summaryrefslogtreecommitdiff
path: root/cpukit/score/cpu/powerpc/rtems/score/cpu.h
diff options
context:
space:
mode:
Diffstat (limited to 'cpukit/score/cpu/powerpc/rtems/score/cpu.h')
-rw-r--r--cpukit/score/cpu/powerpc/rtems/score/cpu.h1311
1 files changed, 0 insertions, 1311 deletions
diff --git a/cpukit/score/cpu/powerpc/rtems/score/cpu.h b/cpukit/score/cpu/powerpc/rtems/score/cpu.h
deleted file mode 100644
index c30b9dc967..0000000000
--- a/cpukit/score/cpu/powerpc/rtems/score/cpu.h
+++ /dev/null
@@ -1,1311 +0,0 @@
-/**
- * @file
- *
- * @brief PowerPC CPU Department Source
- */
-
-/*
- * COPYRIGHT (c) 1989-2012.
- * On-Line Applications Research Corporation (OAR).
- *
- * COPYRIGHT (c) 1995 i-cubed ltd.
- *
- * To anyone who acknowledges that this file is provided "AS IS"
- * without any express or implied warranty:
- * permission to use, copy, modify, and distribute this file
- * for any purpose is hereby granted without fee, provided that
- * the above copyright notice and this notice appears in all
- * copies, and that the name of i-cubed limited not be used in
- * advertising or publicity pertaining to distribution of the
- * software without specific, written prior permission.
- * i-cubed limited makes no representations about the suitability
- * of this software for any purpose.
- *
- * Copyright (c) 2001 Andy Dachs <a.dachs@sstl.co.uk>.
- *
- * Copyright (c) 2001 Surrey Satellite Technology Limited (SSTL).
- *
- * Copyright (c) 2010-2013 embedded brains GmbH.
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rtems.org/license/LICENSE.
- */
-
-#ifndef _RTEMS_SCORE_CPU_H
-#define _RTEMS_SCORE_CPU_H
-
-#include <rtems/score/types.h>
-#include <rtems/score/powerpc.h>
-#include <rtems/powerpc/registers.h>
-
-#ifndef ASM
- #include <string.h> /* for memset() */
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* conditional compilation parameters */
-
-/*
- * Should the calls to _Thread_Enable_dispatch be inlined?
- *
- * If TRUE, then they are inlined.
- * If FALSE, then a subroutine call is made.
- *
- * Basically this is an example of the classic trade-off of size
- * versus speed. Inlining the call (TRUE) typically increases the
- * size of RTEMS while speeding up the enabling of dispatching.
- * [NOTE: In general, the _Thread_Dispatch_disable_level will
- * only be 0 or 1 unless you are in an interrupt handler and that
- * interrupt handler invokes the executive.] When not inlined
- * something calls _Thread_Enable_dispatch which in turns calls
- * _Thread_Dispatch. If the enable dispatch is inlined, then
- * one subroutine call is avoided entirely.]
- */
-
-#define CPU_INLINE_ENABLE_DISPATCH FALSE
-
-/*
- * Does this port provide a CPU dependent IDLE task implementation?
- *
- * If TRUE, then the routine _CPU_Thread_Idle_body
- * must be provided and is the default IDLE thread body instead of
- * _CPU_Thread_Idle_body.
- *
- * If FALSE, then use the generic IDLE thread body if the BSP does
- * not provide one.
- *
- * This is intended to allow for supporting processors which have
- * a low power or idle mode. When the IDLE thread is executed, then
- * the CPU can be powered down.
- *
- * The order of precedence for selecting the IDLE thread body is:
- *
- * 1. BSP provided
- * 2. CPU dependent (if provided)
- * 3. generic (if no BSP and no CPU dependent)
- */
-
-#define CPU_PROVIDES_IDLE_THREAD_BODY FALSE
-
-/*
- * Does the stack grow up (toward higher addresses) or down
- * (toward lower addresses)?
- *
- * If TRUE, then the grows upward.
- * If FALSE, then the grows toward smaller addresses.
- */
-
-#define CPU_STACK_GROWS_UP FALSE
-
-/*
- * The following is the variable attribute used to force alignment
- * of critical RTEMS structures. On some processors it may make
- * sense to have these aligned on tighter boundaries than
- * the minimum requirements of the compiler in order to have as
- * much of the critical data area as possible in a cache line.
- *
- * The placement of this macro in the declaration of the variables
- * is based on the syntactically requirements of the GNU C
- * "__attribute__" extension. For example with GNU C, use
- * the following to force a structures to a 32 byte boundary.
- *
- * __attribute__ ((aligned (32)))
- *
- * NOTE: Currently only the Priority Bit Map table uses this feature.
- * To benefit from using this, the data must be heavily
- * used so it will stay in the cache and used frequently enough
- * in the executive to justify turning this on.
- */
-
-#define CPU_STRUCTURE_ALIGNMENT \
- __attribute__ ((aligned (PPC_STRUCTURE_ALIGNMENT)))
-
-#define CPU_TIMESTAMP_USE_STRUCT_TIMESPEC TRUE
-
-/*
- * Define what is required to specify how the network to host conversion
- * routines are handled.
- */
-
-#if defined(__BIG_ENDIAN__) || defined(_BIG_ENDIAN)
-#define CPU_BIG_ENDIAN TRUE
-#define CPU_LITTLE_ENDIAN FALSE
-#else
-#define CPU_BIG_ENDIAN FALSE
-#define CPU_LITTLE_ENDIAN TRUE
-#endif
-
-/*
- * Does the CPU have hardware floating point?
