summaryrefslogtreecommitdiff
path: root/gsl-1.9/ode-initval/bsimp.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/ode-initval/bsimp.c')
-rw-r--r--gsl-1.9/ode-initval/bsimp.c567
1 files changed, 567 insertions, 0 deletions
diff --git a/gsl-1.9/ode-initval/bsimp.c b/gsl-1.9/ode-initval/bsimp.c
new file mode 100644
index 0000000..2355195
--- /dev/null
+++ b/gsl-1.9/ode-initval/bsimp.c
@@ -0,0 +1,567 @@
+/* ode-initval/bsimp.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* Bulirsch-Stoer Implicit */
+
+/* Author: G. Jungman
+ */
+/* Bader-Deuflhard implicit extrapolative stepper.
+ * [Numer. Math., 41, 373 (1983)]
+ */
+#include <config.h>
+#include <stdlib.h>
+#include <string.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_linalg.h>
+#include <gsl/gsl_odeiv.h>
+
+#include "odeiv_util.h"
+
+#define SEQUENCE_COUNT 8
+#define SEQUENCE_MAX 7
+
+/* Bader-Deuflhard extrapolation sequence */
+static const int bd_sequence[SEQUENCE_COUNT] =
+ { 2, 6, 10, 14, 22, 34, 50, 70 };
+
+typedef struct
+{
+ gsl_matrix *d; /* workspace for extrapolation */
+ gsl_matrix *a_mat; /* workspace for linear system matrix */
+ gsl_permutation *p_vec; /* workspace for LU permutation */
+
+ double x[SEQUENCE_MAX]; /* workspace for extrapolation */
+
+ /* state info */
+ size_t k_current;
+ size_t k_choice;
+ double h_next;
+ double eps;
+
+ /* workspace for extrapolation step */
+ double *yp;
+ double *y_save;
+ double *yerr_save;
+ double *y_extrap_save;
+ double *y_extrap_sequence;
+ double *extrap_work;
+ double *dfdt;
+ double *y_temp;
+ double *delta_temp;
+ double *weight;
+ gsl_matrix *dfdy;
+
+ /* workspace for the basic stepper */
+ double *rhs_temp;
+ double *delta;
+
+ /* order of last step */
+ size_t order;
+}
+bsimp_state_t;
+
+/* Compute weighting factor */
+
+static void
+compute_weights (const double y[], double w[], size_t dim)
+{
+ size_t i;
+ for (i = 0; i < dim; i++)
+ {
+ double u = fabs(y[i]);
+ w[i] = (u > 0.0) ? u : 1.0;
+ }
+}
+
+/* Calculate a choice for the "order" of the method, using the
+ * Deuflhard criteria.
+ */
+
+static size_t
+bsimp_deuf_kchoice (double eps, size_t dimension)
+{
+ const double safety_f = 0.25;
+ const double small_eps = safety_f * eps;
+
+ double a_work[SEQUENCE_COUNT];
+ double alpha[SEQUENCE_MAX][SEQUENCE_MAX];
+
+ int i, k;
+
+ a_work[0] = bd_sequence[0] + 1.0;
+
+ for (k = 0; k < SEQUENCE_MAX; k++)
+ {
+ a_work[k + 1] = a_work[k] + bd_sequence[k + 1];
+ }
+
+ for (i = 0; i < SEQUENCE_MAX; i++)
+ {
+ alpha[i][i] = 1.0;
+ for (k = 0; k < i; k++)
+ {
+ const double tmp1 = a_work[k + 1] - a_work[i + 1];
+ const double tmp2 = (a_work[i + 1] - a_work[0] + 1.0) * (2 * k + 1);
+ alpha[k][i] = pow (small_eps, tmp1 / tmp2);
+ }
+ }
+
+ a_work[0] += dimension;
+
+ for (k = 0; k < SEQUENCE_MAX; k++)
+ {
+ a_work[k + 1] = a_work[k] + bd_sequence[k + 1];
+ }
+
+ for (k = 0; k < SEQUENCE_MAX - 1; k++)
