summaryrefslogtreecommitdiff
path: root/gsl-1.9/randist/gamma.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/randist/gamma.c')
-rw-r--r--gsl-1.9/randist/gamma.c220
1 files changed, 220 insertions, 0 deletions
diff --git a/gsl-1.9/randist/gamma.c b/gsl-1.9/randist/gamma.c
new file mode 100644
index 0000000..37d167c
--- /dev/null
+++ b/gsl-1.9/randist/gamma.c
@@ -0,0 +1,220 @@
+/* randist/gamma.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <config.h>
+#include <math.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_sf_gamma.h>
+#include <gsl/gsl_rng.h>
+#include <gsl/gsl_randist.h>
+
+static double gamma_large (const gsl_rng * r, const double a);
+static double gamma_frac (const gsl_rng * r, const double a);
+
+/* The Gamma distribution of order a>0 is defined by:
+
+ p(x) dx = {1 / \Gamma(a) b^a } x^{a-1} e^{-x/b} dx
+
+ for x>0. If X and Y are independent gamma-distributed random
+ variables of order a1 and a2 with the same scale parameter b, then
+ X+Y has gamma distribution of order a1+a2.
+
+ The algorithms below are from Knuth, vol 2, 2nd ed, p. 129. */
+
+double
+gsl_ran_gamma_knuth (const gsl_rng * r, const double a, const double b)
+{
+ /* assume a > 0 */
+ unsigned int na = floor (a);
+
+ if (a == na)
+ {
+ return b * gsl_ran_gamma_int (r, na);
+ }
+ else if (na == 0)
+ {
+ return b * gamma_frac (r, a);
+ }
+ else
+ {
+ return b * (gsl_ran_gamma_int (r, na) + gamma_frac (r, a - na)) ;
+ }
+}
+
+double
+gsl_ran_gamma_int (const gsl_rng * r, const unsigned int a)
+{
+ if (a < 12)
+ {
+ unsigned int i;
+ double prod = 1;
+
+ for (i = 0; i < a; i++)
+ {
+ prod *= gsl_rng_uniform_pos (r);
+ }
+
+ /* Note: for 12 iterations we are safe against underflow, since
+ the smallest positive random number is O(2^-32). This means
+ the smallest possible product is 2^(-12*32) = 10^-116 which
+ is within the range of double precision. */
+
+ return -log (prod);
+ }
+ else
+ {
+ return gamma_large (r, (double) a);
+ }
+}
+
+static double
+gamma_large (const gsl_rng * r, const double a)
+{
+ /* Works only if a > 1, and is most efficient if a is large
+
+ This algorithm, reported in Knuth, is attributed to Ahrens. A
+ faster one, we are told, can be found in: J. H. Ahrens and
+ U. Dieter, Computing 12 (1974) 223-246. */
+
+ double sqa, x, y, v;
+ sqa = sqrt (2 * a - 1);
+ do
+ {
+ do
+ {
+ y = tan (M_PI * gsl_rng_uniform (r));
+ x = sqa * y + a - 1;
+ }
+ while (x <= 0);
+ v = gsl_rng_uniform (r);
+ }
+ while (v > (1 + y * y) * exp ((a - 1) * log (x / (a - 1)) - sqa * y));
+
+ return x;
+}
+
+static double
+gamma_frac (const gsl_rng * r, const double a)
+{
+ /* This is exercise 16 from Knuth; see page 135, and the solution is
+ on page 551. */
+
+ double p, q, x, u, v;
+ p = M_E / (a + M_E);
+ do
+ {
+ u = gsl_rng_uniform (r);
+ v = gsl_rng_uniform_pos (r);
+
+ if (u < p)
+ {
+ x = exp ((1 / a) * log (v));
+ q = exp (-x);
+ }
+ else
+ {
+ x = 1 - log (v);
+ q = exp ((a - 1) * log (x));
+ }
+ }
+ while (gsl_rng_uniform (r) >= q);
+
+ return x;
+}
+
+double
+gsl_ran_gamma_pdf (const double x, const double a, const double b)
+{
+ if (x < 0)
+ {
+ return 0 ;
+ }
+ else if (x == 0)
+ {
+ if (a == 1)
+ return 1/b ;
+ else
+ return 0 ;
+ }
+ else if (a == 1)
+ {
+ return exp(-x/b)/b ;
+ }
+ else
+ {
+ double p;
+ double lngamma = gsl_sf_lngamma (a);
+ p = exp ((a - 1) * log (x/b) - x/b - lngamma)/b;
+ return p;
+ }
+}
+
+
+/* New version based on Marsaglia and Tsang, "A Simple Method for
+ * generating gamma variables", ACM Transactions on Mathematical
+ * Software, Vol 26, No 3 (2000), p363-372.
+ *
+ * Implemented by J.D.Lamb@btinternet.com, minor modifications for GSL
+ * by Brian Gough
+ */
+
+double
+gsl_ran_gamma_mt (const gsl_rng * r, const double a, const double b)
+{
+ return gsl_ran_gamma (r, a, b);
+}
+
+double
+gsl_ran_gamma (const gsl_rng * r, const double a, const double b)
+{
+ /* assume a > 0 */
+
+ if (a < 1)
+ {
+ double u = gsl_rng_uniform_pos (r);
+ return gsl_ran_gamma (r, 1.0 + a, b) * pow (u, 1.0 / a);
+ }
+
+ {
+ double x, v, u;
+ double d = a - 1.0 / 3.0;
+ double c = (1.0 / 3.0) / sqrt (d);
+
+ while (1)
+ {
+ do
+ {
+ x = gsl_ran_gaussian_ziggurat (r, 1.0);
+ v = 1.0 + c * x;
+ }
+ while (v <= 0);
+
+ v = v * v * v;
+ u = gsl_rng_uniform_pos (r);
+
+ if (u < 1 - 0.0331 * x * x * x * x)
+ break;
+
+ if (log (u) < 0.5 * x * x + d * (1 - v + log (v)))
+ break;
+ }
+
+ return b * d * v;
+ }
+}