summaryrefslogtreecommitdiff
path: root/gsl-1.9/complex/math.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/complex/math.c')
-rw-r--r--gsl-1.9/complex/math.c1007
1 files changed, 1007 insertions, 0 deletions
diff --git a/gsl-1.9/complex/math.c b/gsl-1.9/complex/math.c
new file mode 100644
index 0000000..19df2ac
--- /dev/null
+++ b/gsl-1.9/complex/math.c
@@ -0,0 +1,1007 @@
+/* complex/math.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 Jorma Olavi Tähtinen, Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* Basic complex arithmetic functions
+
+ * Original version by Jorma Olavi Tähtinen <jotahtin@cc.hut.fi>
+ *
+ * Modified for GSL by Brian Gough, 3/2000
+ */
+
+/* The following references describe the methods used in these
+ * functions,
+ *
+ * T. E. Hull and Thomas F. Fairgrieve and Ping Tak Peter Tang,
+ * "Implementing Complex Elementary Functions Using Exception
+ * Handling", ACM Transactions on Mathematical Software, Volume 20
+ * (1994), pp 215-244, Corrigenda, p553
+ *
+ * Hull et al, "Implementing the complex arcsin and arccosine
+ * functions using exception handling", ACM Transactions on
+ * Mathematical Software, Volume 23 (1997) pp 299-335
+ *
+ * Abramowitz and Stegun, Handbook of Mathematical Functions, "Inverse
+ * Circular Functions in Terms of Real and Imaginary Parts", Formulas
+ * 4.4.37, 4.4.38, 4.4.39
+ */
+
+#include <config.h>
+#include <math.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_complex.h>
+#include <gsl/gsl_complex_math.h>
+
+/**********************************************************************
+ * Complex numbers
+ **********************************************************************/
+
+#ifndef HIDE_INLINE_STATIC
+gsl_complex
+gsl_complex_rect (double x, double y)
+{ /* return z = x + i y */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, x, y);
+ return z;
+}
+#endif
+
+gsl_complex
+gsl_complex_polar (double r, double theta)
+{ /* return z = r exp(i theta) */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, r * cos (theta), r * sin (theta));
+ return z;
+}
+
+/**********************************************************************
+ * Properties of complex numbers
+ **********************************************************************/
+
+double
+gsl_complex_arg (gsl_complex z)
+{ /* return arg(z), -pi < arg(z) <= +pi */
+ double x = GSL_REAL (z);
+ double y = GSL_IMAG (z);
+
+ if (x == 0.0 && y == 0.0)
+ {
+ return 0;
+ }
+
+ return atan2 (y, x);
+}
+
+double
+gsl_complex_abs (gsl_complex z)
+{ /* return |z| */
+ return hypot (GSL_REAL (z), GSL_IMAG (z));
+}
+
+double
+gsl_complex_abs2 (gsl_complex z)
+{ /* return |z|^2 */
+ double x = GSL_REAL (z);
+ double y = GSL_IMAG (z);
+
+ return (x * x + y * y);
+}
+
+double
+gsl_complex_logabs (gsl_complex z)
+{ /* return log|z| */
+ double xabs = fabs (GSL_REAL (z));
+ double yabs = fabs (GSL_IMAG (z));
+ double max, u;
+
