summaryrefslogtreecommitdiff
path: root/leon2.c
blob: d2d1b657ac8c8450462354c4c20a2172259d5e5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
/*
 * This file is part of SIS.
 *
 * SIS, SPARC instruction simulator V2.8 Copyright (C) 2015 Jiri Gaisler
 *
 * This program is free software; you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 3 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
 *
 * Leon2 emulation, based on leon3.c and erc32.c/
 */

#ifdef WORDS_BIGENDIAN
#define EBT 0
#else
#define EBT 3
#endif

#define ROM_START	0x00000000
#define RAM_START	0x40000000

#include "config.h"
#include <errno.h>
#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#ifdef HAVE_TERMIOS_H
#include <termios.h>
#endif
#include <sys/file.h>
#include <unistd.h>
#include "sis.h"
#include "grlib.h"

/* APB registers */
#define APBSTART	0x80000000
#define APBEND		0x80000100

/* Memory exception waitstates */
#define MEM_EX_WS	1

#define MOK		0

/* LEON2 APB register addresses */

#define IRQCTRL_IPR	0x094
#define IRQCTRL_IMR	0x090
#define IRQCTRL_ICR	0x09C
#define IRQCTRL_IFR	0x098
#define TIMER_SCALER	0x060
#define TIMER_SCLOAD	0x064
#define LEON2_CONFIG	0x024
#define TIMER_TIMER1	0x040
#define TIMER_RELOAD1	0x044
#define TIMER_CTRL1	0x048
#define TIMER_TIMER2	0x050
#define TIMER_RELOAD2	0x054
#define TIMER_CTRL2	0x058
#define CACHE_CTRL	0x014
#define POWER_DOWN	0x018

#define APBUART_RXTX	0x070
#define APBUART_STATUS	0x074

/* Size of UART buffers (bytes).  */
#define UARTBUF	1024

/* Number of simulator ticks between flushing the UARTS.  */
/* For good performance, keep above 1000.  */
#define UART_FLUSH_TIME	  3000

/* New uart defines.  */
#define UART_TX_TIME	1000
#define UART_RX_TIME	1000
#define UARTA_DR	0x1
#define UARTA_SRE	0x2
#define UARTA_HRE	0x4
#define UARTA_OR	0x10

/* IRQCTRL registers.  */

static uint32 irqctrl_ipr;
static uint32 irqctrl_imr;
static uint32 irqctrl_ifr;

/* TIMER registers.  */

#define NTIMERS		2
#define TIMER_IRQ	8

static uint32 gpt_scaler;
static uint32 gpt_scaler_start;
static uint32 gpt_counter[NTIMERS];
static uint32 gpt_reload[NTIMERS];
static uint32 gpt_ctrl[NTIMERS];

static uint32 cache_ctrl;

/* UART support variables.  */

/* File descriptor for input file.  */
static int32 fd1, fd2;

/* UART status register */
static int32 Ucontrol;

static unsigned char aq[UARTBUF], bq[UARTBUF];
static int32 anum, aind = 0;
static int32 bnum, bind = 0;
static char wbufa[UARTBUF], wbufb[UARTBUF];
static unsigned wnuma;
static unsigned wnumb;
static FILE *f1in, *f1out;
#ifdef HAVE_TERMIOS_H
static struct termios ioc1, ioc2, iocold1, iocold2;
#endif
#ifndef O_NONBLOCK
#define O_NONBLOCK 0
#endif

static int f1open = 0;

static char uarta_sreg, uarta_hreg;
static uint32 uart_stat_reg;
static uint32 uarta_data;

