summaryrefslogtreecommitdiff
path: root/cpukit/score/cpu/bfin/include/rtems/score/cpu.h
diff options
context:
space:
mode:
Diffstat (limited to 'cpukit/score/cpu/bfin/include/rtems/score/cpu.h')
-rw-r--r--cpukit/score/cpu/bfin/include/rtems/score/cpu.h185
1 files changed, 5 insertions, 180 deletions
diff --git a/cpukit/score/cpu/bfin/include/rtems/score/cpu.h b/cpukit/score/cpu/bfin/include/rtems/score/cpu.h
index 9307305743..893a3ae359 100644
--- a/cpukit/score/cpu/bfin/include/rtems/score/cpu.h
+++ b/cpukit/score/cpu/bfin/include/rtems/score/cpu.h
@@ -54,121 +54,15 @@ extern "C" {
*/
#define CPU_ISR_PASSES_FRAME_POINTER TRUE
-/**
- * @def CPU_HARDWARE_FP
- *
- * Does the CPU have hardware floating point?
- *
- * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
- * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
- *
- * If there is a FP coprocessor such as the i387 or mc68881, then
- * the answer is TRUE.
- *
- * The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
- * It indicates whether or not this CPU model has FP support. For
- * example, it would be possible to have an i386_nofp CPU model
- * which set this to false to indicate that you have an i386 without
- * an i387 and wish to leave floating point support out of RTEMS.
- */
+#define CPU_HARDWARE_FP FALSE
-/**
- * @def CPU_SOFTWARE_FP
- *
- * Does the CPU have no hardware floating point and GCC provides a
- * software floating point implementation which must be context
- * switched?
- *
- * This feature conditional is used to indicate whether or not there
- * is software implemented floating point that must be context
- * switched. The determination of whether or not this applies
- * is very tool specific and the state saved/restored is also
- * compiler specific.
- *
- * Port Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-#if ( BLACKFIN_CPU_HAS_FPU == 1 )
-#define CPU_HARDWARE_FP TRUE
-#else
-#define CPU_HARDWARE_FP FALSE
-#endif
-#define CPU_SOFTWARE_FP FALSE
+#define CPU_SOFTWARE_FP FALSE
-/**
- * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
- *
- * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
- * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
- *
- * So far, the only CPUs in which this option has been used are the
- * HP PA-RISC and PowerPC. On the PA-RISC, The HP C compiler and
- * gcc both implicitly used the floating point registers to perform
- * integer multiplies. Similarly, the PowerPC port of gcc has been
- * seen to allocate floating point local variables and touch the FPU
- * even when the flow through a subroutine (like vfprintf()) might
- * not use floating point formats.
- *
- * If a function which you would not think utilize the FP unit DOES,
- * then one can not easily predict which tasks will use the FP hardware.
- * In this case, this option should be TRUE.
- *
- * If @ref CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
- *
- * Port Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-#define CPU_ALL_TASKS_ARE_FP FALSE
+#define CPU_ALL_TASKS_ARE_FP FALSE
-/**
- * Should the IDLE task have a floating point context?
- *
- * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
- * and it has a floating point context which is switched in and out.
- * If FALSE, then the IDLE task does not have a floating point context.
- *
- * Setting this to TRUE negatively impacts the time required to preempt
- * the IDLE task from an interrupt because the floating point context
- * must be saved as part of the preemption.
- *
- * Port Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-#define CPU_IDLE_TASK_IS_FP FALSE
+#define CPU_IDLE_TASK_IS_FP FALSE
-/**
- * Should the saving of the floating point registers be deferred
- * until a context switch is made to another different floating point
- * task?
- *
- * If TRUE, then the floating point context will not be stored until
- * necessary. It will remain in the floating point registers and not
- * disturned until another floating point task is switched to.
- *
- * If FALSE, then the floating point context is saved when a floating
- * point task is switched out and restored when the next floating point
- * task is restored. The state of the floating point registers between
- * those two operations is not specified.
- *
- * If the floating point context does NOT have to be saved as part of
- * interrupt dispatching, then it should be safe to set this to TRUE.
- *
- * Setting this flag to TRUE results in using a different algorithm
- * for deciding when to save and restore the floating point context.
- * The deferred FP switch algorithm minimizes the number of times
- * the FP context is saved and restored. The FP context is not saved
- * until a context switch is made to another, different FP task.
- * Thus in a system with only one FP task, the FP context will never
- * be saved or restored.
- *
- * Port Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-#define CPU_USE_DEFERRED_FP_SWITCH TRUE
+#define CPU_USE_DEFERRED_FP_SWITCH FALSE
#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
@@ -290,15 +184,6 @@ typedef struct {
(_context)->register_sp
/**
- * This defines the complete set of floating point registers that must
- * be saved during any context switch from one thread to another.
- */
-typedef struct {
- /* FPU registers are listed here */
- /* Blackfin has no Floating Point */
-} Context_Control_fp;
-
-/**
* This defines the set of integer and processor state registers that must
* be saved during an interrupt. This set does not include any which are
* in @ref Context_Control.
@@ -321,29 +206,6 @@ typedef struct {
/** @{ **/
/** @} **/
-/*
- * Nothing prevents the porter from declaring more CPU specific variables.
- *
- * Port Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-
-/* XXX: if needed, put more variables here */
-
-/**
- * @addtogroup RTEMSScoreCPUBfinCPUContext
- * The size of the floating point context area. On some CPUs this
- * will not be a "sizeof" because the format of the floating point
- * area is not defined -- only the size is. This is usually on
- * CPUs with a "floating point save context" instruction.
- *
- * Port Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
-
#endif /* ASM */
/**
@@ -618,9 +480,6 @@ void _CPU_Context_Initialize(
#define _CPU_Context_Restart_self( _the_context ) \
_CPU_Context_restore( (_the_context) );
-#define _CPU_Context_Initialize_fp( _destination ) \
- memset( *( _destination ), 0, CPU_CONTEXT_FP_SIZE );
-
/* end of Context handler macros */
/* Fatal Error manager macros */
@@ -714,40 +573,6 @@ void _CPU_Context_restore(
Context_Control *new_context
) RTEMS_NO_RETURN;
-/**
- * This routine saves the floating point context passed to it.
- *
- * @param[in] fp_context_ptr is a pointer to a pointer to a floating
- * point context area
- *
- * @return on output @a *fp_context_ptr will contain the address that
- * should be used with @ref _CPU_Context_restore_fp to restore this context.
- *
- * Port Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-void _CPU_Context_save_fp(
- Context_Control_fp **fp_context_ptr
-);
-
-/**
- * This routine restores the floating point context passed to it.
- *
- * @param[in] fp_context_ptr is a pointer to a pointer to a floating
- * point context area to restore
- *
- * @return on output @a *fp_context_ptr will contain the address that
- * should be used with @ref _CPU_Context_save_fp to save this context.
- *
- * Port Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-void _CPU_Context_restore_fp(
- Context_Control_fp **fp_context_ptr
-);
-
/** @} */
/* FIXME */