+ if (xabs >= yabs)
+ {
+ max = xabs;
+ u = yabs / xabs;
+ }
+ else
+ {
+ max = yabs;
+ u = xabs / yabs;
+ }
+
+ /* Handle underflow when u is close to 0 */
+
+ return log (max) + 0.5 * log1p (u * u);
+}
+
+
+/***********************************************************************
+ * Complex arithmetic operators
+ ***********************************************************************/
+
+gsl_complex
+gsl_complex_add (gsl_complex a, gsl_complex b)
+{ /* z=a+b */
+ double ar = GSL_REAL (a), ai = GSL_IMAG (a);
+ double br = GSL_REAL (b), bi = GSL_IMAG (b);
+
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, ar + br, ai + bi);
+ return z;
+}
+
+gsl_complex
+gsl_complex_add_real (gsl_complex a, double x)
+{ /* z=a+x */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, GSL_REAL (a) + x, GSL_IMAG (a));
+ return z;
+}
+
+gsl_complex
+gsl_complex_add_imag (gsl_complex a, double y)
+{ /* z=a+iy */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, GSL_REAL (a), GSL_IMAG (a) + y);
+ return z;
+}
+
+
+gsl_complex
+gsl_complex_sub (gsl_complex a, gsl_complex b)
+{ /* z=a-b */
+ double ar = GSL_REAL (a), ai = GSL_IMAG (a);
+ double br = GSL_REAL (b), bi = GSL_IMAG (b);
+
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, ar - br, ai - bi);
+ return z;
+}
+
+gsl_complex
+gsl_complex_sub_real (gsl_complex a, double x)
+{ /* z=a-x */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, GSL_REAL (a) - x, GSL_IMAG (a));
+ return z;
+}
+
+gsl_complex
+gsl_complex_sub_imag (gsl_complex a, double y)
+{ /* z=a-iy */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, GSL_REAL (a), GSL_IMAG (a) - y);
+ return z;
+}
+
+gsl_complex
+gsl_complex_mul (gsl_complex a, gsl_complex b)
+{ /* z=a*b */
+ double ar = GSL_REAL (a), ai = GSL_IMAG (a);
+ double br = GSL_REAL (b), bi = GSL_IMAG (b);
+
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, ar * br - ai * bi, ar * bi + ai * br);
+ return z;
+}
+
+gsl_complex
+gsl_complex_mul_real (gsl_complex a, double x)
+{ /* z=a*x */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, x * GSL_REAL (a), x * GSL_IMAG (a));
+ return z;
+}
+
+gsl_complex
+gsl_complex_mul_imag (gsl_complex a, double y)
+{ /* z=a*iy */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, -y * GSL_IMAG (a), y * GSL_REAL (a));
+ return z;
+}
+
+gsl_complex
+gsl_complex_div (gsl_complex a, gsl_complex b)
+{ /* z=a/b */
+ double ar = GSL_REAL (a), ai = GSL_IMAG (a);
+ double br = GSL_REAL (b), bi = GSL_IMAG (b);
+
+ double s = 1.0 / gsl_complex_abs (b);
+
+ double sbr = s * br;
+ double sbi = s * bi;
+
+ double zr = (ar * sbr + ai * sbi) * s;
+ double zi = (ai * sbr - ar * sbi) * s;
+
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, zr, zi);
+ return z;
+}
+
+gsl_complex
+gsl_complex_div_real (gsl_complex a, double x)
+{ /* z=a/x */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, GSL_REAL (a) / x, GSL_IMAG (a) / x);