/* Forward declarations. */

static void mem_init (void);
static void close_port (void);
static void leon2_reset (void);
static void irqctrl_intack (int32 level);
static void chk_irq (void);
static void set_irq (int32 level);
static int32 apb_read (uint32 addr, uint32 * data);
static int apb_write (uint32 addr, uint32 data);
static void port_init (void);
static uint32 grlib_read_uart (uint32 addr);
static void grlib_write_uart (uint32 addr, uint32 data);
static void flush_uart (void);
static void uarta_tx (void);
static void uart_rx (int32 arg);
static void uart_intr (int32 arg);
static void uart_irq_start (void);
static void gpt_intr (int32 arg);
static void gpt_init (void);
static void gpt_reset (void);
static void gpt_scaler_set (uint32 val);
static void timer_ctrl (uint32 val, int i);
static unsigned char *get_mem_ptr (uint32 addr, uint32 size);
static void store_bytes (unsigned char *mem, uint32 waddr,
			 uint32 * data, int sz, int32 * ws);

/* One-time init. */

static void
init_sim (void)
{
  grlib_init ();
  mem_init ();
  port_init ();
  gpt_init ();
  ebase.ramstart = RAM_START;
}

/* Power-on reset init. */

static void
reset (void)
{
  leon2_reset ();
  uart_irq_start ();
  gpt_reset ();
  sregs[0].intack = irqctrl_intack;

}

/* IU error mode manager. */

static void
error_mode (uint32 pc)
{

}

/* Memory init. */

static void
mem_init (void)
{

  if (sis_verbose)
    printf ("RAM start: 0x%x, RAM size: %d K, ROM size: %d K\n",
	    RAM_START, (RAM_MASK + 1) / 1024, (ROM_MASK + 1) / 1024);
}

/* Flush ports when simulator stops. */

static void
sim_halt (void)
{
#ifdef FAST_UART
  flush_uart ();
#endif
}

static void
close_port (void)
{
  if (f1open && f1in != stdin)
    fclose (f1in);
}

static void
exit_sim (void)
{
  close_port ();
}

static void
leon2_reset (void)
{
  int i;

  irqctrl_ipr = 0;
  irqctrl_imr = 0;
  irqctrl_ifr = 0;

  wnuma = wnumb = 0;
  anum = aind = bnum = bind = 0;

  uart_stat_reg = UARTA_SRE | UARTA_HRE;

  gpt_counter[0] = 0xffffffff;
  gpt_reload[0] = 0xffffffff;
  gpt_scaler = 0xffff;
  gpt_ctrl[0] = 0;
  gpt_ctrl[1] = 0;
}

static void
irqctrl_intack (int32 level)
{
  int irq_test;

  if (sis_verbose > 2)
    printf ("interrupt %d acknowledged\n", level);
  if (irqctrl_ifr & (1 << level))
    irqctrl_ifr &= ~(1 << level);
  else
    irqctrl_ipr &= ~(1 << level);
  chk_irq ();
}

static void
chk_irq (void)
{
  int32 i;
  uint32 itmp;
  int old_irl;

  old_irl = ext_irl[0];
  itmp = ((irqctrl_ipr | irqctrl_ifr) & irqctrl_imr) & 0x0fffe;
  ext_irl[0] = 0;
  if (itmp != 0)
    {
      for (i = 15; i > 0; i--)
	{
	  if (((itmp >> i) & 1) != 0)
	    {
	      if ((sis_verbose > 2) && (i > old_irl))
		printf ("IU irl: %d\n", i);
	      ext_irl[0] = i;
	      break;
	    }
	}
    }
}

static void
set_irq (int32 level)
{
  irqctrl_ipr |= (1 << level);
  chk_irq ();
}

static int32
apb_read (uint32 addr, uint32 * data)
{

  switch (addr & 0xfff)
    {

    case APBUART_RXTX:		/* 0x100 */
    case APBUART_STATUS:	/* 0x104 */
      *data = grlib_read_uart (addr);
      break;

    case IRQCTRL_IPR:		/* 0x204 */
      *data = irqctrl_ipr;
      break;

    case IRQCTRL_IFR:		/* 0x208 */
      *data = irqctrl_ifr;
      break;

    case IRQCTRL_IMR:		/* 0x240 */
      *data = irqctrl_imr;
      break;

    case TIMER_SCALER:		/* 0x300 */
      *data = gpt_scaler - (now () - gpt_scaler_start);
      break;

    case TIMER_SCLOAD:		/* 0x304 */
      *data = gpt_scaler;
      break;