- *
- * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
- * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
- *
- * If there is a FP coprocessor such as the i387 or mc68881, then
- * the answer is TRUE.
- *
- * The macro name "PPC_HAS_FPU" should be made CPU specific.
- * It indicates whether or not this CPU model has FP support. For
- * example, it would be possible to have an i386_nofp CPU model
- * which set this to false to indicate that you have an i386 without
- * an i387 and wish to leave floating point support out of RTEMS.
- */
-
-#if ( PPC_HAS_FPU == 1 )
-#define CPU_HARDWARE_FP TRUE
-#define CPU_SOFTWARE_FP FALSE
-#else
-#define CPU_HARDWARE_FP FALSE
-#define CPU_SOFTWARE_FP FALSE
-#endif
-
-/*
- * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
- *
- * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
- * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
- *
- * If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
- *
- * PowerPC Note: It appears the GCC can implicitly generate FPU
- * and Altivec instructions when you least expect them. So make
- * all tasks floating point.
- */
-
-#define CPU_ALL_TASKS_ARE_FP CPU_HARDWARE_FP
-
-/*
- * Should the IDLE task have a floating point context?
- *
- * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
- * and it has a floating point context which is switched in and out.
- * If FALSE, then the IDLE task does not have a floating point context.
- *
- * Setting this to TRUE negatively impacts the time required to preempt
- * the IDLE task from an interrupt because the floating point context
- * must be saved as part of the preemption.
- */
-
-#define CPU_IDLE_TASK_IS_FP FALSE
-
-#define CPU_PER_CPU_CONTROL_SIZE 0
-
-/*
- * Processor defined structures required for cpukit/score.
- */
-
-/*
- * Contexts
- *
- * Generally there are 2 types of context to save.
- * 1. Interrupt registers to save
- * 2. Task level registers to save
- *
- * This means we have the following 3 context items:
- * 1. task level context stuff:: Context_Control
- * 2. floating point task stuff:: Context_Control_fp
- * 3. special interrupt level context :: Context_Control_interrupt
- *
- * On some processors, it is cost-effective to save only the callee
- * preserved registers during a task context switch. This means
- * that the ISR code needs to save those registers which do not
- * persist across function calls. It is not mandatory to make this
- * distinctions between the caller/callee saves registers for the
- * purpose of minimizing context saved during task switch and on interrupts.
- * If the cost of saving extra registers is minimal, simplicity is the
- * choice. Save the same context on interrupt entry as for tasks in
- * this case.
- *
- * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
- * care should be used in designing the context area.
- *
- * On some CPUs with hardware floating point support, the Context_Control_fp
- * structure will not be used or it simply consist of an array of a
- * fixed number of bytes. This is done when the floating point context
- * is dumped by a "FP save context" type instruction and the format
- * is not really defined by the CPU. In this case, there is no need
- * to figure out the exact format -- only the size. Of course, although
- * this is enough information for RTEMS, it is probably not enough for
- * a debugger such as gdb. But that is another problem.
- */
-
-#ifndef __SPE__
- #define PPC_GPR_TYPE uint32_t
- #define PPC_GPR_SIZE 4
- #define PPC_GPR_LOAD lwz
- #define PPC_GPR_STORE stw
-#else
- #define PPC_GPR_TYPE uint64_t
- #define PPC_GPR_SIZE 8
- #define PPC_GPR_LOAD evldd
- #define PPC_GPR_STORE evstdd
-#endif
-
-#ifndef ASM
-
-typedef struct {
- /* There is no CPU specific per-CPU state */
-} CPU_Per_CPU_control;
-
-/*
- * Non-volatile context according to E500ABIUG, EABI and 32-bit TLS (according
- * to "Power Architecture 32-bit Application Binary Interface Supplement 1.0 -
- * Linux and Embedded")
- */
-typedef struct {
- uint32_t gpr1;
- uint32_t msr;
- uint32_t lr;
- uint32_t cr;
- PPC_GPR_TYPE gpr14;
- PPC_GPR_TYPE gpr15;
- PPC_GPR_TYPE gpr16;
- PPC_GPR_TYPE gpr17;
- PPC_GPR_TYPE gpr18;
- PPC_GPR_TYPE gpr19;
- PPC_GPR_TYPE gpr20;
- PPC_GPR_TYPE gpr21;
- PPC_GPR_TYPE gpr22;
- PPC_GPR_TYPE gpr23;
- PPC_GPR_TYPE gpr24;
- PPC_GPR_TYPE gpr25;
- PPC_GPR_TYPE gpr26;
- PPC_GPR_TYPE gpr27;
- PPC_GPR_TYPE gpr28;
- PPC_GPR_TYPE gpr29;
- PPC_GPR_TYPE gpr30;
- PPC_GPR_TYPE gpr31;
- uint32_t gpr2;
- #if defined(PPC_MULTILIB_ALTIVEC)
- uint32_t reserved_for_alignment;
- uint8_t v20[16];
- uint8_t v21[16];
- uint8_t v22[16];
- uint8_t v23[16];
- uint8_t v24[16];
- uint8_t v25[16];
- uint8_t v26[16];
- uint8_t v27[16];
- uint8_t v28[16];
- uint8_t v29[16];
- uint8_t v30[16];
- uint8_t v31[16];
- uint32_t vrsave;
- #elif defined(__ALTIVEC__)
- /*
- * 12 non-volatile vector registers, cache-aligned area for vscr/vrsave
- * and padding to ensure cache-alignment. Unfortunately, we can't verify
- * the cache line size here in the cpukit but altivec support code will
- * produce an error if this is ever different from 32 bytes.
