm1 = Mn;
+ Mn = Mnp1;
+ }
+ result->val = Mn;
+ result->err = fabs(Mn) * (1.0 + fabs(a)) * fabs(r_Mn.err / r_Mn.val);
+ result->err += 2.0 * GSL_DBL_EPSILON * fabs(Mn);
+ return GSL_SUCCESS;
+ }
+ }
+ else {
+ /* x < 0
+ * b < a (otherwise we would have tripped one of the above)
+ */
+
+ if(a <= 0.5*(b-x) || a >= -x) {
+ /* Gautschi continued fraction is in the anomalous region,
+ * so we must find another way. We recurse down in b,
+ * from the a=b line.
+ */
+ double ex = exp(x);
+ double Manp1 = ex;
+ double Man = ex * (1.0 + x/(a-1.0));
+ double Manm1;
+ int n;
+ for(n=a-1; n>b; n--) {
+ Manm1 = (-n*(1-n-x)*Man - x*(n-a)*Manp1)/(n*(n-1.0));
+ Manp1 = Man;
+ Man = Manm1;
+ }
+ result->val = Man;
+ result->err = (fabs(x) + 1.0) * GSL_DBL_EPSILON * fabs(Man);
+ result->err *= fabs(b-a)+1.0;
+ return GSL_SUCCESS;
+ }
+ else {
+ /* Pick a0 such that b ~= 2a0 + x, then
+ * recurse down in b from a0,a0 to determine
+ * the values near the line b=2a+x. Then recurse
+ * forward on a from a0.
+ */
+ int a0 = ceil(0.5*(b-x));
+ double Ma0b; /* M(a0,b) */
+ double Ma0bp1; /* M(a0,b+1) */
+ double Ma0p1b; /* M(a0+1,b) */
+ double Mnm1;
+ double Mn;
+ double Mnp1;
+ int n;
+ {
+ double ex = exp(x);
+ double Ma0np1 = ex;
+ double Ma0n = ex * (1.0 + x/(a0-1.0));
+ double Ma0nm1;
+ for(n=a0-1; n>b; n--) {
+ Ma0nm1 = (-n*(1-n-x)*Ma0n - x*(n-a0)*Ma0np1)/(n*(n-1.0));
+ Ma0np1 = Ma0n;
+ Ma0n = Ma0nm1;
+ }
+ Ma0bp1 = Ma0np1;
+ Ma0b = Ma0n;
+ Ma0p1b = (b*(a0+x)*Ma0b + x*(a0-b)*Ma0bp1)/(a0*b);
+ }
+
+ /* Initialise the recurrence correctly BJG */
+
+ if (a0 >= a)
+ {
+ Mn = Ma0b;
+ }
+ else if (a0 + 1>= a)
+ {
+ Mn = Ma0p1b;
+ }
+ else
+ {
+ Mnm1 = Ma0b;
+ Mn = Ma0p1b;
+
+ for(n=a0+1; n<a; n++) {
+ Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n;
+ Mnm1 = Mn;
+ Mn = Mnp1;
+ }
+ }
+
+ result->val = Mn;
+ result->err = (fabs(x) + 1.0) * GSL_DBL_EPSILON * fabs(Mn);
+ result->err *= fabs(b-a)+1.0;
+ return GSL_SUCCESS;
+ }
+ }
+}
+
+
+/* Evaluate a <= 0, a integer, cases directly. (Polynomial; Horner)
+ * When the terms are all positive, this
+ * must work. We will assume this here.
+ */
+static
+int
+hyperg_1F1_a_negint_poly(const int a, const double b, const double x, gsl_sf_result * result)
+{
+ if(a == 0) {
+ result->val = 1.0;
+ result->err = 1.0;
+ return GSL_SUCCESS;
+ }
+ else {
+ int N = -a;
+ double poly = 1.0;
+ int k;
+ for(k=N-1; k>=0; k--) {
+ double t = (a+k)/(b+k) * (x/(k+1));
+ double r = t + 1.0/poly;
+ if(r > 0.9*GSL_DBL_MAX/poly) {
+ OVERFLOW_ERROR(result);
+ }
+ else {
+ poly *= r; /* P_n = 1 + t_n P_{n-1} */
+ }
+ }
+ result->val = poly;
+ result->err = 2.0 * (sqrt(N) + 1.0) * GSL_DBL_EPSILON * fabs(poly);
+ return GSL_SUCCESS;
+ }
+}
+
+
+/* Evaluate negative integer a case by relation
+ * to Laguerre polynomials. This is more general than
+ * the direct polynomial evaluation, but is safe
+ * for all values of x.