    case LEON2_CONFIG:		/* 0x308 */
      *data = 0x700310;
      break;

    case TIMER_TIMER1:		/* 0x310 */
      *data = gpt_counter[0];
      break;

    case TIMER_RELOAD1:	/* 0x314 */
      *data = gpt_reload[0];
      break;

    case TIMER_CTRL1:		/* 0x318 */
      *data = gpt_ctrl[0];
      break;

    case TIMER_TIMER2:		/* 0x320 */
      *data = gpt_counter[1];
      break;

    case TIMER_RELOAD2:	/* 0x324 */
      *data = gpt_reload[1];
      break;

    case TIMER_CTRL2:		/* 0x328 */
      *data = gpt_ctrl[1];
      break;

    case CACHE_CTRL:		/* 0x328 */
      *data = cache_ctrl;
      break;

    default:
      *data = 0;
      break;
    }

  if (sis_verbose > 1)
    printf ("APB read  a: %08x, d: %08x\n", addr, *data);

  return MOK;
}

static int
apb_write (uint32 addr, uint32 data)
{
  if (sis_verbose > 1)
    printf ("APB write a: %08x, d: %08x\n", addr, data);
  switch (addr & 0xff)
    {

    case APBUART_RXTX:		/* 0x100 */
    case APBUART_STATUS:	/* 0x104 */
      grlib_write_uart (addr, data);
      break;

    case IRQCTRL_IFR:		/* 0x208 */
      irqctrl_ifr = data & 0xfffe;
      chk_irq ();
      break;

    case IRQCTRL_ICR:		/* 0x20C */
      irqctrl_ipr &= ~data & 0x0fffe;
      chk_irq ();
      break;

    case IRQCTRL_IMR:		/* 0x240 */
      irqctrl_imr = data & 0x7ffe;
      chk_irq ();
      break;

    case TIMER_SCLOAD:		/* 0x304 */
      gpt_scaler_set (data);
      break;

    case TIMER_TIMER1:		/* 0x310 */
      gpt_counter[0] = data;
      break;

    case TIMER_RELOAD1:	/* 0x314 */
      gpt_reload[0] = data;
      break;

    case TIMER_CTRL1:		/* 0x318 */
      timer_ctrl (data, 0);
      break;

    case TIMER_TIMER2:		/* 0x320 */
      gpt_counter[1] = data;
      break;

    case TIMER_RELOAD2:	/* 0x324 */
      gpt_reload[1] = data;
      break;

    case TIMER_CTRL2:		/* 0x328 */
      timer_ctrl (data, 1);
      break;

    case POWER_DOWN:		/* 0x328 */
      pwd_enter(sregs);
      break;

    case CACHE_CTRL:		/* 0x328 */
      cache_ctrl = data & 0x1000f;
      break;

    default:
      break;
    }
  return MOK;
}


/* APBUART. */

static int ifd1 = -1, ofd1 = -1;

static void
init_stdio (void)
{
  if (dumbio)
    return;
#ifdef HAVE_TERMIOS_H
  if (ifd1 == 0 && f1open)
    {
      tcsetattr (0, TCSANOW, &ioc1);
      tcflush (ifd1, TCIFLUSH);
    }
#endif
}

static void
restore_stdio (void)
{
  if (dumbio)
    return;
#ifdef HAVE_TERMIOS_H
  if (ifd1 == 0 && f1open && tty_setup)
    tcsetattr (0, TCSANOW, &iocold1);
#endif
}