- *
- * Note: it is the BSP/CPU-support's responsibility to save/restore
- * volatile vregs across interrupts and exceptions.
- */
- uint8_t altivec[16*12 + 32 + PPC_DEFAULT_CACHE_LINE_SIZE];
- #endif
- #if defined(PPC_MULTILIB_FPU)
- double f14;
- double f15;
- double f16;
- double f17;
- double f18;
- double f19;
- double f20;
- double f21;
- double f22;
- double f23;
- double f24;
- double f25;
- double f26;
- double f27;
- double f28;
- double f29;
- double f30;
- double f31;
- #endif
- #if defined(RTEMS_SMP)
- /*
- * This item is at the structure end, so that we can use dcbz for the
- * previous items to optimize the context switch. We must not set this
- * item to zero via the dcbz.
- */
- volatile uint32_t is_executing;
- #endif
-} ppc_context;
-
-typedef struct {
- uint8_t context [
- PPC_DEFAULT_CACHE_LINE_SIZE
- + sizeof(ppc_context)
- + (sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE == 0
- ? 0
- : PPC_DEFAULT_CACHE_LINE_SIZE
- - sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE)
- ];
-} Context_Control;
-
-static inline ppc_context *ppc_get_context( const Context_Control *context )
-{
- uintptr_t clsz = PPC_DEFAULT_CACHE_LINE_SIZE;
- uintptr_t mask = clsz - 1;
- uintptr_t addr = (uintptr_t) context;
-
- return (ppc_context *) ((addr & ~mask) + clsz);
-}
-
-#define _CPU_Context_Get_SP( _context ) \
- ppc_get_context(_context)->gpr1
-
-#ifdef RTEMS_SMP
- static inline bool _CPU_Context_Get_is_executing(
- const Context_Control *context
- )
- {
- return ppc_get_context(context)->is_executing;
- }
-
- static inline void _CPU_Context_Set_is_executing(
- Context_Control *context,
- bool is_executing
- )
- {
- ppc_get_context(context)->is_executing = is_executing;
- }
-#endif
-#endif /* ASM */
-
-#define PPC_CONTEXT_OFFSET_GPR1 (PPC_DEFAULT_CACHE_LINE_SIZE + 0)
-#define PPC_CONTEXT_OFFSET_MSR (PPC_DEFAULT_CACHE_LINE_SIZE + 4)
-#define PPC_CONTEXT_OFFSET_LR (PPC_DEFAULT_CACHE_LINE_SIZE + 8)
-#define PPC_CONTEXT_OFFSET_CR (PPC_DEFAULT_CACHE_LINE_SIZE + 12)
-
-#define PPC_CONTEXT_GPR_OFFSET( gpr ) \
- (((gpr) - 14) * PPC_GPR_SIZE + PPC_DEFAULT_CACHE_LINE_SIZE + 16)
-
-#define PPC_CONTEXT_OFFSET_GPR14 PPC_CONTEXT_GPR_OFFSET( 14 )
-#define PPC_CONTEXT_OFFSET_GPR15 PPC_CONTEXT_GPR_OFFSET( 15 )
-#define PPC_CONTEXT_OFFSET_GPR16 PPC_CONTEXT_GPR_OFFSET( 16 )
-#define PPC_CONTEXT_OFFSET_GPR17 PPC_CONTEXT_GPR_OFFSET( 17 )
-#define PPC_CONTEXT_OFFSET_GPR18 PPC_CONTEXT_GPR_OFFSET( 18 )
-#define PPC_CONTEXT_OFFSET_GPR19 PPC_CONTEXT_GPR_OFFSET( 19 )
-#define PPC_CONTEXT_OFFSET_GPR20 PPC_CONTEXT_GPR_OFFSET( 20 )
-#define PPC_CONTEXT_OFFSET_GPR21 PPC_CONTEXT_GPR_OFFSET( 21 )
-#define PPC_CONTEXT_OFFSET_GPR22 PPC_CONTEXT_GPR_OFFSET( 22 )
-#define PPC_CONTEXT_OFFSET_GPR23 PPC_CONTEXT_GPR_OFFSET( 23 )
-#define PPC_CONTEXT_OFFSET_GPR24 PPC_CONTEXT_GPR_OFFSET( 24 )
-#define PPC_CONTEXT_OFFSET_GPR25 PPC_CONTEXT_GPR_OFFSET( 25 )
-#define PPC_CONTEXT_OFFSET_GPR26 PPC_CONTEXT_GPR_OFFSET( 26 )
-#define PPC_CONTEXT_OFFSET_GPR27 PPC_CONTEXT_GPR_OFFSET( 27 )
-#define PPC_CONTEXT_OFFSET_GPR28 PPC_CONTEXT_GPR_OFFSET( 28 )
-#define PPC_CONTEXT_OFFSET_GPR29 PPC_CONTEXT_GPR_OFFSET( 29 )