+ {
+ if (a_work[k + 2] > a_work[k + 1] * alpha[k][k + 1])
+ break;
+ }
+
+ return k;
+}
+
+static void
+poly_extrap (gsl_matrix * d,
+ const double x[],
+ const unsigned int i_step,
+ const double x_i,
+ const double y_i[],
+ double y_0[], double y_0_err[], double work[], const size_t dim)
+{
+ size_t j, k;
+
+ DBL_MEMCPY (y_0_err, y_i, dim);
+ DBL_MEMCPY (y_0, y_i, dim);
+
+ if (i_step == 0)
+ {
+ for (j = 0; j < dim; j++)
+ {
+ gsl_matrix_set (d, 0, j, y_i[j]);
+ }
+ }
+ else
+ {
+ DBL_MEMCPY (work, y_i, dim);
+
+ for (k = 0; k < i_step; k++)
+ {
+ double delta = 1.0 / (x[i_step - k - 1] - x_i);
+ const double f1 = delta * x_i;
+ const double f2 = delta * x[i_step - k - 1];
+
+ for (j = 0; j < dim; j++)
+ {
+ const double q_kj = gsl_matrix_get (d, k, j);
+ gsl_matrix_set (d, k, j, y_0_err[j]);
+ delta = work[j] - q_kj;
+ y_0_err[j] = f1 * delta;
+ work[j] = f2 * delta;
+ y_0[j] += y_0_err[j];
+ }
+ }
+
+ for (j = 0; j < dim; j++)
+ {
+ gsl_matrix_set (d, i_step, j, y_0_err[j]);
+ }
+ }
+}
+
+/* Basic implicit Bulirsch-Stoer step. Divide the step h_total into
+ * n_step smaller steps and do the Bader-Deuflhard semi-implicit
+ * iteration. */
+
+static int
+bsimp_step_local (void *vstate,
+ size_t dim,
+ const double t0,
+ const double h_total,
+ const unsigned int n_step,
+ const double y[],
+ const double yp[],
+ const double dfdt[],
+ const gsl_matrix * dfdy,
+ double y_out[],
+ const gsl_odeiv_system * sys)
+{
+ bsimp_state_t *state = (bsimp_state_t *) vstate;
+
+ gsl_matrix *const a_mat = state->a_mat;
+ gsl_permutation *const p_vec = state->p_vec;
+
+ double *const delta = state->delta;
+ double *const y_temp = state->y_temp;
+ double *const delta_temp = state->delta_temp;
+ double *const rhs_temp = state->rhs_temp;
+ double *const w = state->weight;
+
+ gsl_vector_view y_temp_vec = gsl_vector_view_array (y_temp, dim);
+ gsl_vector_view delta_temp_vec = gsl_vector_view_array (delta_temp, dim);
+ gsl_vector_view rhs_temp_vec = gsl_vector_view_array (rhs_temp, dim);
+
+ const double h = h_total / n_step;
+ double t = t0 + h;
+
+ double sum;
+
+ /* This is the factor sigma referred to in equation 3.4 of the
+ paper. A relative change in y exceeding sigma indicates a
+ runaway behavior. According to the authors suitable values for
+ sigma are >>1. I have chosen a value of 100*dim. BJG */
+
+ const double max_sum = 100.0 * dim;
+
+ int signum, status;
+ size_t i, j;
+ size_t n_inter;
+
+ /* Calculate the matrix for the linear system. */
+ for (i = 0; i < dim; i++)
+ {
+ for (j = 0; j < dim; j++)
+ {
+ gsl_matrix_set (a_mat, i, j, -h * gsl_matrix_get (dfdy, i, j));
+ }
+ gsl_matrix_set (a_mat, i, i, gsl_matrix_get (a_mat, i, i) + 1.0);
+ }
+
+ /* LU decomposition for the linear system. */
+
+ gsl_linalg_LU_decomp (a_mat, p_vec, &signum);
+
+ /* Compute weighting factors */
+
+ compute_weights (y, w, dim);
+
+ /* Initial step. */
