summaryrefslogtreecommitdiff
path: root/gsl-1.9/linalg/qrpt.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/linalg/qrpt.c')
-rw-r--r--gsl-1.9/linalg/qrpt.c486
1 files changed, 486 insertions, 0 deletions
diff --git a/gsl-1.9/linalg/qrpt.c b/gsl-1.9/linalg/qrpt.c
new file mode 100644
index 0000000..ac38547
--- /dev/null
+++ b/gsl-1.9/linalg/qrpt.c
@@ -0,0 +1,486 @@
+/* linalg/qrpt.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <config.h>
+#include <stdlib.h>
+#include <string.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_vector.h>
+#include <gsl/gsl_matrix.h>
+#include <gsl/gsl_permute_vector.h>
+#include <gsl/gsl_blas.h>
+
+#include <gsl/gsl_linalg.h>
+
+#define REAL double
+
+#include "givens.c"
+#include "apply_givens.c"
+
+/* Factorise a general M x N matrix A into
+ *
+ * A P = Q R
+ *
+ * where Q is orthogonal (M x M) and R is upper triangular (M x N).
+ * When A is rank deficient, r = rank(A) < n, then the permutation is
+ * used to ensure that the lower n - r rows of R are zero and the first
+ * r columns of Q form an orthonormal basis for A.
+ *
+ * Q is stored as a packed set of Householder transformations in the
+ * strict lower triangular part of the input matrix.
+ *
+ * R is stored in the diagonal and upper triangle of the input matrix.
+ *
+ * P: column j of P is column k of the identity matrix, where k =
+ * permutation->data[j]
+ *
+ * The full matrix for Q can be obtained as the product
+ *
+ * Q = Q_k .. Q_2 Q_1
+ *
+ * where k = MIN(M,N) and
+ *
+ * Q_i = (I - tau_i * v_i * v_i')
+ *
+ * and where v_i is a Householder vector
+ *
+ * v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)]
+ *
+ * This storage scheme is the same as in LAPACK. See LAPACK's
+ * dgeqpf.f for details.
+ *
+ */
+
+int
+gsl_linalg_QRPT_decomp (gsl_matrix * A, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm)
+{
+ const size_t M = A->size1;
+ const size_t N = A->size2;
+
+ if (tau->size != GSL_MIN (M, N))
+ {
+ GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
+ }
+ else if (p->size != N)
+ {
+ GSL_ERROR ("permutation size must be N", GSL_EBADLEN);
+ }
+ else if (norm->size != N)
+ {
+ GSL_ERROR ("norm size must be N", GSL_EBADLEN);
+ }
+ else
+ {
+ size_t i;
+
+ *signum = 1;
+
+ gsl_permutation_init (p); /* set to identity */
+
+ /* Compute column norms and store in workspace */
+
+ for (i = 0; i < N; i++)
+ {
+ gsl_vector_view c = gsl_matrix_column (A, i);
+ double x = gsl_blas_dnrm2 (&c.vector);
+ gsl_vector_set (norm, i, x);
+ }
+
+ for (i = 0; i < GSL_MIN (M, N); i++)
+ {
+ /* Bring the column of largest norm into the pivot position */
+
+ double max_norm = gsl_vector_get(norm, i);
+ size_t j, kmax = i;
+
+ for (j = i + 1; j < N; j++)
+ {
+ double x = gsl_vector_get (norm, j);
+
+ if (x > max_norm)
+ {
+ max_norm = x;
+ kmax = j;
+ }
+ }
+
+ if (kmax != i)
+ {
+ gsl_matrix_swap_columns (A, i, kmax);
+ gsl_permutation_swap (p, i, kmax);
+ gsl_vector_swap_elements(norm,i,kmax);
+
+ (*signum) = -(*signum);
+ }
+
+ /* Compute the Householder transformation to reduce the j-th
+ column of the matrix to a multiple of the j-th unit vector */
+
+ {
+ gsl_vector_view c_full = gsl_matrix_column (A, i);
+ gsl_vector_view c = gsl_vector_subvector (&c_full.vector,
+ i, M - i);
+ double tau_i = gsl_linalg_householder_transform (&c.vector);
+
+ gsl_vector_set (tau, i, tau_i);
+
+ /* Apply the transformation to the remaining columns */
+
+ if (i + 1 < N)
+ {
+ gsl_matrix_view m = gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i+1));