+ return z;
+}
+
+gsl_complex
+gsl_complex_div_imag (gsl_complex a, double y)
+{ /* z=a/(iy) */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, GSL_IMAG (a) / y, - GSL_REAL (a) / y);
+ return z;
+}
+
+gsl_complex
+gsl_complex_conjugate (gsl_complex a)
+{ /* z=conj(a) */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, GSL_REAL (a), -GSL_IMAG (a));
+ return z;
+}
+
+gsl_complex
+gsl_complex_negative (gsl_complex a)
+{ /* z=-a */
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, -GSL_REAL (a), -GSL_IMAG (a));
+ return z;
+}
+
+gsl_complex
+gsl_complex_inverse (gsl_complex a)
+{ /* z=1/a */
+ double s = 1.0 / gsl_complex_abs (a);
+
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, (GSL_REAL (a) * s) * s, -(GSL_IMAG (a) * s) * s);
+ return z;
+}
+
+/**********************************************************************
+ * Elementary complex functions
+ **********************************************************************/
+
+gsl_complex
+gsl_complex_sqrt (gsl_complex a)
+{ /* z=sqrt(a) */
+ gsl_complex z;
+
+ if (GSL_REAL (a) == 0.0 && GSL_IMAG (a) == 0.0)
+ {
+ GSL_SET_COMPLEX (&z, 0, 0);
+ }
+ else
+ {
+ double x = fabs (GSL_REAL (a));
+ double y = fabs (GSL_IMAG (a));
+ double w;
+
+ if (x >= y)
+ {
+ double t = y / x;
+ w = sqrt (x) * sqrt (0.5 * (1.0 + sqrt (1.0 + t * t)));
+ }
+ else
+ {
+ double t = x / y;
+ w = sqrt (y) * sqrt (0.5 * (t + sqrt (1.0 + t * t)));
+ }
+
+ if (GSL_REAL (a) >= 0.0)
+ {
+ double ai = GSL_IMAG (a);
+ GSL_SET_COMPLEX (&z, w, ai / (2.0 * w));
+ }
+ else
+ {
+ double ai = GSL_IMAG (a);
+ double vi = (ai >= 0) ? w : -w;
+ GSL_SET_COMPLEX (&z, ai / (2.0 * vi), vi);
+ }
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_sqrt_real (double x)
+{ /* z=sqrt(x) */
+ gsl_complex z;
+
+ if (x >= 0)
+ {
+ GSL_SET_COMPLEX (&z, sqrt (x), 0.0);
+ }
+ else
+ {
+ GSL_SET_COMPLEX (&z, 0.0, sqrt (-x));
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_exp (gsl_complex a)
+{ /* z=exp(a) */
+ double rho = exp (GSL_REAL (a));
+ double theta = GSL_IMAG (a);
+
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, rho * cos (theta), rho * sin (theta));
+ return z;
+}
+
+gsl_complex
+gsl_complex_pow (gsl_complex a, gsl_complex b)
+{ /* z=a^b */
+ gsl_complex z;
+
+ if (GSL_REAL (a) == 0 && GSL_IMAG (a) == 0.0)
+ {
+ GSL_SET_COMPLEX (&z, 0.0, 0.0);
+ }
+ else
+ {
+ double logr = gsl_complex_logabs (a);
+ double theta = gsl_complex_arg (a);
+
+ double br = GSL_REAL (b), bi = GSL_IMAG (b);
+
+ double rho = exp (logr * br - bi * theta);
+ double beta = theta * br + bi * logr;
+
+ GSL_SET_COMPLEX (&z, rho * cos (beta), rho * sin (beta));
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_pow_real (gsl_complex a, double b)
+{ /* z=a^b */
+ gsl_complex z;
+
+ if (GSL_REAL (a) == 0 && GSL_IMAG (a) == 0)
+ {
+ GSL_SET_COMPLEX (&z, 0, 0);
+ }
+ else
+ {
+ double logr = gsl_complex_logabs (a);
+ double theta = gsl_complex_arg (a);