+
+ for (i = 0; i < dim; i++)
+ {
+ y_temp[i] = h * (yp[i] + h * dfdt[i]);
+ }
+
+ gsl_linalg_LU_solve (a_mat, p_vec, &y_temp_vec.vector, &delta_temp_vec.vector);
+
+ sum = 0.0;
+
+ for (i = 0; i < dim; i++)
+ {
+ const double di = delta_temp[i];
+ delta[i] = di;
+ y_temp[i] = y[i] + di;
+ sum += fabs(di) / w[i];
+ }
+
+ if (sum > max_sum)
+ {
+ return GSL_EFAILED ;
+ }
+
+ /* Intermediate steps. */
+
+ status = GSL_ODEIV_FN_EVAL (sys, t, y_temp, y_out);
+
+ if (status)
+ {
+ return status;
+ }
+
+ for (n_inter = 1; n_inter < n_step; n_inter++)
+ {
+ for (i = 0; i < dim; i++)
+ {
+ rhs_temp[i] = h * y_out[i] - delta[i];
+ }
+
+ gsl_linalg_LU_solve (a_mat, p_vec, &rhs_temp_vec.vector, &delta_temp_vec.vector);
+
+ sum = 0.0;
+
+ for (i = 0; i < dim; i++)
+ {
+ delta[i] += 2.0 * delta_temp[i];
+ y_temp[i] += delta[i];
+ sum += fabs(delta[i]) / w[i];
+ }
+
+ if (sum > max_sum)
+ {
+ return GSL_EFAILED ;
+ }
+
+ t += h;
+
+ status = GSL_ODEIV_FN_EVAL (sys, t, y_temp, y_out);
+
+ if (status)
+ {
+ return status;
+ }
+ }
+
+
+ /* Final step. */
+
+ for (i = 0; i < dim; i++)
+ {
+ rhs_temp[i] = h * y_out[i] - delta[i];
+ }
+
+ gsl_linalg_LU_solve (a_mat, p_vec, &rhs_temp_vec.vector, &delta_temp_vec.vector);
+
+ sum = 0.0;
+
+ for (i = 0; i < dim; i++)
+ {
+ y_out[i] = y_temp[i] + delta_temp[i];
+ sum += fabs(delta_temp[i]) / w[i];
+ }
+
+ if (sum > max_sum)
+ {
+ return GSL_EFAILED ;
+ }
+
+ return GSL_SUCCESS;
+}
+
+
+static void *
+bsimp_alloc (size_t dim)
+{
+ bsimp_state_t *state = (bsimp_state_t *) malloc (sizeof (bsimp_state_t));
+
+ state->d = gsl_matrix_alloc (SEQUENCE_MAX, dim);
+ state->a_mat = gsl_matrix_alloc (dim, dim);
+ state->p_vec = gsl_permutation_alloc (dim);
+
+ state->yp = (double *) malloc (dim * sizeof (double));
+ state->y_save = (double *) malloc (dim * sizeof (double));
+ state->yerr_save = (double *) malloc (dim * sizeof (double));
+ state->y_extrap_save = (double *) malloc (dim * sizeof (double));
+ state->y_extrap_sequence = (double *) malloc (dim * sizeof (double));
+ state->extrap_work = (double *) malloc (dim * sizeof (double));
+ state->dfdt = (double *) malloc (dim * sizeof (double));
+ state->y_temp = (double *) malloc (dim * sizeof (double));
+ state->delta_temp = (double *) malloc (dim * sizeof(double));
+ state->weight = (double *) malloc (dim * sizeof(double));
+
+ state->dfdy = gsl_matrix_alloc (dim, dim);
+
+ state->rhs_temp = (double *) malloc (dim * sizeof(double));
+ state->delta = (double *) malloc (dim * sizeof (double));
+
+ {
+ size_t k_choice = bsimp_deuf_kchoice (GSL_SQRT_DBL_EPSILON, dim); /*FIXME: choice of epsilon? */
+ state->k_choice = k_choice;
+ state->k_current = k_choice;
+ state->order = 2 * k_choice;
+ }
+
+ state->h_next = -GSL_SQRT_DBL_MAX;
+
+ return state;
+}
+
+/* Perform the basic semi-implicit extrapolation
+ * step, of size h, at a Deuflhard determined order.
