summaryrefslogtreecommitdiff
path: root/gsl-1.9/deriv/deriv.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/deriv/deriv.c')
-rw-r--r--gsl-1.9/deriv/deriv.c174
1 files changed, 174 insertions, 0 deletions
diff --git a/gsl-1.9/deriv/deriv.c b/gsl-1.9/deriv/deriv.c
new file mode 100644
index 0000000..5d31a95
--- /dev/null
+++ b/gsl-1.9/deriv/deriv.c
@@ -0,0 +1,174 @@
+/* deriv/deriv.c
+ *
+ * Copyright (C) 2004 Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <config.h>
+#include <stdlib.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_deriv.h>
+
+static void
+central_deriv (const gsl_function * f, double x, double h,
+ double *result, double *abserr_round, double *abserr_trunc)
+{
+ /* Compute the derivative using the 5-point rule (x-h, x-h/2, x,
+ x+h/2, x+h). Note that the central point is not used.
+
+ Compute the error using the difference between the 5-point and
+ the 3-point rule (x-h,x,x+h). Again the central point is not
+ used. */
+
+ double fm1 = GSL_FN_EVAL (f, x - h);
+ double fp1 = GSL_FN_EVAL (f, x + h);
+
+ double fmh = GSL_FN_EVAL (f, x - h / 2);
+ double fph = GSL_FN_EVAL (f, x + h / 2);
+
+ double r3 = 0.5 * (fp1 - fm1);
+ double r5 = (4.0 / 3.0) * (fph - fmh) - (1.0 / 3.0) * r3;
+
+ double e3 = (fabs (fp1) + fabs (fm1)) * GSL_DBL_EPSILON;
+ double e5 = 2.0 * (fabs (fph) + fabs (fmh)) * GSL_DBL_EPSILON + e3;
+
+ double dy = GSL_MAX (fabs (r3), fabs (r5)) * fabs (x) * GSL_DBL_EPSILON;
+
+ /* The truncation error in the r5 approximation itself is O(h^4).
+ However, for safety, we estimate the error from r5-r3, which is
+ O(h^2). By scaling h we will minimise this estimated error, not
+ the actual truncation error in r5. */
+
+ *result = r5 / h;
+ *abserr_trunc = fabs ((r5 - r3) / h); /* Estimated truncation error O(h^2) */
+ *abserr_round = fabs (e5 / h) + dy; /* Rounding error (cancellations) */
+}
+
+int
+gsl_deriv_central (const gsl_function * f, double x, double h,
+ double *result, double *abserr)
+{
+ double r_0, round, trunc, error;
+ central_deriv (f, x, h, &r_0, &round, &trunc);
+ error = round + trunc;
+
+ if (round < trunc && (round > 0 && trunc > 0))
+ {
+ double r_opt, round_opt, trunc_opt, error_opt;
+
+ /* Compute an optimised stepsize to minimize the total error,
+ using the scaling of the truncation error (O(h^2)) and
+ rounding error (O(1/h)). */
+
+ double h_opt = h * pow (round / (2.0 * trunc), 1.0 / 3.0);
+ central_deriv (f, x, h_opt, &r_opt, &round_opt, &trunc_opt);
+ error_opt = round_opt + trunc_opt;
+
+ /* Check that the new error is smaller, and that the new derivative
+ is consistent with the error bounds of the original estimate. */
+
+ if (error_opt < error && fabs (r_opt - r_0) < 4.0 * error)
+ {
+ r_0 = r_opt;
+ error = error_opt;
+ }
+ }
+
+ *result = r_0;
+ *abserr = error;
+
+ return GSL_SUCCESS;
+}
+
+
+static void
+forward_deriv (const gsl_function * f, double x, double h,
+ double *result, double *abserr_round, double *abserr_trunc)
+{
+ /* Compute the derivative using the 4-point rule (x+h/4, x+h/2,
+ x+3h/4, x+h).
+
+ Compute the error using the difference between the 4-point and
+ the 2-point rule (x+h/2,x+h). */
+
+ double f1 = GSL_FN_EVAL (f, x + h / 4.0);
+ double f2 = GSL_FN_EVAL (f, x + h / 2.0);
+ double f3 = GSL_FN_EVAL (f, x + (3.0 / 4.0) * h);
+ double f4 = GSL_FN_EVAL (f, x + h);
+
+ double r2 = 2.0*(f4 - f2);
+ double r4 = (22.0 / 3.0) * (f4 - f3) - (62.0 / 3.0) * (f3 - f2) +
+ (52.0 / 3.0) * (f2 - f1);
+
+ /* Estimate the rounding error for r4 */
+
+ double e4 = 2 * 20.67 * (fabs (f4) + fabs (f3) + fabs (f2) + fabs (f1)) * GSL_DBL_EPSILON;
+
+ double dy = GSL_MAX (fabs (r2), fabs (r4)) * fabs (x) * GSL_DBL_EPSILON;
+
+ /* The truncation error in the r4 approximation itself is O(h^3).
+ However, for safety, we estimate the error from r4-r2, which is
+ O(h). By scaling h we will minimise this estimated error, not
+ the actual truncation error in r4. */
+
+ *result = r4 / h;
+ *abserr_trunc = fabs ((r4 - r2) / h); /* Estimated truncation error O(h) */
+ *abserr_round = fabs (e4 / h) + dy;
+}
+
+int
+gsl_deriv_forward (const gsl_function * f, double x, double h,
+ double *result, double *abserr)
+{
+ double r_0, round, trunc, error;
+ forward_deriv (f, x, h, &r_0, &round, &trunc);
+ error = round + trunc;
+
+ if (round < trunc && (round > 0 && trunc > 0))
+ {
+ double r_opt, round_opt, trunc_opt, error_opt;
+
+ /* Compute an optimised stepsize to minimize the total error,
+ using the scaling of the estimated truncation error (O(h)) and
+ rounding error (O(1/h)). */
+
+ double h_opt = h * pow (round / (trunc), 1.0 / 2.0);
+ forward_deriv (f, x, h_opt, &r_opt, &round_opt, &trunc_opt);
+ error_opt = round_opt + trunc_opt;
+
+ /* Check that the new error is smaller, and that the new derivative
+ is consistent with the error bounds of the original estimate. */
+
+ if (error_opt < error && fabs (r_opt - r_0) < 4.0 * error)
+ {
+ r_0 = r_opt;
+ error = error_opt;
+ }
+ }
+
+ *result = r_0;
+ *abserr = error;
+
+ return GSL_SUCCESS;
+}
+
+int
+gsl_deriv_backward (const gsl_function * f, double x, double h,
+ double *result, double *abserr)
+{
+ return gsl_deriv_forward (f, x, -h, result, abserr);
+}