summaryrefslogtreecommitdiff
path: root/gsl-1.9/eigen/symmv.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/eigen/symmv.c')
-rw-r--r--gsl-1.9/eigen/symmv.c215
1 files changed, 215 insertions, 0 deletions
diff --git a/gsl-1.9/eigen/symmv.c b/gsl-1.9/eigen/symmv.c
new file mode 100644
index 0000000..44df5d3
--- /dev/null
+++ b/gsl-1.9/eigen/symmv.c
@@ -0,0 +1,215 @@
+/* eigen/symmv.c
+ *
+ * Copyright (C) 2001 Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <config.h>
+#include <stdlib.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_vector.h>
+#include <gsl/gsl_matrix.h>
+#include <gsl/gsl_linalg.h>
+#include <gsl/gsl_eigen.h>
+
+/* Compute eigenvalues/eigenvectors of real symmetric matrix using
+ reduction to tridiagonal form, followed by QR iteration with
+ implicit shifts.
+
+ See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3
+ */
+
+#include "qrstep.c"
+
+gsl_eigen_symmv_workspace *
+gsl_eigen_symmv_alloc (const size_t n)
+{
+ gsl_eigen_symmv_workspace * w ;
+
+ if (n == 0)
+ {
+ GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL);
+ }
+
+ w= ((gsl_eigen_symmv_workspace *) malloc (sizeof(gsl_eigen_symmv_workspace)));
+
+ if (w == 0)
+ {
+ GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM);
+ }
+
+ w->d = (double *) malloc (n * sizeof (double));
+
+ if (w->d == 0)
+ {
+ GSL_ERROR_NULL ("failed to allocate space for diagonal", GSL_ENOMEM);
+ }
+
+ w->sd = (double *) malloc (n * sizeof (double));
+
+ if (w->sd == 0)
+ {
+ GSL_ERROR_NULL ("failed to allocate space for subdiagonal", GSL_ENOMEM);
+ }
+
+ w->gc = (double *) malloc (n * sizeof (double));
+
+ if (w->gc == 0)
+ {
+ GSL_ERROR_NULL ("failed to allocate space for cosines", GSL_ENOMEM);
+ }
+
+ w->gs = (double *) malloc (n * sizeof (double));
+
+ if (w->gs == 0)
+ {
+ GSL_ERROR_NULL ("failed to allocate space for sines", GSL_ENOMEM);
+ }
+
+ w->size = n;
+
+ return w;
+}
+
+void
+gsl_eigen_symmv_free (gsl_eigen_symmv_workspace * w)
+{
+ free(w->gs);
+ free(w->gc);
+ free(w->sd);
+ free(w->d);
+ free(w);
+}
+
+
+int
+gsl_eigen_symmv (gsl_matrix * A, gsl_vector * eval, gsl_matrix * evec,
+ gsl_eigen_symmv_workspace * w)
+{
+ if (A->size1 != A->size2)
+ {
+ GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR);
+ }
+ else if (eval->size != A->size1)
+ {
+ GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN);
+ }
+ else if (evec->size1 != A->size1 || evec->size2 != A->size1)
+ {
+ GSL_ERROR ("eigenvector matrix must match matrix size", GSL_EBADLEN);
+ }
+ else
+ {
+ double *const d = w->d;
+ double *const sd = w->sd;
+ const size_t N = A->size1;
+ size_t a, b;
+
+ /* handle special case */
+
+ if (N == 1)
+ {
+ double A00 = gsl_matrix_get (A, 0, 0);
+ gsl_vector_set (eval, 0, A00);
+ gsl_matrix_set (evec, 0, 0, 1.0);
+ return GSL_SUCCESS;
+ }
+
+ /* use sd as the temporary workspace for the decomposition when
+ computing eigenvectors */
+
+ {
+ gsl_vector_view d_vec = gsl_vector_view_array (d, N);
+ gsl_vector_view sd_vec = gsl_vector_view_array (sd, N - 1);
+ gsl_vector_view tau = gsl_vector_view_array (sd, N - 1);
+ gsl_linalg_symmtd_decomp (A, &tau.vector);
+ gsl_linalg_symmtd_unpack (A, &tau.vector, evec, &d_vec.vector, &sd_vec.vector);
+ }
+
+ /* Make an initial pass through the tridiagonal decomposition
+ to remove off-diagonal elements which are effectively zero */
+
+ chop_small_elements (N, d, sd);
+
+ /* Progressively reduce the matrix until it is diagonal */
+
+ b = N - 1;
+
+ while (b > 0)
+ {
+ if (sd[b - 1] == 0.0 || isnan(sd[b - 1]))
+ {
+ b--;
+ continue;
+ }
+
+ /* Find the largest unreduced block (a,b) starting from b
+ and working backwards */
+
+ a = b - 1;
+
+ while (a > 0)
+ {
+ if (sd[a - 1] == 0.0)
+ {
+ break;
+ }
+ a--;
+ }
+
+ {
+ size_t i;
+ const size_t n_block = b - a + 1;
+ double *d_block = d + a;
+ double *sd_block = sd + a;
+ double * const gc = w->gc;
+ double * const gs = w->gs;
+
+ /* apply QR reduction with implicit deflation to the
+ unreduced block */
+
+ qrstep (n_block, d_block, sd_block, gc, gs);
+
+ /* Apply Givens rotation Gij(c,s) to matrix Q, Q <- Q G */
+
+ for (i = 0; i < n_block - 1; i++)
+ {
+ const double c = gc[i], s = gs[i];
+ size_t k;
+
+ for (k = 0; k < N; k++)
+ {
+ double qki = gsl_matrix_get (evec, k, a + i);
+ double qkj = gsl_matrix_get (evec, k, a + i + 1);
+ gsl_matrix_set (evec, k, a + i, qki * c - qkj * s);
+ gsl_matrix_set (evec, k, a + i + 1, qki * s + qkj * c);
+ }
+ }
+
+ /* remove any small off-diagonal elements */
+
+ chop_small_elements (N, d, sd);
+ }
+ }
+
+ {
+ gsl_vector_view d_vec = gsl_vector_view_array (d, N);
+ gsl_vector_memcpy (eval, &d_vec.vector);
+ }
+
+ return GSL_SUCCESS;
+ }
+}