+ *
+ * 1F1(-n,b,x) = n!/(b)_n Laguerre[n,b-1,x]
+ * = n B(b,n) Laguerre[n,b-1,x]
+ *
+ * assumes b is not a negative integer
+ */
+static
+int
+hyperg_1F1_a_negint_lag(const int a, const double b, const double x, gsl_sf_result * result)
+{
+ const int n = -a;
+
+ gsl_sf_result lag;
+ const int stat_l = gsl_sf_laguerre_n_e(n, b-1.0, x, &lag);
+ if(b < 0.0) {
+ gsl_sf_result lnfact;
+ gsl_sf_result lng1;
+ gsl_sf_result lng2;
+ double s1, s2;
+ const int stat_f = gsl_sf_lnfact_e(n, &lnfact);
+ const int stat_g1 = gsl_sf_lngamma_sgn_e(b + n, &lng1, &s1);
+ const int stat_g2 = gsl_sf_lngamma_sgn_e(b, &lng2, &s2);
+ const double lnpre_val = lnfact.val - (lng1.val - lng2.val);
+ const double lnpre_err = lnfact.err + lng1.err + lng2.err
+ + 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val);
+ const int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err,
+ s1*s2*lag.val, lag.err,
+ result);
+ return GSL_ERROR_SELECT_5(stat_e, stat_l, stat_g1, stat_g2, stat_f);
+ }
+ else {
+ gsl_sf_result lnbeta;
+ gsl_sf_lnbeta_e(b, n, &lnbeta);
+ if(fabs(lnbeta.val) < 0.1) {
+ /* As we have noted, when B(x,y) is near 1,
+ * evaluating log(B(x,y)) is not accurate.
+ * Instead we evaluate B(x,y) directly.
+ */
+ const double ln_term_val = log(1.25*n);
+ const double ln_term_err = 2.0 * GSL_DBL_EPSILON * ln_term_val;
+ gsl_sf_result beta;
+ int stat_b = gsl_sf_beta_e(b, n, &beta);
+ int stat_e = gsl_sf_exp_mult_err_e(ln_term_val, ln_term_err,
+ lag.val, lag.err,
+ result);
+ result->val *= beta.val/1.25;
+ result->err *= beta.val/1.25;
+ return GSL_ERROR_SELECT_3(stat_e, stat_l, stat_b);
+ }
+ else {
+ /* B(x,y) was not near 1, so it is safe to use
+ * the logarithmic values.
+ */
+ const double ln_n = log(n);
+ const double ln_term_val = lnbeta.val + ln_n;
+ const double ln_term_err = lnbeta.err + 2.0 * GSL_DBL_EPSILON * fabs(ln_n);
+ int stat_e = gsl_sf_exp_mult_err_e(ln_term_val, ln_term_err,
+ lag.val, lag.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_l);
+ }
+ }
+}
+
+
+/* Handle negative integer a case for x > 0 and
+ * generic b.
+ *
+ * Combine [Abramowitz+Stegun, 13.6.9 + 13.6.27]
+ * M(-n,b,x) = (-1)^n / (b)_n U(-n,b,x) = n! / (b)_n Laguerre^(b-1)_n(x)
+ */
+#if 0
+static
+int
+hyperg_1F1_a_negint_U(const int a, const double b, const double x, gsl_sf_result * result)
+{
+ const int n = -a;
+ const double sgn = ( GSL_IS_ODD(n) ? -1.0 : 1.0 );
+ double sgpoch;
+ gsl_sf_result lnpoch;
+ gsl_sf_result U;
+ const int stat_p = gsl_sf_lnpoch_sgn_e(b, n, &lnpoch, &sgpoch);
+ const int stat_U = gsl_sf_hyperg_U_e(-n, b, x, &U);
+ const int stat_e = gsl_sf_exp_mult_err_e(-lnpoch.val, lnpoch.err,
+ sgn * sgpoch * U.val, U.err,
+ result);
+ return GSL_ERROR_SELECT_3(stat_e, stat_U, stat_p);
+}
+#endif
+
+
+/* Assumes a <= -1, b <= -1, and b <= a.
+ */
+static
+int
+hyperg_1F1_ab_negint(const int a, const int b, const double x, gsl_sf_result * result)
+{
+ if(x == 0.0) {
+ result->val = 1.0;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+ else if(x > 0.0) {
+ return hyperg_1F1_a_negint_poly(a, b, x, result);
+ }
+ else {
+ /* Apply a Kummer transformation to make x > 0 so
+ * we can evaluate the polynomial safely. Of course,
+ * this assumes b <= a, which must be true for
+ * a<0 and b<0, since otherwise the thing is undefined.