+ double rho = exp (logr * b);
+ double beta = theta * b;
+ GSL_SET_COMPLEX (&z, rho * cos (beta), rho * sin (beta));
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_log (gsl_complex a)
+{ /* z=log(a) */
+ double logr = gsl_complex_logabs (a);
+ double theta = gsl_complex_arg (a);
+
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, logr, theta);
+ return z;
+}
+
+gsl_complex
+gsl_complex_log10 (gsl_complex a)
+{ /* z = log10(a) */
+ return gsl_complex_mul_real (gsl_complex_log (a), 1 / log (10.));
+}
+
+gsl_complex
+gsl_complex_log_b (gsl_complex a, gsl_complex b)
+{
+ return gsl_complex_div (gsl_complex_log (a), gsl_complex_log (b));
+}
+
+/***********************************************************************
+ * Complex trigonometric functions
+ ***********************************************************************/
+
+gsl_complex
+gsl_complex_sin (gsl_complex a)
+{ /* z = sin(a) */
+ double R = GSL_REAL (a), I = GSL_IMAG (a);
+
+ gsl_complex z;
+
+ if (I == 0.0)
+ {
+ /* avoid returing negative zero (-0.0) for the imaginary part */
+
+ GSL_SET_COMPLEX (&z, sin (R), 0.0);
+ }
+ else
+ {
+ GSL_SET_COMPLEX (&z, sin (R) * cosh (I), cos (R) * sinh (I));
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_cos (gsl_complex a)
+{ /* z = cos(a) */
+ double R = GSL_REAL (a), I = GSL_IMAG (a);
+
+ gsl_complex z;
+
+ if (I == 0.0)
+ {
+ /* avoid returing negative zero (-0.0) for the imaginary part */
+
+ GSL_SET_COMPLEX (&z, cos (R), 0.0);
+ }
+ else
+ {
+ GSL_SET_COMPLEX (&z, cos (R) * cosh (I), sin (R) * sinh (-I));
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_tan (gsl_complex a)
+{ /* z = tan(a) */
+ double R = GSL_REAL (a), I = GSL_IMAG (a);
+
+ gsl_complex z;
+
+ if (fabs (I) < 1)
+ {
+ double D = pow (cos (R), 2.0) + pow (sinh (I), 2.0);
+
+ GSL_SET_COMPLEX (&z, 0.5 * sin (2 * R) / D, 0.5 * sinh (2 * I) / D);
+ }
+ else
+ {
+ double u = exp (-I);
+ double C = 2 * u / (1 - pow (u, 2.0));
+ double D = 1 + pow (cos (R), 2.0) * pow (C, 2.0);
+
+ double S = pow (C, 2.0);
+ double T = 1.0 / tanh (I);
+
+ GSL_SET_COMPLEX (&z, 0.5 * sin (2 * R) * S / D, T / D);
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_sec (gsl_complex a)
+{ /* z = sec(a) */
+ gsl_complex z = gsl_complex_cos (a);
+ return gsl_complex_inverse (z);
+}
+
+gsl_complex
+gsl_complex_csc (gsl_complex a)
+{ /* z = csc(a) */
+ gsl_complex z = gsl_complex_sin (a);
+ return gsl_complex_inverse(z);
+}
+
+
+gsl_complex
+gsl_complex_cot (gsl_complex a)
+{ /* z = cot(a) */
+ gsl_complex z = gsl_complex_tan (a);
+ return gsl_complex_inverse (z);
+}
+
+/**********************************************************************
+ * Inverse Complex Trigonometric Functions
+ **********************************************************************/
+
+gsl_complex
+gsl_complex_arcsin (gsl_complex a)
+{ /* z = arcsin(a) */
+ double R = GSL_REAL (a), I = GSL_IMAG (a);
