summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/bessel_Jnu.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/specfunc/bessel_Jnu.c')
-rw-r--r--gsl-1.9/specfunc/bessel_Jnu.c185
1 files changed, 185 insertions, 0 deletions
diff --git a/gsl-1.9/specfunc/bessel_Jnu.c b/gsl-1.9/specfunc/bessel_Jnu.c
new file mode 100644
index 0000000..81763a4
--- /dev/null
+++ b/gsl-1.9/specfunc/bessel_Jnu.c
@@ -0,0 +1,185 @@
+/* specfunc/bessel_Jnu.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* Author: G. Jungman */
+
+#include <config.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_sf_bessel.h>
+
+#include "error.h"
+
+#include "bessel.h"
+#include "bessel_olver.h"
+#include "bessel_temme.h"
+
+
+/* Evaluate at large enough nu to apply asymptotic
+ * results and apply backward recurrence.
+ */
+#if 0
+static
+int
+bessel_J_recur_asymp(const double nu, const double x,
+ gsl_sf_result * Jnu, gsl_sf_result * Jnup1)
+{
+ const double nu_cut = 25.0;
+ int n;
+ int steps = ceil(nu_cut - nu) + 1;
+
+ gsl_sf_result r_Jnp1;
+ gsl_sf_result r_Jn;
+ int stat_O1 = gsl_sf_bessel_Jnu_asymp_Olver_e(nu + steps + 1.0, x, &r_Jnp1);
+ int stat_O2 = gsl_sf_bessel_Jnu_asymp_Olver_e(nu + steps, x, &r_Jn);
+ double r_fe = fabs(r_Jnp1.err/r_Jnp1.val) + fabs(r_Jn.err/r_Jn.val);
+ double Jnp1 = r_Jnp1.val;
+ double Jn = r_Jn.val;
+ double Jnm1;
+ double Jnp1_save;
+
+ for(n=steps; n>0; n--) {
+ Jnm1 = 2.0*(nu+n)/x * Jn - Jnp1;
+ Jnp1 = Jn;
+ Jnp1_save = Jn;
+ Jn = Jnm1;
+ }
+
+ Jnu->val = Jn;
+ Jnu->err = (r_fe + GSL_DBL_EPSILON * (steps + 1.0)) * fabs(Jn);
+ Jnup1->val = Jnp1_save;
+ Jnup1->err = (r_fe + GSL_DBL_EPSILON * (steps + 1.0)) * fabs(Jnp1_save);
+
+ return GSL_ERROR_SELECT_2(stat_O1, stat_O2);
+}
+#endif
+
+
+/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
+
+int
+gsl_sf_bessel_Jnu_e(const double nu, const double x, gsl_sf_result * result)
+{
+ /* CHECK_POINTER(result) */
+
+ if(x < 0.0 || nu < 0.0) {
+ DOMAIN_ERROR(result);
+ }
+ else if(x == 0.0) {
+ if(nu == 0.0) {
+ result->val = 1.0;
+ result->err = 0.0;
+ }
+ else {
+ result->val = 0.0;
+ result->err = 0.0;
+ }
+ return GSL_SUCCESS;
+ }
+ else if(x*x < 10.0*(nu+1.0)) {
+ return gsl_sf_bessel_IJ_taylor_e(nu, x, -1, 100, GSL_DBL_EPSILON, result);
+ }
+ else if(nu > 50.0) {
+ return gsl_sf_bessel_Jnu_asymp_Olver_e(nu, x, result);
+ }
+ else if(x > 1000.0)
+ {
+ /* We need this to avoid feeding large x to CF1; note that
+ * due to the above check, we know that n <= 50. See similar
+ * block in bessel_Jn.c.
+ */
+ return gsl_sf_bessel_Jnu_asympx_e(nu, x, result);
+ }
+ else {
+ /* -1/2 <= mu <= 1/2 */
+ int N = (int)(nu + 0.5);
+ double mu = nu - N;
+
+ /* Determine the J ratio at nu.
+ */
+ double Jnup1_Jnu;
+ double sgn_Jnu;
+ const int stat_CF1 = gsl_sf_bessel_J_CF1(nu, x, &Jnup1_Jnu, &sgn_Jnu);
+
+ if(x < 2.0) {
+ /* Determine Y_mu, Y_mup1 directly and recurse forward to nu.
+ * Then use the CF1 information to solve for J_nu and J_nup1.
+ */
+ gsl_sf_result Y_mu, Y_mup1;
+ const int stat_mu = gsl_sf_bessel_Y_temme(mu, x, &Y_mu, &Y_mup1);
+
+ double Ynm1 = Y_mu.val;
+ double Yn = Y_mup1.val;
+ double Ynp1 = 0.0;
+ int n;
+ for(n=1; n<N; n++) {
+ Ynp1 = 2.0*(mu+n)/x * Yn - Ynm1;
+ Ynm1 = Yn;
+ Yn = Ynp1;
+ }
+
+ result->val = 2.0/(M_PI*x) / (Jnup1_Jnu*Yn - Ynp1);
+ result->err = GSL_DBL_EPSILON * (N + 2.0) * fabs(result->val);
+ return GSL_ERROR_SELECT_2(stat_mu, stat_CF1);
+ }
+ else {
+ /* Recurse backward from nu to mu, determining the J ratio
+ * at mu. Use this together with a Steed method CF2 to
+ * determine the actual J_mu, and thus obtain the normalization.
+ */
+ double Jmu;
+ double Jmup1_Jmu;
+ double sgn_Jmu;
+ double Jmuprime_Jmu;
+ double P, Q;
+ const int stat_CF2 = gsl_sf_bessel_JY_steed_CF2(mu, x, &P, &Q);
+ double gamma;
+
+ double Jnp1 = sgn_Jnu * GSL_SQRT_DBL_MIN * Jnup1_Jnu;
+ double Jn = sgn_Jnu * GSL_SQRT_DBL_MIN;
+ double Jnm1;
+ int n;
+ for(n=N; n>0; n--) {
+ Jnm1 = 2.0*(mu+n)/x * Jn - Jnp1;
+ Jnp1 = Jn;
+ Jn = Jnm1;
+ }
+ Jmup1_Jmu = Jnp1/Jn;
+ sgn_Jmu = GSL_SIGN(Jn);
+ Jmuprime_Jmu = mu/x - Jmup1_Jmu;
+
+ gamma = (P - Jmuprime_Jmu)/Q;
+ Jmu = sgn_Jmu * sqrt(2.0/(M_PI*x) / (Q + gamma*(P-Jmuprime_Jmu)));
+
+ result->val = Jmu * (sgn_Jnu * GSL_SQRT_DBL_MIN) / Jn;
+ result->err = 2.0 * GSL_DBL_EPSILON * (N + 2.0) * fabs(result->val);
+
+ return GSL_ERROR_SELECT_2(stat_CF2, stat_CF1);
+ }
+ }
+}
+
+/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
+
+#include "eval.h"
+
+double gsl_sf_bessel_Jnu(const double nu, const double x)
+{
+ EVAL_RESULT(gsl_sf_bessel_Jnu_e(nu, x, &result));
+}