+ */
+ gsl_sf_result K;
+ int stat_K = hyperg_1F1_a_negint_poly(b-a, b, -x, &K);
+ int stat_e = gsl_sf_exp_mult_err_e(x, 2.0 * GSL_DBL_EPSILON * fabs(x),
+ K.val, K.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_K);
+ }
+}
+
+
+/* [Abramowitz+Stegun, 13.1.3]
+ *
+ * M(a,b,x) = Gamma(1+a-b)/Gamma(2-b) x^(1-b) *
+ * { Gamma(b)/Gamma(a) M(1+a-b,2-b,x) - (b-1) U(1+a-b,2-b,x) }
+ *
+ * b not an integer >= 2
+ * a-b not a negative integer
+ */
+static
+int
+hyperg_1F1_U(const double a, const double b, const double x, gsl_sf_result * result)
+{
+ const double bp = 2.0 - b;
+ const double ap = a - b + 1.0;
+
+ gsl_sf_result lg_ap, lg_bp;
+ double sg_ap;
+ int stat_lg0 = gsl_sf_lngamma_sgn_e(ap, &lg_ap, &sg_ap);
+ int stat_lg1 = gsl_sf_lngamma_e(bp, &lg_bp);
+ int stat_lg2 = GSL_ERROR_SELECT_2(stat_lg0, stat_lg1);
+ double t1 = (bp-1.0) * log(x);
+ double lnpre_val = lg_ap.val - lg_bp.val + t1;
+ double lnpre_err = lg_ap.err + lg_bp.err + 2.0 * GSL_DBL_EPSILON * fabs(t1);
+
+ gsl_sf_result lg_2mbp, lg_1papmbp;
+ double sg_2mbp, sg_1papmbp;
+ int stat_lg3 = gsl_sf_lngamma_sgn_e(2.0-bp, &lg_2mbp, &sg_2mbp);
+ int stat_lg4 = gsl_sf_lngamma_sgn_e(1.0+ap-bp, &lg_1papmbp, &sg_1papmbp);
+ int stat_lg5 = GSL_ERROR_SELECT_2(stat_lg3, stat_lg4);
+ double lnc1_val = lg_2mbp.val - lg_1papmbp.val;
+ double lnc1_err = lg_2mbp.err + lg_1papmbp.err
+ + GSL_DBL_EPSILON * (fabs(lg_2mbp.val) + fabs(lg_1papmbp.val));
+
+ gsl_sf_result M;
+ gsl_sf_result_e10 U;
+ int stat_F = gsl_sf_hyperg_1F1_e(ap, bp, x, &M);
+ int stat_U = gsl_sf_hyperg_U_e10_e(ap, bp, x, &U);
+ int stat_FU = GSL_ERROR_SELECT_2(stat_F, stat_U);
+
+ gsl_sf_result_e10 term_M;
+ int stat_e0 = gsl_sf_exp_mult_err_e10_e(lnc1_val, lnc1_err,
+ sg_2mbp*sg_1papmbp*M.val, M.err,
+ &term_M);
+
+ const double ombp = 1.0 - bp;
+ const double Uee_val = U.e10*M_LN10;
+ const double Uee_err = 2.0 * GSL_DBL_EPSILON * fabs(Uee_val);
+ const double Mee_val = term_M.e10*M_LN10;
+ const double Mee_err = 2.0 * GSL_DBL_EPSILON * fabs(Mee_val);
+ int stat_e1;
+
+ /* Do a little dance with the exponential prefactors
+ * to avoid overflows in intermediate results.
+ */
+ if(Uee_val > Mee_val) {
+ const double factorM_val = exp(Mee_val-Uee_val);
+ const double factorM_err = 2.0 * GSL_DBL_EPSILON * (fabs(Mee_val-Uee_val)+1.0) * factorM_val;
+ const double inner_val = term_M.val*factorM_val - ombp*U.val;
+ const double inner_err =
+ term_M.err*factorM_val + fabs(ombp) * U.err
+ + fabs(term_M.val) * factorM_err
+ + GSL_DBL_EPSILON * (fabs(term_M.val*factorM_val) + fabs(ombp*U.val));
+ stat_e1 = gsl_sf_exp_mult_err_e(lnpre_val+Uee_val, lnpre_err+Uee_err,
+ sg_ap*inner_val, inner_err,
+ result);
+ }
+ else {
+ const double factorU_val = exp(Uee_val - Mee_val);
+ const double factorU_err = 2.0 * GSL_DBL_EPSILON * (fabs(Mee_val-Uee_val)+1.0) * factorU_val;
+ const double inner_val = term_M.val - ombp*factorU_val*U.val;
+ const double inner_err =
+ term_M.err + fabs(ombp*factorU_val*U.err)
+ + fabs(ombp*factorU_err*U.val)
+ + GSL_DBL_EPSILON * (fabs(term_M.val) + fabs(ombp*factorU_val*U.val));
+ stat_e1 = gsl_sf_exp_mult_err_e(lnpre_val+Mee_val, lnpre_err+Mee_err,
+ sg_ap*inner_val, inner_err,
+ result);
+ }
+
+ return GSL_ERROR_SELECT_5(stat_e1, stat_e0, stat_FU, stat_lg5, stat_lg2);
+}
+
+
+/* Handle case of generic positive a, b.
+ * Assumes b-a is not a negative integer.
+ */
+static
+int
+hyperg_1F1_ab_pos(const double a, const double b,
+ const double x,
+ gsl_sf_result * result)
+{
+ const double ax = fabs(x);
+
+ if( ( b < 10.0 && a < 10.0 && ax < 5.0 )
+ || ( b > a*ax )
+ || ( b > a && ax < 5.0 )
+ ) {
+ return gsl_sf_hyperg_1F1_series_e(a, b, x, result);
+ }
+ else if( x < -100.0
+ && GSL_MAX_DBL(fabs(a),1.0)*GSL_MAX_DBL(fabs(1.0+a-b),1.0) < 0.7*fabs(x)
+ ) {
+ /* Large negative x asymptotic.
+ */
+ return hyperg_1F1_asymp_negx(a, b, x, result);
+ }
+ else if( x > 100.0
+ && GSL_MAX_DBL(fabs(b-a),1.0)*GSL_MAX_DBL(fabs(1.0-a),1.0) < 0.7*fabs(x)
+ ) {
+ /* Large positive x asymptotic.