+ gsl_complex z;
+
+ if (I == 0)
+ {
+ z = gsl_complex_arcsin_real (R);
+ }
+ else
+ {
+ double x = fabs (R), y = fabs (I);
+ double r = hypot (x + 1, y), s = hypot (x - 1, y);
+ double A = 0.5 * (r + s);
+ double B = x / A;
+ double y2 = y * y;
+
+ double real, imag;
+
+ const double A_crossover = 1.5, B_crossover = 0.6417;
+
+ if (B <= B_crossover)
+ {
+ real = asin (B);
+ }
+ else
+ {
+ if (x <= 1)
+ {
+ double D = 0.5 * (A + x) * (y2 / (r + x + 1) + (s + (1 - x)));
+ real = atan (x / sqrt (D));
+ }
+ else
+ {
+ double Apx = A + x;
+ double D = 0.5 * (Apx / (r + x + 1) + Apx / (s + (x - 1)));
+ real = atan (x / (y * sqrt (D)));
+ }
+ }
+
+ if (A <= A_crossover)
+ {
+ double Am1;
+
+ if (x < 1)
+ {
+ Am1 = 0.5 * (y2 / (r + (x + 1)) + y2 / (s + (1 - x)));
+ }
+ else
+ {
+ Am1 = 0.5 * (y2 / (r + (x + 1)) + (s + (x - 1)));
+ }
+
+ imag = log1p (Am1 + sqrt (Am1 * (A + 1)));
+ }
+ else
+ {
+ imag = log (A + sqrt (A * A - 1));
+ }
+
+ GSL_SET_COMPLEX (&z, (R >= 0) ? real : -real, (I >= 0) ? imag : -imag);
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_arcsin_real (double a)
+{ /* z = arcsin(a) */
+ gsl_complex z;
+
+ if (fabs (a) <= 1.0)
+ {
+ GSL_SET_COMPLEX (&z, asin (a), 0.0);
+ }
+ else
+ {
+ if (a < 0.0)
+ {
+ GSL_SET_COMPLEX (&z, -M_PI_2, acosh (-a));
+ }
+ else
+ {
+ GSL_SET_COMPLEX (&z, M_PI_2, -acosh (a));
+ }
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_arccos (gsl_complex a)
+{ /* z = arccos(a) */
+ double R = GSL_REAL (a), I = GSL_IMAG (a);
+ gsl_complex z;
+
+ if (I == 0)
+ {
+ z = gsl_complex_arccos_real (R);
+ }
+ else
+ {
+ double x = fabs (R), y = fabs (I);
+ double r = hypot (x + 1, y), s = hypot (x - 1, y);
+ double A = 0.5 * (r + s);
+ double B = x / A;
+ double y2 = y * y;
+
+ double real, imag;
+
+ const double A_crossover = 1.5, B_crossover = 0.6417;
+
+ if (B <= B_crossover)
+ {
+ real = acos (B);
+ }
+ else
+ {
+ if (x <= 1)
+ {
+ double D = 0.5 * (A + x) * (y2 / (r + x + 1) + (s + (1 - x)));
+ real = atan (sqrt (D) / x);
+ }
+ else
+ {
+ double Apx = A + x;
+ double D = 0.5 * (Apx / (r + x + 1) + Apx / (s + (x - 1)));
+ real = atan ((y * sqrt (D)) / x);
+ }
+ }
+
+ if (A <= A_crossover)
+ {
+ double Am1;
+
+ if (x < 1)
+ {
+ Am1 = 0.5 * (y2 / (r + (x + 1)) + y2 / (s + (1 - x)));
+ }
+ else
+ {
+ Am1 = 0.5 * (y2 / (r + (x + 1)) + (s + (x - 1)));
+ }
+
+ imag = log1p (Am1 + sqrt (Am1 * (A + 1)));
+ }
+ else
+ {
+ imag = log (A + sqrt (A * A - 1));
+ }
+
+ GSL_SET_COMPLEX (&z, (R >= 0) ? real : M_PI - real, (I >= 0) ? -imag : imag);
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_arccos_real (double a)
+{ /* z = arccos(a) */
+ gsl_complex z;
+
+ if (fabs (a) <= 1.0)
+ {
+ GSL_SET_COMPLEX (&z, acos (a), 0);
+ }
+ else
+ {
+ if (a < 0.0)
+ {
+ GSL_SET_COMPLEX (&z, M_PI, -acosh (-a));
+ }
+ else
+ {
+ GSL_SET_COMPLEX (&z, 0, acosh (a));
+ }
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_arctan (gsl_complex a)