+ */
+static int
+bsimp_apply (void *vstate,
+ size_t dim,
+ double t,
+ double h,
+ double y[],
+ double yerr[],
+ const double dydt_in[],
+ double dydt_out[],
+ const gsl_odeiv_system * sys)
+{
+ bsimp_state_t *state = (bsimp_state_t *) vstate;
+
+ double *const x = state->x;
+ double *const yp = state->yp;
+ double *const y_save = state->y_save;
+ double *const yerr_save = state->yerr_save;
+ double *const y_extrap_sequence = state->y_extrap_sequence;
+ double *const y_extrap_save = state->y_extrap_save;
+ double *const extrap_work = state->extrap_work;
+ double *const dfdt = state->dfdt;
+ gsl_matrix *d = state->d;
+ gsl_matrix *dfdy = state->dfdy;
+
+ const double t_local = t;
+ size_t i, k;
+
+ if (h + t_local == t_local)
+ {
+ return GSL_EUNDRFLW; /* FIXME: error condition */
+ }
+
+ DBL_MEMCPY (y_extrap_save, y, dim);
+
+ /* Save inputs */
+ DBL_MEMCPY (y_save, y, dim);
+ DBL_MEMCPY (yerr_save, yerr, dim);
+
+ /* Evaluate the derivative. */
+ if (dydt_in != NULL)
+ {
+ DBL_MEMCPY (yp, dydt_in, dim);
+ }
+ else
+ {
+ int s = GSL_ODEIV_FN_EVAL (sys, t_local, y, yp);
+
+ if (s != GSL_SUCCESS)
+ {
+ return s;
+ }
+ }
+
+ /* Evaluate the Jacobian for the system. */
+ {
+ int s = GSL_ODEIV_JA_EVAL (sys, t_local, y, dfdy->data, dfdt);
+
+ if (s != GSL_SUCCESS)
+ {
+ return s;
+ }
+ }
+
+ /* Make a series of refined extrapolations,
+ * up to the specified maximum order, which
+ * was calculated based on the Deuflhard
+ * criterion upon state initialization. */
+ for (k = 0; k <= state->k_current; k++)
+ {
+ const unsigned int N = bd_sequence[k];
+ const double r = (h / N);
+ const double x_k = r * r;
+
+ int status = bsimp_step_local (state,
+ dim, t_local, h, N,
+ y_extrap_save, yp,
+ dfdt, dfdy,
+ y_extrap_sequence,
+ sys);
+
+ if (status == GSL_EFAILED)
+ {
+ /* If the local step fails, set the error to infinity in
+ order to force a reduction in the step size */
+
+ for (i = 0; i < dim; i++)
+ {
+ yerr[i] = GSL_POSINF;
+ }
+
+ break;
+ }
+
+ else if (status != GSL_SUCCESS)
+ {
+ return status;
+ }
+
+ x[k] = x_k;
+
+ poly_extrap (d, x, k, x_k, y_extrap_sequence, y, yerr, extrap_work, dim);
+ }
+
+ /* Evaluate dydt_out[]. */
+
+ if (dydt_out != NULL)
+ {
+ int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out);
+
+ if (s != GSL_SUCCESS)
+ {
+ DBL_MEMCPY (y, y_save, dim);
+ DBL_MEMCPY (yerr, yerr_save, dim);
+ return s;
+ }
+ }
+
+ return GSL_SUCCESS;
+}
+
+static unsigned int
+bsimp_order (void *vstate)
+{
+ bsimp_state_t *state = (bsimp_state_t *) vstate;
+ return state->order;
+}
+
+static int
+bsimp_reset (void *vstate, size_t dim)
+{
+ bsimp_state_t *state = (bsimp_state_t *) vstate;
+
+ state->h_next = 0;
+
+ DBL_ZERO_MEMSET (state->yp, dim);
+
+ return GSL_SUCCESS;
+}
+
+
+static void
+bsimp_free (void * vstate)
+{
+ bsimp_state_t *state = (bsimp_state_t *) vstate;
+
+ free (state->delta);
+ free (state->rhs_temp);
+
+ gsl_matrix_free (state->dfdy);
+
+ free (state->weight);
+ free (state->delta_temp);
+ free (state->y_temp);
+ free (state->dfdt);
+ free (state->extrap_work);
+ free (state->y_extrap_sequence);
+ free (state->y_extrap_save);
+ free (state->y_save);
+ free (state->yerr_save);
+ free (state->yp);
+
+ gsl_permutation_free (state->p_vec);
+ gsl_matrix_free (state->a_mat);
+ gsl_matrix_free (state->d);
+ free (state);
+}
+
+static const gsl_odeiv_step_type bsimp_type = {
+ "bsimp", /* name */
+ 1, /* can use dydt_in */
+ 1, /* gives exact dydt_out */
+ &bsimp_alloc,
+ &bsimp_apply,
+ &bsimp_reset,
+ &bsimp_order,
+ &bsimp_free
+};
+
+const gsl_odeiv_step_type *gsl_odeiv_step_bsimp = &bsimp_type;