+ */
+ return hyperg_1F1_asymp_posx(a, b, x, result);
+ }
+ else if(fabs(b-a) <= 1.0) {
+ /* Directly handle b near a.
+ */
+ return hyperg_1F1_beps_bgt0(a-b, b, x, result); /* a = b + eps */
+ }
+
+ else if(b > a && b >= 2*a + x) {
+ /* Use the Gautschi CF series, then
+ * recurse backward to a near 0 for normalization.
+ * This will work for either sign of x.
+ */
+ double rap;
+ int stat_CF1 = hyperg_1F1_CF1_p_ser(a, b, x, &rap);
+ double ra = 1.0 + x/a * rap;
+
+ double Ma = GSL_SQRT_DBL_MIN;
+ double Map1 = ra * Ma;
+ double Mnp1 = Map1;
+ double Mn = Ma;
+ double Mnm1;
+ gsl_sf_result Mn_true;
+ int stat_Mt;
+ double n;
+ for(n=a; n>0.5; n -= 1.0) {
+ Mnm1 = (n * Mnp1 - (2.0*n-b+x) * Mn) / (b-n);
+ Mnp1 = Mn;
+ Mn = Mnm1;
+ }
+
+ stat_Mt = hyperg_1F1_small_a_bgt0(n, b, x, &Mn_true);
+
+ result->val = (Ma/Mn) * Mn_true.val;
+ result->err = fabs(Ma/Mn) * Mn_true.err;
+ result->err += 2.0 * GSL_DBL_EPSILON * (fabs(a)+1.0) * fabs(result->val);
+ return GSL_ERROR_SELECT_2(stat_Mt, stat_CF1);
+ }
+ else if(b > a && b < 2*a + x && b > x) {
+ /* Use the Gautschi series representation of
+ * the continued fraction. Then recurse forward
+ * to near the a=b line for normalization. This will
+ * work for either sign of x, although we do need
+ * to check for b > x, which is relevant when x is positive.
+ */
+ gsl_sf_result Mn_true;
+ int stat_Mt;
+ double rap;
+ int stat_CF1 = hyperg_1F1_CF1_p_ser(a, b, x, &rap);
+ double ra = 1.0 + x/a * rap;
+ double Ma = GSL_SQRT_DBL_MIN;
+ double Mnm1 = Ma;
+ double Mn = ra * Mnm1;
+ double Mnp1;
+ double n;
+ for(n=a+1.0; n<b-0.5; n += 1.0) {
+ Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n;
+ Mnm1 = Mn;
+ Mn = Mnp1;
+ }
+ stat_Mt = hyperg_1F1_beps_bgt0(n-b, b, x, &Mn_true);
+ result->val = Ma/Mn * Mn_true.val;
+ result->err = fabs(Ma/Mn) * Mn_true.err;
+ result->err += 2.0 * GSL_DBL_EPSILON * (fabs(b-a)+1.0) * fabs(result->val);
+ return GSL_ERROR_SELECT_2(stat_Mt, stat_CF1);
+ }
+ else if(x >= 0.0) {
+
+ if(b < a) {
+ /* Forward recursion on a from a=b+eps-1,b+eps.
+ */
+ double N = floor(a-b);
+ double eps = a - b - N;
+ gsl_sf_result r_M0;
+ gsl_sf_result r_M1;
+ int stat_0 = hyperg_1F1_beps_bgt0(eps-1.0, b, x, &r_M0);
+ int stat_1 = hyperg_1F1_beps_bgt0(eps, b, x, &r_M1);
+ double M0 = r_M0.val;
+ double M1 = r_M1.val;
+
+ double Mam1 = M0;
+ double Ma = M1;
+ double Map1;
+ double ap;
+ double start_pair = fabs(M0) + fabs(M1);
+ double minim_pair = GSL_DBL_MAX;
+ double pair_ratio;
+ double rat_0 = fabs(r_M0.err/r_M0.val);
+ double rat_1 = fabs(r_M1.err/r_M1.val);
+ for(ap=b+eps; ap<a-0.1; ap += 1.0) {
+ Map1 = ((b-ap)*Mam1 + (2.0*ap-b+x)*Ma)/ap;
+ Mam1 = Ma;
+ Ma = Map1;
+ minim_pair = GSL_MIN_DBL(fabs(Mam1) + fabs(Ma), minim_pair);
+ }
+ pair_ratio = start_pair/minim_pair;
+ result->val = Ma;
+ result->err = 2.0 * (rat_0 + rat_1 + GSL_DBL_EPSILON) * (fabs(b-a)+1.0) * fabs(Ma);
+ result->err += 2.0 * (rat_0 + rat_1) * pair_ratio*pair_ratio * fabs(Ma);
+ result->err += 2.0 * GSL_DBL_EPSILON * fabs(Ma);
+ return GSL_ERROR_SELECT_2(stat_0, stat_1);
+ }
+ else {
+ /* b > a
+ * b < 2a + x
+ * b <= x
+ *
+ * Recurse forward on a from a=eps,eps+1.
