summaryrefslogtreecommitdiff
path: root/gsl-1.9/fft/signals_source.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/fft/signals_source.c')
-rw-r--r--gsl-1.9/fft/signals_source.c288
1 files changed, 288 insertions, 0 deletions
diff --git a/gsl-1.9/fft/signals_source.c b/gsl-1.9/fft/signals_source.c
new file mode 100644
index 0000000..eff3ec7
--- /dev/null
+++ b/gsl-1.9/fft/signals_source.c
@@ -0,0 +1,288 @@
+/* fft/signals_source.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include "signals.h"
+
+int
+FUNCTION(fft_signal,complex_pulse) (const size_t k,
+ const size_t n,
+ const size_t stride,
+ const BASE z_real,
+ const BASE z_imag,
+ BASE data[],
+ BASE fft[])
+{
+ size_t j;
+
+ if (n == 0)
+ {
+ GSL_ERROR ("length n must be positive integer", GSL_EDOM);
+ }
+
+ /* gsl_complex pulse at position k, data[j] = z * delta_{jk} */
+
+ for (j = 0; j < n; j++)
+ {
+ REAL(data,stride,j) = 0.0;
+ IMAG(data,stride,j) = 0.0;
+ }
+
+ REAL(data,stride,k % n) = z_real;
+ IMAG(data,stride,k % n) = z_imag;
+
+ /* fourier transform, fft[j] = z * exp(-2 pi i j k / n) */
+
+ for (j = 0; j < n; j++)
+ {
+ const double arg = -2 * M_PI * ((double) ((j * k) % n)) / ((double) n);
+ const BASE w_real = (BASE)cos (arg);
+ const BASE w_imag = (BASE)sin (arg);
+ REAL(fft,stride,j) = w_real * z_real - w_imag * z_imag;
+ IMAG(fft,stride,j) = w_real * z_imag + w_imag * z_real;
+ }
+
+ return 0;
+
+}
+
+
+int
+FUNCTION(fft_signal,complex_constant) (const size_t n,
+ const size_t stride,
+ const BASE z_real,
+ const BASE z_imag,
+ BASE data[],
+ BASE fft[])
+{
+ size_t j;
+
+ if (n == 0)
+ {
+ GSL_ERROR ("length n must be positive integer", GSL_EDOM);
+ }
+
+ /* constant, data[j] = z */
+
+ for (j = 0; j < n; j++)
+ {
+ REAL(data,stride,j) = z_real;
+ IMAG(data,stride,j) = z_imag;
+ }
+
+ /* fourier transform, fft[j] = n z delta_{j0} */
+
+ for (j = 0; j < n; j++)
+ {
+ REAL(fft,stride,j) = 0.0;
+ IMAG(fft,stride,j) = 0.0;
+ }
+
+ REAL(fft,stride,0) = ((BASE) n) * z_real;
+ IMAG(fft,stride,0) = ((BASE) n) * z_imag;
+
+ return 0;
+
+}
+
+
+int
+FUNCTION(fft_signal,complex_exp) (const int k,
+ const size_t n,
+ const size_t stride,
+ const BASE z_real,
+ const BASE z_imag,
+ BASE data[],
+ BASE fft[])
+{
+ size_t j;
+
+ if (n == 0)
+ {
+ GSL_ERROR ("length n must be positive integer", GSL_EDOM);
+ }
+
+ /* exponential, data[j] = z * exp(2 pi i j k) */
+
+ for (j = 0; j < n; j++)
+ {
+ const double arg = 2 * M_PI * ((double) ((j * k) % n)) / ((double) n);
+ const BASE w_real = (BASE)cos (arg);
+ const BASE w_imag = (BASE)sin (arg);
+ REAL(data,stride,j) = w_real * z_real - w_imag * z_imag;
+ IMAG(data,stride,j) = w_real * z_imag + w_imag * z_real;
+ }
+
+ /* fourier transform, fft[j] = z * delta{(j - k),0} */
+
+ for (j = 0; j < n; j++)
+ {
+ REAL(fft,stride,j) = 0.0;
