summaryrefslogtreecommitdiff
path: root/gsl-1.9/linalg/householdercomplex.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/linalg/householdercomplex.c')
-rw-r--r--gsl-1.9/linalg/householdercomplex.c207
1 files changed, 207 insertions, 0 deletions
diff --git a/gsl-1.9/linalg/householdercomplex.c b/gsl-1.9/linalg/householdercomplex.c
new file mode 100644
index 0000000..bc182a6
--- /dev/null
+++ b/gsl-1.9/linalg/householdercomplex.c
@@ -0,0 +1,207 @@
+/* linalg/householdercomplex.c
+ *
+ * Copyright (C) 2001 Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* Computes a householder transformation matrix H such that
+ *
+ * H' v = -/+ |v| e_1
+ *
+ * where e_1 is the first unit vector. On exit the matrix H can be
+ * computed from the return values (tau, v)
+ *
+ * H = I - tau * w * w'
+ *
+ * where w = (1, v(2), ..., v(N)). The nonzero element of the result
+ * vector -/+|v| e_1 is stored in v(1).
+ *
+ * Note that the matrix H' in the householder transformation is the
+ * hermitian conjugate of H. To compute H'v, pass the conjugate of
+ * tau as the first argument to gsl_linalg_householder_hm() rather
+ * than tau itself. See the LAPACK function CLARFG for details of this
+ * convention. */
+
+#include <config.h>
+#include <stdlib.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_vector.h>
+#include <gsl/gsl_matrix.h>
+#include <gsl/gsl_blas.h>
+#include <gsl/gsl_complex_math.h>
+
+#include <gsl/gsl_linalg.h>
+
+gsl_complex
+gsl_linalg_complex_householder_transform (gsl_vector_complex * v)
+{
+ /* replace v[0:n-1] with a householder vector (v[0:n-1]) and
+ coefficient tau that annihilate v[1:n-1] */
+
+ const size_t n = v->size ;
+
+ if (n == 1)
+ {
+ gsl_complex alpha = gsl_vector_complex_get (v, 0) ;
+ double absa = gsl_complex_abs (alpha);
+ double beta_r = - (GSL_REAL(alpha) >= 0 ? +1 : -1) * absa ;
+
+ gsl_complex tau;
+
+ if (beta_r == 0.0)
+ {
+ GSL_REAL(tau) = 0.0;
+ GSL_IMAG(tau) = 0.0;
+ }
+ else
+ {
+ GSL_REAL(tau) = (beta_r - GSL_REAL(alpha)) / beta_r ;
+ GSL_IMAG(tau) = - GSL_IMAG(alpha) / beta_r ;
+
+ {
+ gsl_complex beta = gsl_complex_rect (beta_r, 0.0);
+ gsl_vector_complex_set (v, 0, beta) ;
+ }
+ }
+
+ return tau;
+ }
+ else
+ {
+ gsl_complex tau ;
+ double beta_r;
+
+ gsl_vector_complex_view x = gsl_vector_complex_subvector (v, 1, n - 1) ;
+ gsl_complex alpha = gsl_vector_complex_get (v, 0) ;
+ double absa = gsl_complex_abs (alpha);
+ double xnorm = gsl_blas_dznrm2 (&x.vector);
+
+ if (xnorm == 0 && GSL_IMAG(alpha) == 0)
+ {
+ gsl_complex zero = gsl_complex_rect(0.0, 0.0);
+ return zero; /* tau = 0 */
+ }
+
+ beta_r = - (GSL_REAL(alpha) >= 0 ? +1 : -1) * hypot(absa, xnorm) ;
+
+ GSL_REAL(tau) = (beta_r - GSL_REAL(alpha)) / beta_r ;
+ GSL_IMAG(tau) = - GSL_IMAG(alpha) / beta_r ;
+
+ {
+ gsl_complex amb = gsl_complex_sub_real(alpha, beta_r);
+ gsl_complex s = gsl_complex_inverse(amb);
+ gsl_blas_zscal (s, &x.vector);
+ }
+
+ {
+ gsl_complex beta = gsl_complex_rect (beta_r, 0.0);
+ gsl_vector_complex_set (v, 0, beta) ;
+ }
+
+ return tau;
+ }
+}
+
+int
+gsl_linalg_complex_householder_hm (gsl_complex tau, const gsl_vector_complex * v, gsl_matrix_complex * A)
+{
+ /* applies a householder transformation v,tau to matrix m */
+
+ size_t i, j;
+
+ if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0)
+ {
+ return GSL_SUCCESS;
+ }
+
+ /* w = (v' A)^T */
+
+ for (j = 0; j < A->size2; j++)
+ {
+ gsl_complex tauwj;
+ gsl_complex wj = gsl_matrix_complex_get(A,0,j);
+
+ for (i = 1; i < A->size1; i++) /* note, computed for v(0) = 1 above */
+ {
+ gsl_complex Aij = gsl_matrix_complex_get(A,i,j);
+ gsl_complex vi = gsl_vector_complex_get(v,i);
+ gsl_complex Av = gsl_complex_mul (Aij, gsl_complex_conjugate(vi));
+ wj = gsl_complex_add (wj, Av);
+ }
+
+ tauwj = gsl_complex_mul (tau, wj);
+
+ /* A = A - v w^T */
+
+ {
+ gsl_complex A0j = gsl_matrix_complex_get (A, 0, j);
+ gsl_complex Atw = gsl_complex_sub (A0j, tauwj);
+ /* store A0j - tau * wj */
+ gsl_matrix_complex_set (A, 0, j, Atw);
+ }
+
+ for (i = 1; i < A->size1; i++)
+ {
+ gsl_complex vi = gsl_vector_complex_get (v, i);
+ gsl_complex tauvw = gsl_complex_mul(vi, tauwj);
+ gsl_complex Aij = gsl_matrix_complex_get (A, i, j);
+ gsl_complex Atwv = gsl_complex_sub (Aij, tauvw);
+ /* store Aij - tau * vi * wj */
+ gsl_matrix_complex_set (A, i, j, Atwv);
+ }
+ }
+
+ return GSL_SUCCESS;
+}
+
+int
+gsl_linalg_complex_householder_hv (gsl_complex tau, const gsl_vector_complex * v, gsl_vector_complex * w)
+{
+ const size_t N = v->size;
+
+ if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0)
+ return GSL_SUCCESS;
+
+ {
+ /* compute z = v'w */
+
+ gsl_complex z0 = gsl_vector_complex_get(w,0);
+ gsl_complex z1, z;
+ gsl_complex tz, ntz;
+
+ gsl_vector_complex_const_view v1 = gsl_vector_complex_const_subvector(v, 1, N-1);
+ gsl_vector_complex_view w1 = gsl_vector_complex_subvector(w, 1, N-1);
+
+ gsl_blas_zdotc(&v1.vector, &w1.vector, &z1);
+
+ z = gsl_complex_add (z0, z1);
+
+ tz = gsl_complex_mul(tau, z);
+ ntz = gsl_complex_negative (tz);
+
+ /* compute w = w - tau * (v'w) * v */
+
+ {
+ gsl_complex w0 = gsl_vector_complex_get(w, 0);
+ gsl_complex w0ntz = gsl_complex_add (w0, ntz);
+ gsl_vector_complex_set (w, 0, w0ntz);
+ }
+
+ gsl_blas_zaxpy(ntz, &v1.vector, &w1.vector);
+ }
+
+ return GSL_SUCCESS;
+}