+
+ gsl_linalg_householder_hm (tau_i, &c.vector, &m.matrix);
+ }
+ }
+
+ /* Update the norms of the remaining columns too */
+
+ if (i + 1 < M)
+ {
+ for (j = i + 1; j < N; j++)
+ {
+ double x = gsl_vector_get (norm, j);
+
+ if (x > 0.0)
+ {
+ double y = 0;
+ double temp= gsl_matrix_get (A, i, j) / x;
+
+ if (fabs (temp) >= 1)
+ y = 0.0;
+ else
+ y = x * sqrt (1 - temp * temp);
+
+ /* recompute norm to prevent loss of accuracy */
+
+ if (fabs (y / x) < sqrt (20.0) * GSL_SQRT_DBL_EPSILON)
+ {
+ gsl_vector_view c_full = gsl_matrix_column (A, j);
+ gsl_vector_view c =
+ gsl_vector_subvector(&c_full.vector,
+ i+1, M - (i+1));
+ y = gsl_blas_dnrm2 (&c.vector);
+ }
+
+ gsl_vector_set (norm, j, y);
+ }
+ }
+ }
+ }
+
+ return GSL_SUCCESS;
+ }
+}
+
+int
+gsl_linalg_QRPT_decomp2 (const gsl_matrix * A, gsl_matrix * q, gsl_matrix * r, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm)
+{
+ const size_t M = A->size1;
+ const size_t N = A->size2;
+
+ if (q->size1 != M || q->size2 !=M)
+ {
+ GSL_ERROR ("q must be M x M", GSL_EBADLEN);
+ }
+ else if (r->size1 != M || r->size2 !=N)
+ {
+ GSL_ERROR ("r must be M x N", GSL_EBADLEN);
+ }
+ else if (tau->size != GSL_MIN (M, N))
+ {
+ GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);
+ }
+ else if (p->size != N)
+ {
+ GSL_ERROR ("permutation size must be N", GSL_EBADLEN);
+ }
+ else if (norm->size != N)
+ {
+ GSL_ERROR ("norm size must be N", GSL_EBADLEN);
+ }
+
+ gsl_matrix_memcpy (r, A);
+
+ gsl_linalg_QRPT_decomp (r, tau, p, signum, norm);
+
+ /* FIXME: aliased arguments depends on behavior of unpack routine! */
+
+ gsl_linalg_QR_unpack (r, tau, q, r);
+
+ return GSL_SUCCESS;
+}
+
+
+/* Solves the system A x = b using the Q R P^T factorisation,
+
+ R z = Q^T b
+
+ x = P z;
+
+ to obtain x. Based on SLATEC code. */
+
+int
+gsl_linalg_QRPT_solve (const gsl_matrix * QR,
+ const gsl_vector * tau,
+ const gsl_permutation * p,
+ const gsl_vector * b,
+ gsl_vector * x)
+{
+ if (QR->size1 != QR->size2)
+ {
+ GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
+ }
+ else if (QR->size1 != p->size)
+ {
+ GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN);
+ }
+ else if (QR->size1 != b->size)
+ {
+ GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
+ }
+ else if (QR->size2 != x->size)
+ {
+ GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
+ }
+ else
+ {
+ gsl_vector_memcpy (x, b);
+
+ gsl_linalg_QRPT_svx (QR, tau, p, x);
+
+ return GSL_SUCCESS;
+ }
+}
+
+int
+gsl_linalg_QRPT_svx (const gsl_matrix * QR,
+ const gsl_vector * tau,
+ const gsl_permutation * p,
+ gsl_vector * x)
+{
+ if (QR->size1 != QR->size2)
+ {
+ GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
+ }
+ else if (QR->size1 != p->size)
+ {
+ GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN);
+ }
+ else if (QR->size2 != x->size)
+ {
+ GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
+ }
+ else
+ {
+ /* compute sol = Q^T b */
+
+ gsl_linalg_QR_QTvec (QR, tau, x);
+
+ /* Solve R x = sol, storing x inplace in sol */
+
+ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);
+
+ gsl_permute_vector_inverse (p, x);
+
+ return GSL_SUCCESS;
+ }
+}
+
+
+int
+gsl_linalg_QRPT_QRsolve (const gsl_matrix * Q, const gsl_matrix * R,
+ const gsl_permutation * p,
+ const gsl_vector * b,
+ gsl_vector * x)
+{
+ if (Q->size1 != Q->size2 || R->size1 != R->size2)
+ {
+ return GSL_ENOTSQR;
+ }
+ else if (Q->size1 != p->size || Q->size1 != R->size1
+ || Q->size1 != b->size)
+ {
+ return GSL_EBADLEN;
+ }
+ else