+{ /* z = arctan(a) */
+ double R = GSL_REAL (a), I = GSL_IMAG (a);
+ gsl_complex z;
+
+ if (I == 0)
+ {
+ GSL_SET_COMPLEX (&z, atan (R), 0);
+ }
+ else
+ {
+ /* FIXME: This is a naive implementation which does not fully
+ take into account cancellation errors, overflow, underflow
+ etc. It would benefit from the Hull et al treatment. */
+
+ double r = hypot (R, I);
+
+ double imag;
+
+ double u = 2 * I / (1 + r * r);
+
+ /* FIXME: the following cross-over should be optimized but 0.1
+ seems to work ok */
+
+ if (fabs (u) < 0.1)
+ {
+ imag = 0.25 * (log1p (u) - log1p (-u));
+ }
+ else
+ {
+ double A = hypot (R, I + 1);
+ double B = hypot (R, I - 1);
+ imag = 0.5 * log (A / B);
+ }
+
+ if (R == 0)
+ {
+ if (I > 1)
+ {
+ GSL_SET_COMPLEX (&z, M_PI_2, imag);
+ }
+ else if (I < -1)
+ {
+ GSL_SET_COMPLEX (&z, -M_PI_2, imag);
+ }
+ else
+ {
+ GSL_SET_COMPLEX (&z, 0, imag);
+ };
+ }
+ else
+ {
+ GSL_SET_COMPLEX (&z, 0.5 * atan2 (2 * R, ((1 + r) * (1 - r))), imag);
+ }
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_arcsec (gsl_complex a)
+{ /* z = arcsec(a) */
+ gsl_complex z = gsl_complex_inverse (a);
+ return gsl_complex_arccos (z);
+}
+
+gsl_complex
+gsl_complex_arcsec_real (double a)
+{ /* z = arcsec(a) */
+ gsl_complex z;
+
+ if (a <= -1.0 || a >= 1.0)
+ {
+ GSL_SET_COMPLEX (&z, acos (1 / a), 0.0);
+ }
+ else
+ {
+ if (a >= 0.0)
+ {
+ GSL_SET_COMPLEX (&z, 0, acosh (1 / a));
+ }
+ else
+ {
+ GSL_SET_COMPLEX (&z, M_PI, -acosh (-1 / a));
+ }
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_arccsc (gsl_complex a)
+{ /* z = arccsc(a) */
+ gsl_complex z = gsl_complex_inverse (a);
+ return gsl_complex_arcsin (z);
+}
+
+gsl_complex
+gsl_complex_arccsc_real (double a)
+{ /* z = arccsc(a) */
+ gsl_complex z;
+
+ if (a <= -1.0 || a >= 1.0)
+ {
+ GSL_SET_COMPLEX (&z, asin (1 / a), 0.0);
+ }
+ else
+ {
+ if (a >= 0.0)
+ {
+ GSL_SET_COMPLEX (&z, M_PI_2, -acosh (1 / a));
+ }
+ else
+ {
+ GSL_SET_COMPLEX (&z, -M_PI_2, acosh (-1 / a));
+ }
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_arccot (gsl_complex a)
+{ /* z = arccot(a) */
+ gsl_complex z;
+
+ if (GSL_REAL (a) == 0.0 && GSL_IMAG (a) == 0.0)
+ {
+ GSL_SET_COMPLEX (&z, M_PI_2, 0);
+ }
+ else
+ {
+ z = gsl_complex_inverse (a);
+ z = gsl_complex_arctan (z);
+ }
+
+ return z;
+}
+
+/**********************************************************************
+ * Complex Hyperbolic Functions
+ **********************************************************************/
+
+gsl_complex
+gsl_complex_sinh (gsl_complex a)
+{ /* z = sinh(a) */
+ double R = GSL_REAL (a), I = GSL_IMAG (a);
+
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, sinh (R) * cos (I), cosh (R) * sin (I));
+ return z;
+}
+
+gsl_complex
+gsl_complex_cosh (gsl_complex a)
+{ /* z = cosh(a) */
+ double R = GSL_REAL (a), I = GSL_IMAG (a);
+
+ gsl_complex z;
+ GSL_SET_COMPLEX (&z, cosh (R) * cos (I), sinh (R) * sin (I));
+ return z;
