summaryrefslogtreecommitdiff
path: root/gsl-1.9/linalg/hermtd.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/linalg/hermtd.c')
-rw-r--r--gsl-1.9/linalg/hermtd.c240
1 files changed, 240 insertions, 0 deletions
diff --git a/gsl-1.9/linalg/hermtd.c b/gsl-1.9/linalg/hermtd.c
new file mode 100644
index 0000000..30c8cbb
--- /dev/null
+++ b/gsl-1.9/linalg/hermtd.c
@@ -0,0 +1,240 @@
+/* linalg/hermtd.c
+ *
+ * Copyright (C) 2001 Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* Factorise a hermitian matrix A into
+ *
+ * A = U T U'
+ *
+ * where U is unitary and T is real symmetric tridiagonal. Only the
+ * diagonal and lower triangular part of A is referenced and modified.
+ *
+ * On exit, T is stored in the diagonal and first subdiagonal of
+ * A. Since T is symmetric the upper diagonal is not stored.
+ *
+ * U is stored as a packed set of Householder transformations in the
+ * lower triangular part of the input matrix below the first subdiagonal.
+ *
+ * The full matrix for Q can be obtained as the product
+ *
+ * Q = Q_N ... Q_2 Q_1
+ *
+ * where
+ *
+ * Q_i = (I - tau_i * v_i * v_i')
+ *
+ * and where v_i is a Householder vector
+ *
+ * v_i = [0, ..., 0, 1, A(i+2,i), A(i+3,i), ... , A(N,i)]
+ *
+ * This storage scheme is the same as in LAPACK. See LAPACK's
+ * chetd2.f for details.
+ *
+ * See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 */
+
+#include <config.h>
+#include <stdlib.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_vector.h>
+#include <gsl/gsl_matrix.h>
+#include <gsl/gsl_blas.h>
+#include <gsl/gsl_complex_math.h>
+
+#include <gsl/gsl_linalg.h>
+
+int
+gsl_linalg_hermtd_decomp (gsl_matrix_complex * A, gsl_vector_complex * tau)
+{
+ if (A->size1 != A->size2)
+ {
+ GSL_ERROR ("hermitian tridiagonal decomposition requires square matrix",
+ GSL_ENOTSQR);
+ }
+ else if (tau->size + 1 != A->size1)
+ {
+ GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);
+ }
+ else
+ {
+ const size_t N = A->size1;
+ size_t i;
+
+ const gsl_complex zero = gsl_complex_rect (0.0, 0.0);
+ const gsl_complex one = gsl_complex_rect (1.0, 0.0);
+ const gsl_complex neg_one = gsl_complex_rect (-1.0, 0.0);
+
+ for (i = 0 ; i < N - 1; i++)
+ {
+ gsl_vector_complex_view c = gsl_matrix_complex_column (A, i);
+ gsl_vector_complex_view v = gsl_vector_complex_subvector (&c.vector, i + 1, N - (i + 1));
+ gsl_complex tau_i = gsl_linalg_complex_householder_transform (&v.vector);
+
+ /* Apply the transformation H^T A H to the remaining columns */
+
+ if ((i + 1) < (N - 1)
+ && !(GSL_REAL(tau_i) == 0.0 && GSL_IMAG(tau_i) == 0.0))
+ {
+ gsl_matrix_complex_view m =
+ gsl_matrix_complex_submatrix (A, i + 1, i + 1,
+ N - (i+1), N - (i+1));
+ gsl_complex ei = gsl_vector_complex_get(&v.vector, 0);
+ gsl_vector_complex_view x = gsl_vector_complex_subvector (tau, i, N-(i+1));
+ gsl_vector_complex_set (&v.vector, 0, one);
+
+ /* x = tau * A * v */
+ gsl_blas_zhemv (CblasLower, tau_i, &m.matrix, &v.vector, zero, &x.vector);
+
+ /* w = x - (1/2) tau * (x' * v) * v */
+ {