+ */
+ double eps = a - floor(a);
+ gsl_sf_result r_Mnm1;
+ gsl_sf_result r_Mn;
+ int stat_0 = hyperg_1F1_small_a_bgt0(eps, b, x, &r_Mnm1);
+ int stat_1 = hyperg_1F1_small_a_bgt0(eps+1.0, b, x, &r_Mn);
+ double Mnm1 = r_Mnm1.val;
+ double Mn = r_Mn.val;
+ double Mnp1;
+
+ double n;
+ double start_pair = fabs(Mn) + fabs(Mnm1);
+ double minim_pair = GSL_DBL_MAX;
+ double pair_ratio;
+ double rat_0 = fabs(r_Mnm1.err/r_Mnm1.val);
+ double rat_1 = fabs(r_Mn.err/r_Mn.val);
+ for(n=eps+1.0; n<a-0.1; n++) {
+ Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n;
+ Mnm1 = Mn;
+ Mn = Mnp1;
+ minim_pair = GSL_MIN_DBL(fabs(Mn) + fabs(Mnm1), minim_pair);
+ }
+ pair_ratio = start_pair/minim_pair;
+ result->val = Mn;
+ result->err = 2.0 * (rat_0 + rat_1 + GSL_DBL_EPSILON) * (fabs(a)+1.0) * fabs(Mn);
+ result->err += 2.0 * (rat_0 + rat_1) * pair_ratio*pair_ratio * fabs(Mn);
+ result->err += 2.0 * GSL_DBL_EPSILON * fabs(Mn);
+ return GSL_ERROR_SELECT_2(stat_0, stat_1);
+ }
+ }
+ else {
+ /* x < 0
+ * b < a
+ */
+
+ if(a <= 0.5*(b-x) || a >= -x) {
+ /* Recurse down in b, from near the a=b line, b=a+eps,a+eps-1.
+ */
+ double N = floor(a - b);
+ double eps = 1.0 + N - a + b;
+ gsl_sf_result r_Manp1;
+ gsl_sf_result r_Man;
+ int stat_0 = hyperg_1F1_beps_bgt0(-eps, a+eps, x, &r_Manp1);
+ int stat_1 = hyperg_1F1_beps_bgt0(1.0-eps, a+eps-1.0, x, &r_Man);
+ double Manp1 = r_Manp1.val;
+ double Man = r_Man.val;
+ double Manm1;
+
+ double n;
+ double start_pair = fabs(Manp1) + fabs(Man);
+ double minim_pair = GSL_DBL_MAX;
+ double pair_ratio;
+ double rat_0 = fabs(r_Manp1.err/r_Manp1.val);
+ double rat_1 = fabs(r_Man.err/r_Man.val);
+ for(n=a+eps-1.0; n>b+0.1; n -= 1.0) {
+ Manm1 = (-n*(1-n-x)*Man - x*(n-a)*Manp1)/(n*(n-1.0));
+ Manp1 = Man;
+ Man = Manm1;
+ minim_pair = GSL_MIN_DBL(fabs(Manp1) + fabs(Man), minim_pair);
+ }
+
+ /* FIXME: this is a nasty little hack; there is some
+ (transient?) instability in this recurrence for some
+ values. I can tell when it happens, which is when
+ this pair_ratio is large. But I do not know how to
+ measure the error in terms of it. I guessed quadratic
+ below, but it is probably worse than that.
+ */
+ pair_ratio = start_pair/minim_pair;
+ result->val = Man;
+ result->err = 2.0 * (rat_0 + rat_1 + GSL_DBL_EPSILON) * (fabs(b-a)+1.0) * fabs(Man);
+ result->err *= pair_ratio*pair_ratio + 1.0;
+ return GSL_ERROR_SELECT_2(stat_0, stat_1);
+ }
+ else {
+ /* Pick a0 such that b ~= 2a0 + x, then
+ * recurse down in b from a0,a0 to determine
+ * the values near the line b=2a+x. Then recurse
+ * forward on a from a0.
