summaryrefslogtreecommitdiff
path: root/gsl-1.9/doc/specfunc-fermi-dirac.texi
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/doc/specfunc-fermi-dirac.texi')
-rw-r--r--gsl-1.9/doc/specfunc-fermi-dirac.texi122
1 files changed, 122 insertions, 0 deletions
diff --git a/gsl-1.9/doc/specfunc-fermi-dirac.texi b/gsl-1.9/doc/specfunc-fermi-dirac.texi
new file mode 100644
index 0000000..f9314be
--- /dev/null
+++ b/gsl-1.9/doc/specfunc-fermi-dirac.texi
@@ -0,0 +1,122 @@
+@cindex Fermi-Dirac function
+
+The functions described in this section are declared in the header file
+@file{gsl_sf_fermi_dirac.h}.
+
+@menu
+* Complete Fermi-Dirac Integrals::
+* Incomplete Fermi-Dirac Integrals::
+@end menu
+
+@node Complete Fermi-Dirac Integrals
+@subsection Complete Fermi-Dirac Integrals
+@cindex complete Fermi-Dirac integrals
+@cindex Fj(x), Fermi-Dirac integral
+The complete Fermi-Dirac integral @math{F_j(x)} is given by,
+@tex
+\beforedisplay
+$$
+F_j(x) := {1\over\Gamma(j+1)} \int_0^\infty dt {t^j \over (\exp(t-x) + 1)}
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+F_j(x) := (1/r\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1))
+@end example
+@end ifinfo
+
+@deftypefun double gsl_sf_fermi_dirac_m1 (double @var{x})
+@deftypefunx int gsl_sf_fermi_dirac_m1_e (double @var{x}, gsl_sf_result * @var{result})
+These routines compute the complete Fermi-Dirac integral with an index of @math{-1}.
+This integral is given by
+@c{$F_{-1}(x) = e^x / (1 + e^x)$}
+@math{F_@{-1@}(x) = e^x / (1 + e^x)}.
+@comment Exceptional Return Values: GSL_EUNDRFLW
+@end deftypefun
+
+@deftypefun double gsl_sf_fermi_dirac_0 (double @var{x})
+@deftypefunx int gsl_sf_fermi_dirac_0_e (double @var{x}, gsl_sf_result * @var{result})
+These routines compute the complete Fermi-Dirac integral with an index of @math{0}.
+This integral is given by @math{F_0(x) = \ln(1 + e^x)}.
+@comment Exceptional Return Values: GSL_EUNDRFLW
+@end deftypefun
+
+@deftypefun double gsl_sf_fermi_dirac_1 (double @var{x})
+@deftypefunx int gsl_sf_fermi_dirac_1_e (double @var{x}, gsl_sf_result * @var{result})
+These routines compute the complete Fermi-Dirac integral with an index of @math{1},
+@math{F_1(x) = \int_0^\infty dt (t /(\exp(t-x)+1))}.
+@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
+@end deftypefun
+
+@deftypefun double gsl_sf_fermi_dirac_2 (double @var{x})
+@deftypefunx int gsl_sf_fermi_dirac_2_e (double @var{x}, gsl_sf_result * @var{result})
+These routines compute the complete Fermi-Dirac integral with an index
+of @math{2},
+@math{F_2(x) = (1/2) \int_0^\infty dt (t^2 /(\exp(t-x)+1))}.
+@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
+@end deftypefun
+
+@deftypefun double gsl_sf_fermi_dirac_int (int @var{j}, double @var{x})
+@deftypefunx int gsl_sf_fermi_dirac_int_e (int @var{j}, double @var{x}, gsl_sf_result * @var{result})
+These routines compute the complete Fermi-Dirac integral with an integer
+index of @math{j},
+@math{F_j(x) = (1/\Gamma(j+1)) \int_0^\infty dt (t^j /(\exp(t-x)+1))}.
+@comment Complete integral F_j(x) for integer j
+@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
+@end deftypefun
+
+@deftypefun double gsl_sf_fermi_dirac_mhalf (double @var{x})
+@deftypefunx int gsl_sf_fermi_dirac_mhalf_e (double @var{x}, gsl_sf_result * @var{result})
+These routines compute the complete Fermi-Dirac integral
+@c{$F_{-1/2}(x)$}
+@math{F_@{-1/2@}(x)}.
+@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
+@end deftypefun
+
+@deftypefun double gsl_sf_fermi_dirac_half (double @var{x})
+@deftypefunx int gsl_sf_fermi_dirac_half_e (double @var{x}, gsl_sf_result * @var{result})
+These routines compute the complete Fermi-Dirac integral
+@c{$F_{1/2}(x)$}
+@math{F_@{1/2@}(x)}.
+@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
+@end deftypefun
+
+@deftypefun double gsl_sf_fermi_dirac_3half (double @var{x})
+@deftypefunx int gsl_sf_fermi_dirac_3half_e (double @var{x}, gsl_sf_result * @var{result})
+These routines compute the complete Fermi-Dirac integral
+@c{$F_{3/2}(x)$}
+@math{F_@{3/2@}(x)}.
+@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW
+@end deftypefun
+
+
+@node Incomplete Fermi-Dirac Integrals
+@subsection Incomplete Fermi-Dirac Integrals
+@cindex incomplete Fermi-Dirac integral
+@cindex Fj(x,b), incomplete Fermi-Dirac integral
+The incomplete Fermi-Dirac integral @math{F_j(x,b)} is given by,
+@tex
+\beforedisplay
+$$
+F_j(x,b) := {1\over\Gamma(j+1)} \int_b^\infty dt {t^j \over (\exp(t-x) + 1)}
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+F_j(x,b) := (1/\Gamma(j+1)) \int_b^\infty dt (t^j / (\Exp(t-x) + 1))
+@end example
+@end ifinfo
+
+@deftypefun double gsl_sf_fermi_dirac_inc_0 (double @var{x}, double @var{b})
+@deftypefunx int gsl_sf_fermi_dirac_inc_0_e (double @var{x}, double @var{b}, gsl_sf_result * @var{result})
+These routines compute the incomplete Fermi-Dirac integral with an index
+of zero,
+@c{$F_0(x,b) = \ln(1 + e^{b-x}) - (b-x)$}
+@math{F_0(x,b) = \ln(1 + e^@{b-x@}) - (b-x)}.
+@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EDOM
+@end deftypefun
+