+ {
+ /* compute b' = Q^T b */
+
+ gsl_blas_dgemv (CblasTrans, 1.0, Q, b, 0.0, x);
+
+ /* Solve R x = b', storing x inplace */
+
+ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, R, x);
+
+ /* Apply permutation to solution in place */
+
+ gsl_permute_vector_inverse (p, x);
+
+ return GSL_SUCCESS;
+ }
+}
+
+int
+gsl_linalg_QRPT_Rsolve (const gsl_matrix * QR,
+ const gsl_permutation * p,
+ const gsl_vector * b,
+ gsl_vector * x)
+{
+ if (QR->size1 != QR->size2)
+ {
+ GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
+ }
+ else if (QR->size1 != b->size)
+ {
+ GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
+ }
+ else if (QR->size2 != x->size)
+ {
+ GSL_ERROR ("matrix size must match x size", GSL_EBADLEN);
+ }
+ else if (p->size != x->size)
+ {
+ GSL_ERROR ("permutation size must match x size", GSL_EBADLEN);
+ }
+ else
+ {
+ /* Copy x <- b */
+
+ gsl_vector_memcpy (x, b);
+
+ /* Solve R x = b, storing x inplace */
+
+ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);
+
+ gsl_permute_vector_inverse (p, x);
+
+ return GSL_SUCCESS;
+ }
+}
+
+
+int
+gsl_linalg_QRPT_Rsvx (const gsl_matrix * QR,
+ const gsl_permutation * p,
+ gsl_vector * x)
+{
+ if (QR->size1 != QR->size2)
+ {
+ GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);
+ }
+ else if (QR->size2 != x->size)
+ {
+ GSL_ERROR ("matrix size must match x size", GSL_EBADLEN);
+ }
+ else if (p->size != x->size)
+ {
+ GSL_ERROR ("permutation size must match x size", GSL_EBADLEN);
+ }
+ else
+ {
+ /* Solve R x = b, storing x inplace */
+
+ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x);
+
+ gsl_permute_vector_inverse (p, x);
+
+ return GSL_SUCCESS;
+ }
+}
+
+
+
+/* Update a Q R P^T factorisation for A P= Q R , A' = A + u v^T,
+
+ Q' R' P^-1 = QR P^-1 + u v^T
+ = Q (R + Q^T u v^T P ) P^-1
+ = Q (R + w v^T P) P^-1
+
+ where w = Q^T u.
+
+ Algorithm from Golub and Van Loan, "Matrix Computations", Section
+ 12.5 (Updating Matrix Factorizations, Rank-One Changes) */
+
+int
+gsl_linalg_QRPT_update (gsl_matrix * Q, gsl_matrix * R,
+ const gsl_permutation * p,
+ gsl_vector * w, const gsl_vector * v)
+{
+ if (Q->size1 != Q->size2 || R->size1 != R->size2)
+ {
+ return GSL_ENOTSQR;
+ }
+ else if (R->size1 != Q->size2 || v->size != Q->size2 || w->size != Q->size2)
+ {
+ return GSL_EBADLEN;
+ }
+ else
+ {
+ size_t j, k;
+ const size_t M = Q->size1;
+ const size_t N = Q->size2;
+ double w0;
+
+ /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0)
+
+ J_1^T .... J_(n-1)^T w = +/- |w| e_1
+
+ simultaneously applied to R, H = J_1^T ... J^T_(n-1) R
+ so that H is upper Hessenberg. (12.5.2) */
+
+ for (k = N - 1; k > 0; k--)
+ {
+ double c, s;
+ double wk = gsl_vector_get (w, k);
+ double wkm1 = gsl_vector_get (w, k - 1);
+
+ create_givens (wkm1, wk, &c, &s);
+ apply_givens_vec (w, k - 1, k, c, s);
+ apply_givens_qr (M, N, Q, R, k - 1, k, c, s);
+ }
+
+ w0 = gsl_vector_get (w, 0);
+
+ /* Add in w v^T (Equation 12.5.3) */
+
+ for (j = 0; j < N; j++)
+ {
+ double r0j = gsl_matrix_get (R, 0, j);
+ size_t p_j = gsl_permutation_get (p, j);
+ double vj = gsl_vector_get (v, p_j);
+ gsl_matrix_set (R, 0, j, r0j + w0 * vj);
+ }
+
+ /* Apply Givens transformations R' = G_(n-1)^T ... G_1^T H
+ Equation 12.5.4 */
+
+ for (k = 1; k < N; k++)
+ {
+ double c, s;
+ double diag = gsl_matrix_get (R, k - 1, k - 1);
+ double offdiag = gsl_matrix_get (R, k, k - 1);
+
+ create_givens (diag, offdiag, &c, &s);
+ apply_givens_qr (M, N, Q, R, k - 1, k, c, s);
+ }
+
+ return GSL_SUCCESS;
+ }
+}