-#define PPC_CONTEXT_OFFSET_GPR30 PPC_CONTEXT_GPR_OFFSET( 30 )
-#define PPC_CONTEXT_OFFSET_GPR31 PPC_CONTEXT_GPR_OFFSET( 31 )
-#define PPC_CONTEXT_OFFSET_GPR2 PPC_CONTEXT_GPR_OFFSET( 32 )
-
-#ifdef PPC_MULTILIB_ALTIVEC
- #define PPC_CONTEXT_OFFSET_V( v ) \
- ( ( ( v ) - 20 ) * 16 + PPC_DEFAULT_CACHE_LINE_SIZE + 96 )
- #define PPC_CONTEXT_OFFSET_V20 PPC_CONTEXT_OFFSET_V( 20 )
- #define PPC_CONTEXT_OFFSET_V21 PPC_CONTEXT_OFFSET_V( 21 )
- #define PPC_CONTEXT_OFFSET_V22 PPC_CONTEXT_OFFSET_V( 22 )
- #define PPC_CONTEXT_OFFSET_V23 PPC_CONTEXT_OFFSET_V( 23 )
- #define PPC_CONTEXT_OFFSET_V24 PPC_CONTEXT_OFFSET_V( 24 )
- #define PPC_CONTEXT_OFFSET_V25 PPC_CONTEXT_OFFSET_V( 25 )
- #define PPC_CONTEXT_OFFSET_V26 PPC_CONTEXT_OFFSET_V( 26 )
- #define PPC_CONTEXT_OFFSET_V27 PPC_CONTEXT_OFFSET_V( 27 )
- #define PPC_CONTEXT_OFFSET_V28 PPC_CONTEXT_OFFSET_V( 28 )
- #define PPC_CONTEXT_OFFSET_V29 PPC_CONTEXT_OFFSET_V( 29 )
- #define PPC_CONTEXT_OFFSET_V30 PPC_CONTEXT_OFFSET_V( 30 )
- #define PPC_CONTEXT_OFFSET_V31 PPC_CONTEXT_OFFSET_V( 31 )
- #define PPC_CONTEXT_OFFSET_VRSAVE PPC_CONTEXT_OFFSET_V( 32 )
- #define PPC_CONTEXT_OFFSET_F( f ) \
- ( ( ( f ) - 14 ) * 8 + PPC_DEFAULT_CACHE_LINE_SIZE + 296 )
-#else
- #define PPC_CONTEXT_OFFSET_F( f ) \
- ( ( ( f ) - 14 ) * 8 + PPC_DEFAULT_CACHE_LINE_SIZE + 96 )
-#endif
-
-#ifdef PPC_MULTILIB_FPU
- #define PPC_CONTEXT_OFFSET_F14 PPC_CONTEXT_OFFSET_F( 14 )
- #define PPC_CONTEXT_OFFSET_F15 PPC_CONTEXT_OFFSET_F( 15 )
- #define PPC_CONTEXT_OFFSET_F16 PPC_CONTEXT_OFFSET_F( 16 )
- #define PPC_CONTEXT_OFFSET_F17 PPC_CONTEXT_OFFSET_F( 17 )
- #define PPC_CONTEXT_OFFSET_F18 PPC_CONTEXT_OFFSET_F( 18 )
- #define PPC_CONTEXT_OFFSET_F19 PPC_CONTEXT_OFFSET_F( 19 )
- #define PPC_CONTEXT_OFFSET_F20 PPC_CONTEXT_OFFSET_F( 20 )
- #define PPC_CONTEXT_OFFSET_F21 PPC_CONTEXT_OFFSET_F( 21 )
- #define PPC_CONTEXT_OFFSET_F22 PPC_CONTEXT_OFFSET_F( 22 )
- #define PPC_CONTEXT_OFFSET_F23 PPC_CONTEXT_OFFSET_F( 23 )
- #define PPC_CONTEXT_OFFSET_F24 PPC_CONTEXT_OFFSET_F( 24 )
- #define PPC_CONTEXT_OFFSET_F25 PPC_CONTEXT_OFFSET_F( 25 )
- #define PPC_CONTEXT_OFFSET_F26 PPC_CONTEXT_OFFSET_F( 26 )
- #define PPC_CONTEXT_OFFSET_F27 PPC_CONTEXT_OFFSET_F( 27 )
- #define PPC_CONTEXT_OFFSET_F28 PPC_CONTEXT_OFFSET_F( 28 )
- #define PPC_CONTEXT_OFFSET_F29 PPC_CONTEXT_OFFSET_F( 29 )
- #define PPC_CONTEXT_OFFSET_F30 PPC_CONTEXT_OFFSET_F( 30 )
- #define PPC_CONTEXT_OFFSET_F31 PPC_CONTEXT_OFFSET_F( 31 )
-#endif
-
-#if defined(PPC_MULTILIB_FPU)
- #define PPC_CONTEXT_VOLATILE_SIZE PPC_CONTEXT_OFFSET_F( 32 )
-#elif defined(PPC_MULTILIB_ALTIVEC)
- #define PPC_CONTEXT_VOLATILE_SIZE (PPC_CONTEXT_OFFSET_VRSAVE + 4)
-#else
- #define PPC_CONTEXT_VOLATILE_SIZE (PPC_CONTEXT_GPR_OFFSET( 32 ) + 4)
-#endif
-
-#ifdef RTEMS_SMP
- #define PPC_CONTEXT_OFFSET_IS_EXECUTING PPC_CONTEXT_VOLATILE_SIZE
-#endif
-
-#ifndef ASM
-typedef struct {
-#if (PPC_HAS_FPU == 1)
- /* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over
- * procedure calls. However, this would mean that the interrupt
- * frame had to hold f0-f13, and the fpscr. And as the majority
- * of tasks will not have an FP context, we will save the whole
- * context here.