+ */
+ double epsa = a - floor(a);
+ double a0 = floor(0.5*(b-x)) + epsa;
+ double N = floor(a0 - b);
+ double epsb = 1.0 + N - a0 + b;
+ double Ma0b;
+ double Ma0bp1;
+ double Ma0p1b;
+ int stat_a0;
+ double Mnm1;
+ double Mn;
+ double Mnp1;
+ double n;
+ double err_rat;
+ {
+ gsl_sf_result r_Ma0np1;
+ gsl_sf_result r_Ma0n;
+ int stat_0 = hyperg_1F1_beps_bgt0(-epsb, a0+epsb, x, &r_Ma0np1);
+ int stat_1 = hyperg_1F1_beps_bgt0(1.0-epsb, a0+epsb-1.0, x, &r_Ma0n);
+ double Ma0np1 = r_Ma0np1.val;
+ double Ma0n = r_Ma0n.val;
+ double Ma0nm1;
+
+ err_rat = fabs(r_Ma0np1.err/r_Ma0np1.val) + fabs(r_Ma0n.err/r_Ma0n.val);
+
+ for(n=a0+epsb-1.0; n>b+0.1; n -= 1.0) {
+ Ma0nm1 = (-n*(1-n-x)*Ma0n - x*(n-a0)*Ma0np1)/(n*(n-1.0));
+ Ma0np1 = Ma0n;
+ Ma0n = Ma0nm1;
+ }
+ Ma0bp1 = Ma0np1;
+ Ma0b = Ma0n;
+ Ma0p1b = (b*(a0+x)*Ma0b+x*(a0-b)*Ma0bp1)/(a0*b); /* right-down hook */
+ stat_a0 = GSL_ERROR_SELECT_2(stat_0, stat_1);
+ }
+
+
+ /* Initialise the recurrence correctly BJG */
+
+ if (a0 >= a - 0.1)
+ {
+ Mn = Ma0b;
+ }
+ else if (a0 + 1>= a - 0.1)
+ {
+ Mn = Ma0p1b;
+ }
+ else
+ {
+ Mnm1 = Ma0b;
+ Mn = Ma0p1b;
+
+ for(n=a0+1.0; n<a-0.1; n += 1.0) {
+ Mnp1 = ((b-n)*Mnm1 + (2*n-b+x)*Mn)/n;
+ Mnm1 = Mn;
+ Mn = Mnp1;
+ }
+ }
+
+ result->val = Mn;
+ result->err = (err_rat + GSL_DBL_EPSILON) * (fabs(b-a)+1.0) * fabs(Mn);
+ return stat_a0;
+ }
+ }
+}
+
+
+/* Assumes b != integer
+ * Assumes a != integer when x > 0
+ * Assumes b-a != neg integer when x < 0
+ */
+static
+int
+hyperg_1F1_ab_neg(const double a, const double b, const double x,
+ gsl_sf_result * result)
+{
+ const double bma = b - a;
+ const double abs_x = fabs(x);
+ const double abs_a = fabs(a);
+ const double abs_b = fabs(b);
+ const double size_a = GSL_MAX(abs_a, 1.0);
+ const double size_b = GSL_MAX(abs_b, 1.0);
+ const int bma_integer = ( bma - floor(bma+0.5) < _1F1_INT_THRESHOLD );
+
+ if( (abs_a < 10.0 && abs_b < 10.0 && abs_x < 5.0)
+ || (b > 0.8*GSL_MAX(fabs(a),1.0)*fabs(x))
+ ) {
+ return gsl_sf_hyperg_1F1_series_e(a, b, x, result);
+ }
+ else if( x > 0.0
+ && size_b > size_a
+ && size_a*log(M_E*x/size_b) < GSL_LOG_DBL_EPSILON+7.0
+ ) {
+ /* Series terms are positive definite up until
+ * there is a sign change. But by then the
+ * terms are small due to the last condition.
+ */
+ return gsl_sf_hyperg_1F1_series_e(a, b, x, result);
+ }
+ else if( (abs_x < 5.0 && fabs(bma) < 10.0 && abs_b < 10.0)
+ || (b > 0.8*GSL_MAX_DBL(fabs(bma),1.0)*abs_x)
+ ) {
+ /* Use Kummer transformation to render series safe.
+ */
+ gsl_sf_result Kummer_1F1;
+ int stat_K = gsl_sf_hyperg_1F1_series_e(bma, b, -x, &Kummer_1F1);
+ int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x),
+ Kummer_1F1.val, Kummer_1F1.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_K);
+ }
+ else if( x < -30.0
+ && GSL_MAX_DBL(fabs(a),1.0)*GSL_MAX_DBL(fabs(1.0+a-b),1.0) < 0.99*fabs(x)
+ ) {
+ /* Large negative x asymptotic.
+ * Note that we do not check if b-a is a negative integer.
+ */
+ return hyperg_1F1_asymp_negx(a, b, x, result);
+ }
+ else if( x > 100.0
+ && GSL_MAX_DBL(fabs(bma),1.0)*GSL_MAX_DBL(fabs(1.0-a),1.0) < 0.99*fabs(x)
+ ) {
+ /* Large positive x asymptotic.
+ * Note that we do not check if a is a negative integer.