#define DO_STDIO_READ( _fd_, _buf_, _len_ )          \
		( dumbio || nouartrx ? (0) : read( _fd_, _buf_, _len_ ) )

static void
port_init (void)
{
  f1in = stdin;
  f1out = stdout;
  if (uart_dev1[0] != 0)
    if ((fd1 = open (uart_dev1, O_RDWR | O_NONBLOCK)) < 0)
      printf ("Warning, couldn't open output device %s\n", uart_dev1);
    else
      {
	if (sis_verbose)
	  printf ("serial port A on %s\n", uart_dev1);
	f1in = f1out = fdopen (fd1, "r+");
	setbuf (f1out, NULL);
	f1open = 1;
      }
  if (f1in)
    ifd1 = fileno (f1in);
  if (ifd1 == 0)
    {
      if (sis_verbose)
	printf ("serial port A on stdin/stdout\n");
      if (!dumbio)
	{
#ifdef HAVE_TERMIOS_H
	  tcgetattr (ifd1, &ioc1);
	  if (tty_setup)
	    {
	      iocold1 = ioc1;
	      ioc1.c_lflag &= ~(ICANON | ECHO);
	      ioc1.c_cc[VMIN] = 0;
	      ioc1.c_cc[VTIME] = 0;
	    }
#endif
	}
      f1open = 1;
    }

  if (f1out)
    {
      ofd1 = fileno (f1out);
      if (!dumbio && tty_setup && ofd1 == 1)
	setbuf (f1out, NULL);
    }

  wnuma = 0;
}

static uint32
grlib_read_uart (uint32 addr)
{

  unsigned tmp = 0;

  switch (addr & 0xfff)
    {

    case 0x070:		/* UART 1 RX/TX */
#ifndef _WIN32
#ifdef FAST_UART
      if (aind < anum)
	{
	  if ((aind + 1) < anum)
	    set_irq (3);
	  return (uint32) aq[aind++];
	}
      else
	{
	  if (f1open)
	    anum = DO_STDIO_READ (ifd1, aq, UARTBUF);
	  else
	    anum = 0;
	  if (anum > 0)
	    {
	      aind = 0;
	      if ((aind + 1) < anum)
		set_irq (3);
	      return (uint32) aq[aind++];
	    }
	  else
	    return (uint32) aq[aind];
	}
#else
      tmp = uarta_data;
      uarta_data &= ~UART_DR;
      uart_stat_reg &= ~UARTA_DR;
      return tmp;
#endif
#else
      return 0;
#endif
      break;

    case 0x074:		/* UART status register  */
#ifndef _WIN32
#ifdef FAST_UART

      Ucontrol = 0;
      if (aind < anum)
	Ucontrol |= 0x00000001;
      else
	{
	  if (f1open)
	    anum = DO_STDIO_READ (ifd1, aq, UARTBUF);
	  else
	    anum = 0;
	  if (anum > 0)
	    {
	      Ucontrol |= 0x00000001;
	      aind = 0;
	      set_irq (3);
	    }
	}
      Ucontrol |= 0x00000006;
      return Ucontrol;
#else
      return uart_stat_reg;
#endif
#else
      return 0x00060006;
#endif
      break;
    default:
      if (sis_verbose)
	printf ("Read from unimplemented LEON2 register (%x)\n", addr);

    }
  return 0;
}

static void
grlib_write_uart (uint32 addr, uint32 data)
{
  unsigned char c;

  c = (unsigned char) data;
  switch (addr & 0xfff)
    {

    case 0x070:		/* UART A */
#ifdef FAST_UART
      if (f1open)
	{
	  if (wnuma < UARTBUF)
	    wbufa[wnuma++] = c;
	  else
	    {
	      while (wnuma)
		{
		    wnuma -= fwrite (wbufa, 1, wnuma, f1out);
		}
	      wbufa[wnuma++] = c;
	    }
	}
      set_irq (3);
#else
      if (uart_stat_reg & UARTA_SRE)
	{
	  uarta_sreg = c;
	  uart_stat_reg &= ~UARTA_SRE;
	  event (uarta_tx, 0, UART_TX_TIME);
	}
      else
	{
	  uarta_hreg = c;
	  uart_stat_reg &= ~UARTA_HRE;
	}
#endif
      break;

    case 0x074:		/* UART status register */
#ifndef FAST_UART
      uart_stat_reg &= 1;
#endif
      break;
    default:
      if (sis_verbose)
	printf ("Write to unimplemented APB register (%x)\n", addr);