- */
-#if (PPC_HAS_DOUBLE == 1)
- double f[32];
- uint64_t fpscr;
-#else
- float f[32];
- uint32_t fpscr;
-#endif
-#endif /* (PPC_HAS_FPU == 1) */
-} Context_Control_fp;
-
-typedef struct CPU_Interrupt_frame {
- uint32_t stacklink; /* Ensure this is a real frame (also reg1 save) */
- uint32_t calleeLr; /* link register used by callees: SVR4/EABI */
-
- /* This is what is left out of the primary contexts */
- uint32_t gpr0;
- uint32_t gpr2; /* play safe */
- uint32_t gpr3;
- uint32_t gpr4;
- uint32_t gpr5;
- uint32_t gpr6;
- uint32_t gpr7;
- uint32_t gpr8;
- uint32_t gpr9;
- uint32_t gpr10;
- uint32_t gpr11;
- uint32_t gpr12;
- uint32_t gpr13; /* Play safe */
- uint32_t gpr28; /* For internal use by the IRQ handler */
- uint32_t gpr29; /* For internal use by the IRQ handler */
- uint32_t gpr30; /* For internal use by the IRQ handler */
- uint32_t gpr31; /* For internal use by the IRQ handler */
- uint32_t cr; /* Bits of this are volatile, so no-one may save */
- uint32_t ctr;
- uint32_t xer;
- uint32_t lr;
- uint32_t pc;
- uint32_t msr;
- uint32_t pad[3];
-} CPU_Interrupt_frame;
-
-#endif /* ASM */
-
-/*
- * Does the CPU follow the simple vectored interrupt model?
- *
- * If TRUE, then RTEMS allocates the vector table it internally manages.
- * If FALSE, then the BSP is assumed to allocate and manage the vector
- * table
- *
- * PowerPC Specific Information:
- *
- * The PowerPC and x86 were the first to use the PIC interrupt model.
- * They do not use the simple vectored interrupt model.
- */
-#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
-
-/*
- * Does RTEMS manage a dedicated interrupt stack in software?
- *
- * If TRUE, then a stack is allocated in _ISR_Handler_initialization.
- * If FALSE, nothing is done.
- *
- * If the CPU supports a dedicated interrupt stack in hardware,
- * then it is generally the responsibility of the BSP to allocate it
- * and set it up.
- *
- * If the CPU does not support a dedicated interrupt stack, then
- * the porter has two options: (1) execute interrupts on the
- * stack of the interrupted task, and (2) have RTEMS manage a dedicated
- * interrupt stack.
- *
- * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
- *
- * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
- * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
- * possible that both are FALSE for a particular CPU. Although it
- * is unclear what that would imply about the interrupt processing
- * procedure on that CPU.
- */
-
-#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
-
-/*
- * Does this CPU have hardware support for a dedicated interrupt stack?
- *
- * If TRUE, then it must be installed during initialization.
- * If FALSE, then no installation is performed.
- *
- * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
- *
- * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
- * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
- * possible that both are FALSE for a particular CPU. Although it
- * is unclear what that would imply about the interrupt processing
- * procedure on that CPU.
- */
-
-#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
-
-/*
- * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
- *
- * If TRUE, then the memory is allocated during initialization.
- * If FALSE, then the memory is allocated during initialization.
- *
- * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
- */
-
-#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
-
-/*
- * Does the RTEMS invoke the user's ISR with the vector number and
- * a pointer to the saved interrupt frame (1) or just the vector
- * number (0)?
- */
-
-#define CPU_ISR_PASSES_FRAME_POINTER 0
-
-/*
- * Should the saving of the floating point registers be deferred
- * until a context switch is made to another different floating point
- * task?
- *
- * If TRUE, then the floating point context will not be stored until
- * necessary. It will remain in the floating point registers and not
- * disturned until another floating point task is switched to.
- *
- * If FALSE, then the floating point context is saved when a floating
- * point task is switched out and restored when the next floating point
- * task is restored. The state of the floating point registers between
- * those two operations is not specified.
- *
- * If the floating point context does NOT have to be saved as part of
- * interrupt dispatching, then it should be safe to set this to TRUE.
- *
- * Setting this flag to TRUE results in using a different algorithm
- * for deciding when to save and restore the floating point context.
- * The deferred FP switch algorithm minimizes the number of times
- * the FP context is saved and restored. The FP context is not saved
- * until a context switch is made to another, different FP task.
- * Thus in a system with only one FP task, the FP context will never
- * be saved or restored.
- *
- * Note, however that compilers may use floating point registers/
- * instructions for optimization or they may save/restore FP registers
- * on the stack. You must not use deferred switching in these cases
- * and on the PowerPC attempting to do so will raise a "FP unavailable"
- * exception.
- */
-/*
- * ACB Note: This could make debugging tricky..
- */
-
-/* conservative setting (FALSE); probably doesn't affect performance too much */
-#define CPU_USE_DEFERRED_FP_SWITCH FALSE
-
-/*
- * Processor defined structures required for cpukit/score.
- */
-
-#ifndef ASM
-
-/*
- * This variable is optional. It is used on CPUs on which it is difficult
- * to generate an "uninitialized" FP context. It is filled in by
- * _CPU_Initialize and copied into the task's FP context area during
- * _CPU_Context_Initialize.
- */
-
-/* EXTERN Context_Control_fp _CPU_Null_fp_context; */
-
-#endif /* ndef ASM */
-
-/*
- * This defines the number of levels and the mask used to pick those
- * bits out of a thread mode.
- */
-
-#define CPU_MODES_INTERRUPT_LEVEL 0x00000001 /* interrupt level in mode */
-#define CPU_MODES_INTERRUPT_MASK 0x00000001 /* interrupt level in mode */
-
-/*
- * The size of the floating point context area. On some CPUs this
- * will not be a "sizeof" because the format of the floating point
- * area is not defined -- only the size is. This is usually on
- * CPUs with a "floating point save context" instruction.
- */
-
-#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
-
-/*
- * (Optional) # of bytes for libmisc/stackchk to check
- * If not specifed, then it defaults to something reasonable
- * for most architectures.