+ IMAG(fft,stride,j) = 0.0;
+ }
+
+ {
+ int freq;
+
+ if (k <= 0)
+ {
+ freq = (n-k) % n ;
+ }
+ else
+ {
+ freq = (k % n);
+ };
+
+ REAL(fft,stride,freq) = ((BASE) n) * z_real;
+ IMAG(fft,stride,freq) = ((BASE) n) * z_imag;
+ }
+
+ return 0;
+
+}
+
+
+int
+FUNCTION(fft_signal,complex_exppair) (const int k1,
+ const int k2,
+ const size_t n,
+ const size_t stride,
+ const BASE z1_real,
+ const BASE z1_imag,
+ const BASE z2_real,
+ const BASE z2_imag,
+ BASE data[],
+ BASE fft[])
+{
+ size_t j;
+
+ if (n == 0)
+ {
+ GSL_ERROR ("length n must be positive integer", GSL_EDOM);
+ }
+
+ /* exponential, data[j] = z1 * exp(2 pi i j k1) + z2 * exp(2 pi i j k2) */
+
+ for (j = 0; j < n; j++)
+ {
+ const double arg1 = 2 * M_PI * ((double) ((j * k1) % n)) / ((double) n);
+ const BASE w1_real = (BASE)cos (arg1);
+ const BASE w1_imag = (BASE)sin (arg1);
+ const double arg2 = 2 * M_PI * ((double) ((j * k2) % n)) / ((double) n);
+ const BASE w2_real = (BASE)cos (arg2);
+ const BASE w2_imag = (BASE)sin (arg2);
+ REAL(data,stride,j) = w1_real * z1_real - w1_imag * z1_imag;
+ IMAG(data,stride,j) = w1_real * z1_imag + w1_imag * z1_real;
+ REAL(data,stride,j) += w2_real * z2_real - w2_imag * z2_imag;
+ IMAG(data,stride,j) += w2_real * z2_imag + w2_imag * z2_real;
+ }
+
+ /* fourier transform, fft[j] = z1 * delta{(j - k1),0} + z2 *
+ delta{(j - k2,0)} */
+
+ for (j = 0; j < n; j++)
+ {
+ REAL(fft,stride,j) = 0.0;
+ IMAG(fft,stride,j) = 0.0;
+ }
+
+ {
+ int freq1, freq2;
+
+ if (k1 <= 0)
+ {
+ freq1 = (n - k1) % n;
+ }
+ else
+ {
+ freq1 = (k1 % n);
+ };
+
+ if (k2 <= 0)
+ {
+ freq2 = (n - k2) % n;
+ }
+ else
+ {
+ freq2 = (k2 % n);
+ };
+
+ REAL(fft,stride,freq1) += ((BASE) n) * z1_real;
+ IMAG(fft,stride,freq1) += ((BASE) n) * z1_imag;
+ REAL(fft,stride,freq2) += ((BASE) n) * z2_real;
+ IMAG(fft,stride,freq2) += ((BASE) n) * z2_imag;
+ }
+
+ return 0;
+
+}
+
+
+int
+FUNCTION(fft_signal,complex_noise) (const size_t n,
+ const size_t stride,
+ BASE data[],
+ BASE fft[])
+{
+ size_t i;
+ int status;
+
+ if (n == 0)
+ {
+ GSL_ERROR ("length n must be positive integer", GSL_EDOM);
+ }
+
+ for (i = 0; i < n; i++)
+ {
+ REAL(data,stride,i) = (BASE)urand();
+ IMAG(data,stride,i) = (BASE)urand();
+ }
+
+ /* compute the dft */
+ status = FUNCTION(gsl_dft_complex,forward) (data, stride, n, fft);
+
+ return status;
+}
+
+
+int
+FUNCTION(fft_signal,real_noise) (const size_t n,
+ const size_t stride,
+ BASE data[],
+ BASE fft[])
+{
+ size_t i;
+ int status;
+
+ if (n == 0)
+ {
+ GSL_ERROR ("length n must be positive integer", GSL_EDOM);
+ }
+
+ for (i = 0; i < n; i++)
+ {
+ REAL(data,stride,i) = (BASE)urand();
+ IMAG(data,stride,i) = 0.0;
+ }
+
+ /* compute the dft */
+ status = FUNCTION(gsl_dft_complex,forward) (data, stride, n, fft);
+
+ return status;
+}
+