    }
}

static void
flush_uart (void)
{
  while (wnuma && f1open)
    {
	wnuma -= fwrite (wbufa, 1, wnuma, f1out);
    }
}

static void
uarta_tx (void)
{
  while (f1open)
    {
	while (fwrite (&uarta_sreg, 1, 1, f1out) != 1)
	  continue;
    }
  if (uart_stat_reg & UARTA_HRE)
    {
      uart_stat_reg |= UARTA_SRE;
    }
  else
    {
      uarta_sreg = uarta_hreg;
      uart_stat_reg |= UARTA_HRE;
      event (uarta_tx, 0, UART_TX_TIME);
    }
  set_irq (3);
}

static void
uart_rx (int32 arg)
{
  char rxd;
  int32 rsize = 0;

  if (f1open)
    rsize = DO_STDIO_READ (ifd1, &rxd, 1);
  else
    rsize = 0;
  if (rsize > 0)
    {
      uarta_data = rxd;
      if (uart_stat_reg & UARTA_DR)
	{
	  uart_stat_reg |= UARTA_OR;
	}
      uart_stat_reg |= UARTA_DR;
      set_irq (3);
    }
  event (uart_rx, 0, UART_RX_TIME);
}

static void
uart_intr (int32 arg)
{
  /* Check for UART interrupts every 1000 clk.  */
  grlib_read_uart (APBUART_STATUS);
  flush_uart ();
  event (uart_intr, 0, UART_FLUSH_TIME);
}


static void
uart_irq_start (void)
{
#ifdef FAST_UART
  event (uart_intr, 0, UART_FLUSH_TIME);
#else
#ifndef _WIN32
  event (uart_rx, 0, UART_RX_TIME);
#endif
#endif
}

/* TIMER */

static void
gpt_intr (int32 arg)
{
  int i;

  for (i = 0; i < NTIMERS; i++)
    {
      if (gpt_ctrl[i] & 1)
	{
	  gpt_counter[i] -= 1;
	  if (gpt_counter[i] == -1)
	    {
	      set_irq (TIMER_IRQ + i);
	      if (gpt_ctrl[i] & 2)
		gpt_counter[i] = gpt_reload[i];
	    }
	}
    }
  event (gpt_intr, 0, gpt_scaler + 1);
  gpt_scaler_start = now ();
}

static void
gpt_init (void)
{
  if (sis_verbose)
    printf ("GPT started (period %d)\n\r", gpt_scaler + 1);
}

static void
gpt_reset (void)
{
  event (gpt_intr, 0, gpt_scaler + 1);
  gpt_scaler_start = now ();
}

static void
gpt_scaler_set (uint32 val)
{
  /* Mask for 16-bit scaler. */
  gpt_scaler = val & 0x0ffff;
}

static void
timer_ctrl (uint32 val, int i)
{
  if (val & 4)
    {
      /* Reload.  */
      gpt_counter[i] = gpt_reload[i];
    }
  gpt_ctrl[i] = val & 0xb;
}

/* Store data in host byte order.  MEM points to the beginning of the
   emulated memory; WADDR contains the index the emulated memory,
   DATA points to words in host byte order to be stored.  SZ contains log(2)
   of the number of bytes to retrieve, and can be 0 (1 byte), 1 (one half-word),
   2 (one word), or 3 (two words); WS should return the number of wait-states. */

static void
store_bytes (unsigned char *mem, uint32 waddr, uint32 * data, int32 sz,
	     int32 * ws)
{
  switch (sz)
    {
    case 0:
      waddr ^= EBT;
      mem[waddr] = *data & 0x0ff;
      *ws = 0;
      break;
    case 1:
#ifdef HOST_LITTLE_ENDIAN
      waddr ^= 2;
#endif
      memcpy (&mem[waddr], data, 2);
      *ws = 0;
      break;
    case 2:
      memcpy (&mem[waddr], data, 4);
      *ws = 0;
      break;
    case 3:
      memcpy (&mem[waddr], data, 8);
      *ws = 0;
      break;
    }
}