+}
+
+gsl_complex
+gsl_complex_tanh (gsl_complex a)
+{ /* z = tanh(a) */
+ double R = GSL_REAL (a), I = GSL_IMAG (a);
+
+ gsl_complex z;
+
+ if (fabs(R) < 1.0)
+ {
+ double D = pow (cos (I), 2.0) + pow (sinh (R), 2.0);
+
+ GSL_SET_COMPLEX (&z, sinh (R) * cosh (R) / D, 0.5 * sin (2 * I) / D);
+ }
+ else
+ {
+ double D = pow (cos (I), 2.0) + pow (sinh (R), 2.0);
+ double F = 1 + pow (cos (I) / sinh (R), 2.0);
+
+ GSL_SET_COMPLEX (&z, 1.0 / (tanh (R) * F), 0.5 * sin (2 * I) / D);
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_sech (gsl_complex a)
+{ /* z = sech(a) */
+ gsl_complex z = gsl_complex_cosh (a);
+ return gsl_complex_inverse (z);
+}
+
+gsl_complex
+gsl_complex_csch (gsl_complex a)
+{ /* z = csch(a) */
+ gsl_complex z = gsl_complex_sinh (a);
+ return gsl_complex_inverse (z);
+}
+
+gsl_complex
+gsl_complex_coth (gsl_complex a)
+{ /* z = coth(a) */
+ gsl_complex z = gsl_complex_tanh (a);
+ return gsl_complex_inverse (z);
+}
+
+/**********************************************************************
+ * Inverse Complex Hyperbolic Functions
+ **********************************************************************/
+
+gsl_complex
+gsl_complex_arcsinh (gsl_complex a)
+{ /* z = arcsinh(a) */
+ gsl_complex z = gsl_complex_mul_imag(a, 1.0);
+ z = gsl_complex_arcsin (z);
+ z = gsl_complex_mul_imag (z, -1.0);
+ return z;
+}
+
+gsl_complex
+gsl_complex_arccosh (gsl_complex a)
+{ /* z = arccosh(a) */
+ gsl_complex z = gsl_complex_arccos (a);
+ z = gsl_complex_mul_imag (z, GSL_IMAG(z) > 0 ? -1.0 : 1.0);
+ return z;
+}
+
+gsl_complex
+gsl_complex_arccosh_real (double a)
+{ /* z = arccosh(a) */
+ gsl_complex z;
+
+ if (a >= 1)
+ {
+ GSL_SET_COMPLEX (&z, acosh (a), 0);
+ }
+ else
+ {
+ if (a >= -1.0)
+ {
+ GSL_SET_COMPLEX (&z, 0, acos (a));
+ }
+ else
+ {
+ GSL_SET_COMPLEX (&z, acosh (-a), M_PI);
+ }
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_arctanh (gsl_complex a)
+{ /* z = arctanh(a) */
+ if (GSL_IMAG (a) == 0.0)
+ {
+ return gsl_complex_arctanh_real (GSL_REAL (a));
+ }
+ else
+ {
+ gsl_complex z = gsl_complex_mul_imag(a, 1.0);
+ z = gsl_complex_arctan (z);
+ z = gsl_complex_mul_imag (z, -1.0);
+ return z;
+ }
+}
+
+gsl_complex
+gsl_complex_arctanh_real (double a)
+{ /* z = arctanh(a) */
+ gsl_complex z;
+
+ if (a > -1.0 && a < 1.0)
+ {
+ GSL_SET_COMPLEX (&z, atanh (a), 0);
+ }
+ else
+ {
+ GSL_SET_COMPLEX (&z, atanh (1 / a), (a < 0) ? M_PI_2 : -M_PI_2);
+ }
+
+ return z;
+}
+
+gsl_complex
+gsl_complex_arcsech (gsl_complex a)
+{ /* z = arcsech(a); */
+ gsl_complex t = gsl_complex_inverse (a);
+ return gsl_complex_arccosh (t);
+}
+
+gsl_complex
+gsl_complex_arccsch (gsl_complex a)
+{ /* z = arccsch(a) */
+ gsl_complex t = gsl_complex_inverse (a);
+ return gsl_complex_arcsinh (t);
+}
+
+gsl_complex
+gsl_complex_arccoth (gsl_complex a)
+{ /* z = arccoth(a) */
+ gsl_complex t = gsl_complex_inverse (a);
+ return gsl_complex_arctanh (t);
+}