+ */
+ return hyperg_1F1_asymp_posx(a, b, x, result);
+ }
+ else if(x > 0.0 && !(bma_integer && bma > 0.0)) {
+ return hyperg_1F1_U(a, b, x, result);
+ }
+ else {
+ /* FIXME: if all else fails, try the series... BJG */
+ if (x < 0.0) {
+ /* Apply Kummer Transformation */
+ int status = gsl_sf_hyperg_1F1_series_e(b-a, b, -x, result);
+ double K_factor = exp(x);
+ result->val *= K_factor;
+ result->err *= K_factor;
+ return status;
+ } else {
+ int status = gsl_sf_hyperg_1F1_series_e(a, b, x, result);
+ return status;
+ }
+
+ /* Sadness... */
+ /* result->val = 0.0; */
+ /* result->err = 0.0; */
+ /* GSL_ERROR ("error", GSL_EUNIMPL); */
+ }
+}
+
+
+/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
+
+int
+gsl_sf_hyperg_1F1_int_e(const int a, const int b, const double x, gsl_sf_result * result)
+{
+ /* CHECK_POINTER(result) */
+
+ if(x == 0.0) {
+ result->val = 1.0;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+ else if(a == b) {
+ return gsl_sf_exp_e(x, result);
+ }
+ else if(b == 0) {
+ DOMAIN_ERROR(result);
+ }
+ else if(a == 0) {
+ result->val = 1.0;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+ else if(b < 0 && (a < b || a > 0)) {
+ /* Standard domain error due to singularity. */
+ DOMAIN_ERROR(result);
+ }
+ else if(x > 100.0 && GSL_MAX_DBL(1.0,fabs(b-a))*GSL_MAX_DBL(1.0,fabs(1-a)) < 0.5 * x) {
+ /* x -> +Inf asymptotic */
+ return hyperg_1F1_asymp_posx(a, b, x, result);
+ }
+ else if(x < -100.0 && GSL_MAX_DBL(1.0,fabs(a))*GSL_MAX_DBL(1.0,fabs(1+a-b)) < 0.5 * fabs(x)) {
+ /* x -> -Inf asymptotic */
+ return hyperg_1F1_asymp_negx(a, b, x, result);
+ }
+ else if(a < 0 && b < 0) {
+ return hyperg_1F1_ab_negint(a, b, x, result);
+ }
+ else if(a < 0 && b > 0) {
+ /* Use Kummer to reduce it to the positive integer case.
+ * Note that b > a, strictly, since we already trapped b = a.
+ */
+ gsl_sf_result Kummer_1F1;
+ int stat_K = hyperg_1F1_ab_posint(b-a, b, -x, &Kummer_1F1);
+ int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x),
+ Kummer_1F1.val, Kummer_1F1.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_K);
+ }
+ else {
+ /* a > 0 and b > 0 */
+ return hyperg_1F1_ab_posint(a, b, x, result);
+ }
+}
+
+
+int
+gsl_sf_hyperg_1F1_e(const double a, const double b, const double x,
+ gsl_sf_result * result
+ )
+{
+ const double bma = b - a;
+ const double rinta = floor(a + 0.5);
+ const double rintb = floor(b + 0.5);
+ const double rintbma = floor(bma + 0.5);
+ const int a_integer = ( fabs(a-rinta) < _1F1_INT_THRESHOLD && rinta > INT_MIN && rinta < INT_MAX );
+ const int b_integer = ( fabs(b-rintb) < _1F1_INT_THRESHOLD && rintb > INT_MIN && rintb < INT_MAX );
+ const int bma_integer = ( fabs(bma-rintbma) < _1F1_INT_THRESHOLD && rintbma > INT_MIN && rintbma < INT_MAX );
+ const int b_neg_integer = ( b < -0.1 && b_integer );
+ const int a_neg_integer = ( a < -0.1 && a_integer );
+ const int bma_neg_integer = ( bma < -0.1 && bma_integer );
+
+ /* CHECK_POINTER(result) */
+
+ if(x == 0.0) {
+ /* Testing for this before testing a and b
+ * is somewhat arbitrary. The result is that
+ * we have 1F1(a,0,0) = 1.
+ */
+ result->val = 1.0;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+ else if(b == 0.0) {
+ DOMAIN_ERROR(result);
+ }
+ else if(a == 0.0) {
+ result->val = 1.0;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+ else if(a == b) {
+ /* case: a==b; exp(x)
+ * It's good to test exact equality now.
+ * We also test approximate equality later.
+ */
+ return gsl_sf_exp_e(x, result);
+ } else if(fabs(b) < _1F1_INT_THRESHOLD && fabs(a) < _1F1_INT_THRESHOLD) {
+ /* a and b near zero: 1 + a/b (exp(x)-1)
+ */
+
+ /* Note that neither a nor b is zero, since
+ * we eliminated that with the above tests.
+ */
+
+ gsl_sf_result exm1;
+ int stat_e = gsl_sf_expm1_e(x, &exm1);
+ double sa = ( a > 0.0 ? 1.0 : -1.0 );
+ double sb = ( b > 0.0 ? 1.0 : -1.0 );
+ double lnab = log(fabs(a/b)); /* safe */
+ gsl_sf_result hx;
+ int stat_hx = gsl_sf_exp_mult_err_e(lnab, GSL_DBL_EPSILON * fabs(lnab),
+ sa * sb * exm1.val, exm1.err,
+ &hx);
+ result->val = (hx.val == GSL_DBL_MAX ? hx.val : 1.0 + hx.val); /* FIXME: excessive paranoia ? what is DBL_MAX+1 ?*/
+ result->err = hx.err;
+ return GSL_ERROR_SELECT_2(stat_hx, stat_e);
+ } else if (fabs(b) < _1F1_INT_THRESHOLD && fabs(x*a) < 1) {
+ /* b near zero and a not near zero
+ */
+ const double m_arg = 1.0/(0.5*b);
+ gsl_sf_result F_renorm;
+ int stat_F = hyperg_1F1_renorm_b0(a, x, &F_renorm);
+ int stat_m = gsl_sf_multiply_err_e(m_arg, 2.0 * GSL_DBL_EPSILON * m_arg,
+ 0.5*F_renorm.val, 0.5*F_renorm.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_m, stat_F);
+ }
+ else if(a_integer && b_integer) {
+ /* Check for reduction to the integer case.