- */
-
-#define CPU_STACK_CHECK_SIZE (128)
-
-/*
- * Amount of extra stack (above minimum stack size) required by
- * MPCI receive server thread. Remember that in a multiprocessor
- * system this thread must exist and be able to process all directives.
- */
-
-#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
-
-/*
- * This is defined if the port has a special way to report the ISR nesting
- * level. Most ports maintain the variable _ISR_Nest_level. Note that
- * this is not an option - RTEMS/score _relies_ on _ISR_Nest_level
- * being maintained (e.g. watchdog queues).
- */
-
-#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
-
-/*
- * ISR handler macros
- */
-
-/*
- * Disable all interrupts for an RTEMS critical section. The previous
- * level is returned in _isr_cookie.
- */
-
-#ifndef ASM
-
-static inline uint32_t _CPU_ISR_Get_level( void )
-{
- register unsigned int msr;
- _CPU_MSR_GET(msr);
- if (msr & MSR_EE) return 0;
- else return 1;
-}
-
-static inline void _CPU_ISR_Set_level( uint32_t level )
-{
- register unsigned int msr;
- _CPU_MSR_GET(msr);
- if (!(level & CPU_MODES_INTERRUPT_MASK)) {
- msr |= ppc_interrupt_get_disable_mask();
- }
- else {
- msr &= ~ppc_interrupt_get_disable_mask();
- }
- _CPU_MSR_SET(msr);
-}
-
-void BSP_panic(char *);
-
-/* Fatal Error manager macros */
-
-/*
- * This routine copies _error into a known place -- typically a stack
- * location or a register, optionally disables interrupts, and
- * halts/stops the CPU.
- */
-
-void _BSP_Fatal_error(unsigned int);
-
-#endif /* ASM */
-
-#define _CPU_Fatal_halt( _source, _error ) \
- _BSP_Fatal_error(_error)
-
-/* end of Fatal Error manager macros */
-
-/*
- * Should be large enough to run all RTEMS tests. This ensures
- * that a "reasonable" small application should not have any problems.
- */
-
-#define CPU_STACK_MINIMUM_SIZE (1024*8)
-
-#define CPU_SIZEOF_POINTER 4
-
-/*
- * CPU's worst alignment requirement for data types on a byte boundary. This
- * alignment does not take into account the requirements for the stack.
- */
-
-#define CPU_ALIGNMENT (PPC_ALIGNMENT)
-
-/*
- * This number corresponds to the byte alignment requirement for the
- * heap handler. This alignment requirement may be stricter than that
- * for the data types alignment specified by CPU_ALIGNMENT. It is
- * common for the heap to follow the same alignment requirement as
- * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
- * then this should be set to CPU_ALIGNMENT.
- *
- * NOTE: This does not have to be a power of 2. It does have to
- * be greater or equal to than CPU_ALIGNMENT.
- */
-
-#define CPU_HEAP_ALIGNMENT (PPC_ALIGNMENT)
-
-/*
- * This number corresponds to the byte alignment requirement for memory
- * buffers allocated by the partition manager. This alignment requirement
- * may be stricter than that for the data types alignment specified by
- * CPU_ALIGNMENT. It is common for the partition to follow the same
- * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict
- * enough for the partition, then this should be set to CPU_ALIGNMENT.
- *
- * NOTE: This does not have to be a power of 2. It does have to
- * be greater or equal to than CPU_ALIGNMENT.
- */
-
-#define CPU_PARTITION_ALIGNMENT (PPC_ALIGNMENT)
-
-/*
- * This number corresponds to the byte alignment requirement for the
- * stack. This alignment requirement may be stricter than that for the
- * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
- * is strict enough for the stack, then this should be set to 0.
- *
- * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
- */
-
-#define CPU_STACK_ALIGNMENT (PPC_STACK_ALIGNMENT)
-
-#ifndef ASM
-/* The following routine swaps the endian format of an unsigned int.
- * It must be static because it is referenced indirectly.
- *
- * This version will work on any processor, but if there is a better
- * way for your CPU PLEASE use it. The most common way to do this is to:
- *
- * swap least significant two bytes with 16-bit rotate
- * swap upper and lower 16-bits
- * swap most significant two bytes with 16-bit rotate
- *
- * Some CPUs have special instructions which swap a 32-bit quantity in
- * a single instruction (e.g. i486). It is probably best to avoid
- * an "endian swapping control bit" in the CPU. One good reason is
- * that interrupts would probably have to be disabled to ensure that
- * an interrupt does not try to access the same "chunk" with the wrong
- * endian. Another good reason is that on some CPUs, the endian bit
- * endianness for ALL fetches -- both code and data -- so the code
- * will be fetched incorrectly.
