summaryrefslogtreecommitdiff
path: root/gsl-1.9/eigen/herm.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/eigen/herm.c')
-rw-r--r--gsl-1.9/eigen/herm.c181
1 files changed, 181 insertions, 0 deletions
diff --git a/gsl-1.9/eigen/herm.c b/gsl-1.9/eigen/herm.c
new file mode 100644
index 0000000..7b903ab
--- /dev/null
+++ b/gsl-1.9/eigen/herm.c
@@ -0,0 +1,181 @@
+/* eigen/herm.c
+ *
+ * Copyright (C) 2001 Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <config.h>
+#include <stdlib.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_vector.h>
+#include <gsl/gsl_matrix.h>
+#include <gsl/gsl_linalg.h>
+#include <gsl/gsl_eigen.h>
+
+/* Compute eigenvalues of complex hermitian matrix using reduction to
+ real symmetric tridiagonal form, followed by QR iteration with
+ implicit shifts.
+
+ See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 */
+
+#include "qrstep.c"
+
+gsl_eigen_herm_workspace *
+gsl_eigen_herm_alloc (const size_t n)
+{
+ gsl_eigen_herm_workspace * w ;
+
+ if (n == 0)
+ {
+ GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL);
+ }
+
+ w = (gsl_eigen_herm_workspace *) malloc (sizeof(gsl_eigen_herm_workspace));
+
+ if (w == 0)
+ {
+ GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM);
+ }
+
+ w->d = (double *) malloc (n * sizeof (double));
+
+ if (w->d == 0)
+ {
+ GSL_ERROR_NULL ("failed to allocate space for diagonal", GSL_ENOMEM);
+ }
+
+ w->sd = (double *) malloc (n * sizeof (double));
+
+ if (w->sd == 0)
+ {
+ GSL_ERROR_NULL ("failed to allocate space for subdiagonal", GSL_ENOMEM);
+ }
+
+ w->tau = (double *) malloc (2 * n * sizeof (double));
+
+ if (w->tau == 0)
+ {
+ GSL_ERROR_NULL ("failed to allocate space for tau", GSL_ENOMEM);
+ }
+
+ w->size = n;
+
+ return w;
+}
+
+void
+gsl_eigen_herm_free (gsl_eigen_herm_workspace * w)
+{
+ free (w->tau);
+ free (w->sd);
+ free (w->d);
+ free(w);
+}
+
+int
+gsl_eigen_herm (gsl_matrix_complex * A, gsl_vector * eval,
+ gsl_eigen_herm_workspace * w)
+{
+ if (A->size1 != A->size2)
+ {
+ GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR);
+ }
+ else if (eval->size != A->size1)
+ {
+ GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN);
+ }
+ else
+ {
+ const size_t N = A->size1;
+ double *const d = w->d;
+ double *const sd = w->sd;
+
+ size_t a, b;
+
+ /* handle special case */
+
+ if (N == 1)
+ {
+ gsl_complex A00 = gsl_matrix_complex_get (A, 0, 0);
+ gsl_vector_set (eval, 0, GSL_REAL(A00));
+ return GSL_SUCCESS;
+ }
+
+ {
+ gsl_vector_view d_vec = gsl_vector_view_array (d, N);
+ gsl_vector_view sd_vec = gsl_vector_view_array (sd, N - 1);
+ gsl_vector_complex_view tau_vec = gsl_vector_complex_view_array (w->tau, N-1);
+ gsl_linalg_hermtd_decomp (A, &tau_vec.vector);
+ gsl_linalg_hermtd_unpack_T (A, &d_vec.vector, &sd_vec.vector);
+ }
+
+ /* Make an initial pass through the tridiagonal decomposition
+ to remove off-diagonal elements which are effectively zero */
+
+ chop_small_elements (N, d, sd);
+
+ /* Progressively reduce the matrix until it is diagonal */
+
+ b = N - 1;
+
+ while (b > 0)
+ {
+ if (sd[b - 1] == 0.0 || isnan(sd[b - 1]))
+ {
+ b--;
+ continue;
+ }
+
+ /* Find the largest unreduced block (a,b) starting from b
+ and working backwards */
+
+ a = b - 1;
+
+ while (a > 0)
+ {
+ if (sd[a - 1] == 0.0)
+ {
+ break;
+ }
+ a--;
+ }
+
+ {
+ const size_t n_block = b - a + 1;
+ double *d_block = d + a;
+ double *sd_block = sd + a;
+
+ /* apply QR reduction with implicit deflation to the
+ unreduced block */
+
+ qrstep (n_block, d_block, sd_block, NULL, NULL);
+
+ /* remove any small off-diagonal elements */
+
+ chop_small_elements (n_block, d_block, sd_block);
+ }
+ }
+
+ {
+ gsl_vector_view d_vec = gsl_vector_view_array (d, N);
+ gsl_vector_memcpy (eval, &d_vec.vector);
+ }
+
+ return GSL_SUCCESS;
+ }
+}
+
+