+ gsl_complex xv, txv, alpha;
+ gsl_blas_zdotc(&x.vector, &v.vector, &xv);
+ txv = gsl_complex_mul(tau_i, xv);
+ alpha = gsl_complex_mul_real(txv, -0.5);
+ gsl_blas_zaxpy(alpha, &v.vector, &x.vector);
+ }
+
+ /* apply the transformation A = A - v w' - w v' */
+ gsl_blas_zher2(CblasLower, neg_one, &v.vector, &x.vector, &m.matrix);
+
+ gsl_vector_complex_set (&v.vector, 0, ei);
+ }
+
+ gsl_vector_complex_set (tau, i, tau_i);
+ }
+
+ return GSL_SUCCESS;
+ }
+}
+
+
+/* Form the orthogonal matrix Q from the packed QR matrix */
+
+int
+gsl_linalg_hermtd_unpack (const gsl_matrix_complex * A,
+ const gsl_vector_complex * tau,
+ gsl_matrix_complex * Q,
+ gsl_vector * diag,
+ gsl_vector * sdiag)
+{
+ if (A->size1 != A->size2)
+ {
+ GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR);
+ }
+ else if (tau->size + 1 != A->size1)
+ {
+ GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);
+ }
+ else if (Q->size1 != A->size1 || Q->size2 != A->size1)
+ {
+ GSL_ERROR ("size of Q must match size of A", GSL_EBADLEN);
+ }
+ else if (diag->size != A->size1)
+ {
+ GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);
+ }
+ else if (sdiag->size + 1 != A->size1)
+ {
+ GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);
+ }
+ else
+ {
+ const size_t N = A->size1;
+
+ size_t i;
+
+ /* Initialize Q to the identity */
+
+ gsl_matrix_complex_set_identity (Q);
+
+ for (i = N - 1; i > 0 && i--;)
+ {
+ gsl_complex ti = gsl_vector_complex_get (tau, i);
+
+ gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (A, i);
+
+ gsl_vector_complex_const_view h =
+ gsl_vector_complex_const_subvector (&c.vector, i + 1, N - (i+1));
+
+ gsl_matrix_complex_view m =
+ gsl_matrix_complex_submatrix (Q, i + 1, i + 1, N-(i+1), N-(i+1));
+
+ gsl_linalg_complex_householder_hm (ti, &h.vector, &m.matrix);
+ }
+
+ /* Copy diagonal into diag */
+
+ for (i = 0; i < N; i++)
+ {
+ gsl_complex Aii = gsl_matrix_complex_get (A, i, i);
+ gsl_vector_set (diag, i, GSL_REAL(Aii));
+ }
+
+ /* Copy subdiagonal into sdiag */
+
+ for (i = 0; i < N - 1; i++)
+ {
+ gsl_complex Aji = gsl_matrix_complex_get (A, i+1, i);
+ gsl_vector_set (sdiag, i, GSL_REAL(Aji));
+ }
+
+ return GSL_SUCCESS;
+ }
+}
+
+int
+gsl_linalg_hermtd_unpack_T (const gsl_matrix_complex * A,
+ gsl_vector * diag,
+ gsl_vector * sdiag)
+{
+ if (A->size1 != A->size2)
+ {
+ GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR);
+ }
+ else if (diag->size != A->size1)
+ {
+ GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);
+ }
+ else if (sdiag->size + 1 != A->size1)
+ {
+ GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);
+ }
+ else
+ {
+ const size_t N = A->size1;
+
+ size_t i;
+
+ /* Copy diagonal into diag */
+
+ for (i = 0; i < N; i++)
+ {
+ gsl_complex Aii = gsl_matrix_complex_get (A, i, i);
+ gsl_vector_set (diag, i, GSL_REAL(Aii));
+ }
+
+ /* Copy subdiagonal into sd */
+
+ for (i = 0; i < N - 1; i++)
+ {
+ gsl_complex Aji = gsl_matrix_complex_get (A, i+1, i);
+ gsl_vector_set (sdiag, i, GSL_REAL(Aji));
+ }
+
+ return GSL_SUCCESS;
+ }
+}