- */
-
-static inline uint32_t CPU_swap_u32(
- uint32_t value
-)
-{
- uint32_t swapped;
-
- __asm__ volatile("rlwimi %0,%1,8,24,31;"
- "rlwimi %0,%1,24,16,23;"
- "rlwimi %0,%1,8,8,15;"
- "rlwimi %0,%1,24,0,7;" :
- "=&r" ((swapped)) : "r" ((value)));
-
- return( swapped );
-}
-
-#define CPU_swap_u16( value ) \
- (((value&0xff) << 8) | ((value >> 8)&0xff))
-
-typedef uint32_t CPU_Counter_ticks;
-
-static inline CPU_Counter_ticks _CPU_Counter_read( void )
-{
- CPU_Counter_ticks value;
-
-#if defined(__PPC_CPU_E6500__)
- /* Use Alternate Time Base */
- __asm__ volatile( "mfspr %0, 526" : "=r" (value) );
-#else
- __asm__ volatile( "mfspr %0, 268" : "=r" (value) );
-#endif
-
- return value;
-}
-
-static inline CPU_Counter_ticks _CPU_Counter_difference(
- CPU_Counter_ticks second,
- CPU_Counter_ticks first
-)
-{
- return second - first;
-}
-
-#endif /* ASM */
-
-
-#ifndef ASM
-/* Context handler macros */
-
-/*
- * Initialize the context to a state suitable for starting a
- * task after a context restore operation. Generally, this
- * involves:
- *
- * - setting a starting address
- * - preparing the stack
- * - preparing the stack and frame pointers
- * - setting the proper interrupt level in the context
- * - initializing the floating point context
- *
- * This routine generally does not set any unnecessary register
- * in the context. The state of the "general data" registers is
- * undefined at task start time.
- */
-
-void _CPU_Context_Initialize(
- Context_Control *the_context,
- uint32_t *stack_base,
- uint32_t size,
- uint32_t new_level,
- void *entry_point,
- bool is_fp,
- void *tls_area
-);
-
-/*
- * This routine is responsible for somehow restarting the currently
- * executing task. If you are lucky, then all that is necessary
- * is restoring the context. Otherwise, there will need to be
- * a special assembly routine which does something special in this
- * case. Context_Restore should work most of the time. It will
- * not work if restarting self conflicts with the stack frame
- * assumptions of restoring a context.
- */
-
-#define _CPU_Context_Restart_self( _the_context ) \
- _CPU_Context_restore( (_the_context) );
-
-/*
- * The purpose of this macro is to allow the initial pointer into
- * a floating point context area (used to save the floating point
- * context) to be at an arbitrary place in the floating point
- * context area.
- *
- * This is necessary because some FP units are designed to have
- * their context saved as a stack which grows into lower addresses.
- * Other FP units can be saved by simply moving registers into offsets
- * from the base of the context area. Finally some FP units provide
- * a "dump context" instruction which could fill in from high to low
- * or low to high based on the whim of the CPU designers.
- */
-
-#define _CPU_Context_Fp_start( _base, _offset ) \
- ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
-
-/*
- * This routine initializes the FP context area passed to it to.
- * There are a few standard ways in which to initialize the
- * floating point context. The code included for this macro assumes
- * that this is a CPU in which a "initial" FP context was saved into
- * _CPU_Null_fp_context and it simply copies it to the destination
- * context passed to it.
- *
- * Other models include (1) not doing anything, and (2) putting
- * a "null FP status word" in the correct place in the FP context.
- */
-
-#define _CPU_Context_Initialize_fp( _destination ) \
- memset( *(_destination), 0, sizeof( **(_destination) ) )
-
-/* end of Context handler macros */
-#endif /* ASM */
-
-#ifndef ASM
-/* Bitfield handler macros */
-
-/*
- * This routine sets _output to the bit number of the first bit
- * set in _value. _value is of CPU dependent type Priority_bit_map_Word.
- * This type may be either 16 or 32 bits wide although only the 16
- * least significant bits will be used.
- *
- * There are a number of variables in using a "find first bit" type
- * instruction.
- *
- * (1) What happens when run on a value of zero?
- * (2) Bits may be numbered from MSB to LSB or vice-versa.
- * (3) The numbering may be zero or one based.
- * (4) The "find first bit" instruction may search from MSB or LSB.
- *
- * RTEMS guarantees that (1) will never happen so it is not a concern.
- * (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
- * _CPU_Priority_Bits_index(). These three form a set of routines
- * which must logically operate together. Bits in the _value are
- * set and cleared based on masks built by _CPU_Priority_mask().
- * The basic major and minor values calculated by _Priority_Major()
- * and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
- * to properly range between the values returned by the "find first bit"
- * instruction. This makes it possible for _Priority_Get_highest() to
- * calculate the major and directly index into the minor table.
- * This mapping is necessary to ensure that 0 (a high priority major/minor)
- * is the first bit found.
- *
- * This entire "find first bit" and mapping process depends heavily
- * on the manner in which a priority is broken into a major and minor
- * components with the major being the 4 MSB of a priority and minor
- * the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
- * priority. And (15 << 4) + 14 corresponds to priority 254 -- the next
- * to the lowest priority.
- *
- * If your CPU does not have a "find first bit" instruction, then
- * there are ways to make do without it. Here are a handful of ways
- * to implement this in software:
- *
- * - a series of 16 bit test instructions
- * - a "binary search using if's"
- * - _number = 0
- * if _value > 0x00ff
- * _value >>=8
- * _number = 8;
- *
- * if _value > 0x0000f
- * _value >=8
- * _number += 4
- *
- * _number += bit_set_table[ _value ]
- *
- * where bit_set_table[ 16 ] has values which indicate the first
- * bit set
- */
-
-#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
- { \
- __asm__ volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \
- "1" ((_value))); \
- }
-
-/* end of Bitfield handler macros */
-
-/*
- * This routine builds the mask which corresponds to the bit fields
- * as searched by _CPU_Bitfield_Find_first_bit(). See the discussion
- * for that routine.
- */
-
-#define _CPU_Priority_Mask( _bit_number ) \
- ( 0x80000000 >> (_bit_number) )
-
-/*
- * This routine translates the bit numbers returned by
- * _CPU_Bitfield_Find_first_bit() into something suitable for use as
- * a major or minor component of a priority. See the discussion
- * for that routine.