/* Memory emulation.  */

static int
memory_iread (uint32 addr, uint32 * data, int32 * ws)
{
  if ((addr >= RAM_START) && (addr < RAM_END))
    {
      memcpy (data, &ramb[addr & RAM_MASK], 4);
      *ws = 0;
      return 0;
    }
  else if (addr < ROM_END)
    {
      memcpy (data, &romb[addr], 4);
      *ws = 0;
      return 0;
    }

  if (sis_verbose)
    printf ("Memory exception at %x (illegal address)\n", addr);
  *ws = MEM_EX_WS;
  return 1;
}

static int
memory_read (uint32 addr, uint32 * data, int32 * ws)
{
  int32 mexc;

  if ((addr >= RAM_START) && (addr < RAM_END))
    {
      memcpy (data, &ramb[addr & RAM_MASK], 4);
      *ws = 0;
      return 0;
    }
  else if ((addr >= APBSTART) && (addr < APBEND))
    {
      mexc = apb_read (addr, data);
      if (mexc)
	*ws = MEM_EX_WS;
      else
	*ws = 0;
      return mexc;
    }
  else if (addr < ROM_END)
    {
      memcpy (data, &romb[addr], 4);
      *ws = 0;
      return 0;
    }

  if (sis_verbose)
    printf ("Memory exception at %x (illegal address)\n", addr);
  *ws = MEM_EX_WS;
  return 1;
}

static int
memory_write (uint32 addr, uint32 * data, int32 sz, int32 * ws)
{
  uint32 byte_addr;
  uint32 byte_mask;
  uint32 waddr;
  uint32 *ram;
  int32 mexc;
  int i;
  int wphit[2];

  if ((addr >= RAM_START) && (addr < RAM_END))
    {
      waddr = addr & RAM_MASK;
      store_bytes (ramb, waddr, data, sz, ws);
      return 0;
    }
  else if ((addr >= APBSTART) && (addr < APBEND))
    {
      if (sz != 2)
	{
	  *ws = MEM_EX_WS;
	  return 1;
	}
      apb_write (addr, *data);
      *ws = 0;
      return 0;
    }
  else if (addr < ROM_END)
    {
      *ws = 0;
      store_bytes (romb, addr, data, sz, ws);
      return 0;
    }

  *ws = MEM_EX_WS;
  return 1;
}

static unsigned char *
get_mem_ptr (uint32 addr, uint32 size)
{
  if ((addr + size) < ROM_END)
    {
      return &romb[addr];
    }
  else if ((addr >= RAM_START) && ((addr + size) < RAM_END))
    {
      return &ramb[addr & RAM_MASK];
    }

  return (char *) -1;
}

static int
sis_memory_write (uint32 addr, const unsigned char *data, uint32 length)
{
  char *mem;

  if ((mem = get_mem_ptr (addr, length)) == ((char *) -1))
    return 0;

  memcpy (mem, data, length);
  return length;
}

static int
sis_memory_read (uint32 addr, char *data, uint32 length)
{
  char *mem;
  int ws;
  int w4;

  if (length == 4)
    {
      memory_read (addr, &w4, &ws);
      memcpy (data, &w4, length);
      return 4;
    }

  if ((mem = get_mem_ptr (addr, length)) == ((char *) -1))
    return 0;

  memcpy (data, mem, length);
  return length;
}

static void
boot_init (void)
{
  /* Generate 1 MHz RTC tick.  */
  apb_write (TIMER_SCALER, ebase.freq - 1);
  apb_write (TIMER_SCLOAD, ebase.freq - 1);
  apb_write (TIMER_TIMER1, -1);
  apb_write (TIMER_RELOAD1, -1);
  apb_write (TIMER_CTRL1, 0x7);

  sregs->wim = 2;
  sregs->psr = 0x000010e0;
  sregs->r[30] = RAM_END;
  sregs->r[14] = sregs->r[30] - 96 * 4;
  cache_ctrl = 0x01000f;
}

const struct memsys leon2 = {
  init_sim,
  reset,
  error_mode,
  sim_halt,
  exit_sim,
  init_stdio,
  restore_stdio,
  memory_iread,
  memory_read,
  memory_write,
  sis_memory_write,
  sis_memory_read,
  boot_init
};