+ * Relies on the arbitrary "near an integer" test.
+ */
+ return gsl_sf_hyperg_1F1_int_e((int)rinta, (int)rintb, x, result);
+ }
+ else if(b_neg_integer && !(a_neg_integer && a > b)) {
+ /* Standard domain error due to
+ * uncancelled singularity.
+ */
+ DOMAIN_ERROR(result);
+ }
+ else if(a_neg_integer) {
+ return hyperg_1F1_a_negint_lag((int)rinta, b, x, result);
+ }
+ else if(b > 0.0) {
+ if(-1.0 <= a && a <= 1.0) {
+ /* Handle small a explicitly.
+ */
+ return hyperg_1F1_small_a_bgt0(a, b, x, result);
+ }
+ else if(bma_neg_integer) {
+ /* Catch this now, to avoid problems in the
+ * generic evaluation code.
+ */
+ gsl_sf_result Kummer_1F1;
+ int stat_K = hyperg_1F1_a_negint_lag((int)rintbma, b, -x, &Kummer_1F1);
+ int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x),
+ Kummer_1F1.val, Kummer_1F1.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_K);
+ }
+ else if(a < 0.0 && fabs(x) < 100.0) {
+ /* Use Kummer to reduce it to the generic positive case.
+ * Note that b > a, strictly, since we already trapped b = a.
+ * Also b-(b-a)=a, and a is not a negative integer here,
+ * so the generic evaluation is safe.
+ */
+ gsl_sf_result Kummer_1F1;
+ int stat_K = hyperg_1F1_ab_pos(b-a, b, -x, &Kummer_1F1);
+ int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x),
+ Kummer_1F1.val, Kummer_1F1.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_K);
+ }
+ else if (a > 0) {
+ /* a > 0.0 */
+ return hyperg_1F1_ab_pos(a, b, x, result);
+ } else {
+ return gsl_sf_hyperg_1F1_series_e(a, b, x, result);
+ }
+ }
+ else {
+ /* b < 0.0 */
+
+ if(bma_neg_integer && x < 0.0) {
+ /* Handle this now to prevent problems
+ * in the generic evaluation.
+ */
+ gsl_sf_result K;
+ int stat_K;
+ int stat_e;
+ if(a < 0.0) {
+ /* Kummer transformed version of safe polynomial.
+ * The condition a < 0 is equivalent to b < b-a,
+ * which is the condition required for the series
+ * to be positive definite here.
+ */
+ stat_K = hyperg_1F1_a_negint_poly((int)rintbma, b, -x, &K);
+ }
+ else {
+ /* Generic eval for negative integer a. */
+ stat_K = hyperg_1F1_a_negint_lag((int)rintbma, b, -x, &K);
+ }
+ stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x),
+ K.val, K.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_K);
+ }
+ else if(a > 0.0) {
+ /* Use Kummer to reduce it to the generic negative case.
+ */
+ gsl_sf_result K;
+ int stat_K = hyperg_1F1_ab_neg(b-a, b, -x, &K);
+ int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x),
+ K.val, K.err,
+ result);
+ return GSL_ERROR_SELECT_2(stat_e, stat_K);
+ }
+ else {
+ return hyperg_1F1_ab_neg(a, b, x, result);
+ }
+ }
+}
+
+
+
+#if 0
+ /* Luke in the canonical case.
+ */
+ if(x < 0.0 && !a_neg_integer && !bma_neg_integer) {
+ double prec;
+ return hyperg_1F1_luke(a, b, x, result, &prec);
+ }
+
+
+ /* Luke with Kummer transformation.
+ */
+ if(x > 0.0 && !a_neg_integer && !bma_neg_integer) {
+ double prec;
+ double Kummer_1F1;
+ double ex;
+ int stat_F = hyperg_1F1_luke(b-a, b, -x, &Kummer_1F1, &prec);
+ int stat_e = gsl_sf_exp_e(x, &ex);
+ if(stat_F == GSL_SUCCESS && stat_e == GSL_SUCCESS) {
+ double lnr = log(fabs(Kummer_1F1)) + x;
+ if(lnr < GSL_LOG_DBL_MAX) {
+ *result = ex * Kummer_1F1;
+ return GSL_SUCCESS;
+ }
+ else {
+ *result = GSL_POSINF;
+ GSL_ERROR ("overflow", GSL_EOVRFLW);
+ }
+ }
+ else if(stat_F != GSL_SUCCESS) {
+ *result = 0.0;
+ return stat_F;
+ }
+ else {
+ *result = 0.0;
+ return stat_e;
+ }
+ }
+#endif
+
+
+
+/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
+
+#include "eval.h"
+
+double gsl_sf_hyperg_1F1_int(const int m, const int n, double x)
+{
+ EVAL_RESULT(gsl_sf_hyperg_1F1_int_e(m, n, x, &result));
+}
+
+double gsl_sf_hyperg_1F1(double a, double b, double x)
+{
+ EVAL_RESULT(gsl_sf_hyperg_1F1_e(a, b, x, &result));
+}