- */
-
-#define _CPU_Priority_bits_index( _priority ) \
- (_priority)
-
-/* end of Priority handler macros */
-#endif /* ASM */
-
-/* functions */
-
-#ifndef ASM
-
-/*
- * _CPU_Initialize
- *
- * This routine performs CPU dependent initialization.
- */
-
-void _CPU_Initialize(void);
-
-/*
- * _CPU_ISR_install_vector
- *
- * This routine installs an interrupt vector.
- */
-
-void _CPU_ISR_install_vector(
- uint32_t vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-);
-
-/*
- * _CPU_Context_switch
- *
- * This routine switches from the run context to the heir context.
- */
-
-void _CPU_Context_switch(
- Context_Control *run,
- Context_Control *heir
-);
-
-/*
- * _CPU_Context_restore
- *
- * This routine is generallu used only to restart self in an
- * efficient manner. It may simply be a label in _CPU_Context_switch.
- *
- * NOTE: May be unnecessary to reload some registers.
- */
-
-void _CPU_Context_restore(
- Context_Control *new_context
-) RTEMS_NO_RETURN;
-
-/*
- * _CPU_Context_save_fp
- *
- * This routine saves the floating point context passed to it.
- */
-
-void _CPU_Context_save_fp(
- Context_Control_fp **fp_context_ptr
-);
-
-/*
- * _CPU_Context_restore_fp
- *
- * This routine restores the floating point context passed to it.
- */
-
-void _CPU_Context_restore_fp(
- Context_Control_fp **fp_context_ptr
-);
-
-void _CPU_Context_volatile_clobber( uintptr_t pattern );
-
-void _CPU_Context_validate( uintptr_t pattern );
-
-#ifdef RTEMS_SMP
- uint32_t _CPU_SMP_Initialize( void );
-
- bool _CPU_SMP_Start_processor( uint32_t cpu_index );
-
- void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
-
- void _CPU_SMP_Prepare_start_multitasking( void );
-
- static inline uint32_t _CPU_SMP_Get_current_processor( void )
- {
- uint32_t pir;
-
- /* Use Book E Processor ID Register (PIR) */
- __asm__ volatile (
- "mfspr %[pir], 286"
- : [pir] "=&r" (pir)
- );
-
- return pir;
- }
-
- void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
-
- static inline void _CPU_SMP_Processor_event_broadcast( void )
- {
- __asm__ volatile ( "" : : : "memory" );
- }
-
- static inline void _CPU_SMP_Processor_event_receive( void )
- {
- __asm__ volatile ( "" : : : "memory" );
- }
-#endif
-
-typedef struct {
- uint32_t EXC_SRR0;
- uint32_t EXC_SRR1;
- uint32_t _EXC_number;
- uint32_t EXC_CR;
- uint32_t EXC_CTR;
- uint32_t EXC_XER;
- uint32_t EXC_LR;
- #ifdef __SPE__
- uint32_t EXC_SPEFSCR;
- uint64_t EXC_ACC;
- #endif
- PPC_GPR_TYPE GPR0;
- PPC_GPR_TYPE GPR1;
- PPC_GPR_TYPE GPR2;
- PPC_GPR_TYPE GPR3;
- PPC_GPR_TYPE GPR4;
- PPC_GPR_TYPE GPR5;
- PPC_GPR_TYPE GPR6;
- PPC_GPR_TYPE GPR7;
- PPC_GPR_TYPE GPR8;
- PPC_GPR_TYPE GPR9;
- PPC_GPR_TYPE GPR10;
- PPC_GPR_TYPE GPR11;
- PPC_GPR_TYPE GPR12;
- PPC_GPR_TYPE GPR13;
- PPC_GPR_TYPE GPR14;
- PPC_GPR_TYPE GPR15;
- PPC_GPR_TYPE GPR16;
- PPC_GPR_TYPE GPR17;
- PPC_GPR_TYPE GPR18;
- PPC_GPR_TYPE GPR19;
- PPC_GPR_TYPE GPR20;
- PPC_GPR_TYPE GPR21;
- PPC_GPR_TYPE GPR22;
- PPC_GPR_TYPE GPR23;
- PPC_GPR_TYPE GPR24;
- PPC_GPR_TYPE GPR25;
- PPC_GPR_TYPE GPR26;
- PPC_GPR_TYPE GPR27;
- PPC_GPR_TYPE GPR28;
- PPC_GPR_TYPE GPR29;
- PPC_GPR_TYPE GPR30;
- PPC_GPR_TYPE GPR31;
- #if defined(PPC_MULTILIB_ALTIVEC) || defined(PPC_MULTILIB_FPU)
- uint32_t reserved_for_alignment;
- #endif
- #ifdef PPC_MULTILIB_ALTIVEC
- uint32_t VRSAVE;
-
- /* This field must take stvewx/lvewx requirements into account */
- uint32_t VSCR;
-
- uint8_t V0[16];
- uint8_t V1[16];
- uint8_t V2[16];
- uint8_t V3[16];
- uint8_t V4[16];
- uint8_t V5[16];
- uint8_t V6[16];
- uint8_t V7[16];
- uint8_t V8[16];
- uint8_t V9[16];
- uint8_t V10[16];
- uint8_t V11[16];
- uint8_t V12[16];
- uint8_t V13[16];
- uint8_t V14[16];
- uint8_t V15[16];
- uint8_t V16[16];
- uint8_t V17[16];
- uint8_t V18[16];
- uint8_t V19[16];
- uint8_t V20[16];
- uint8_t V21[16];
- uint8_t V22[16];
- uint8_t V23[16];
- uint8_t V24[16];
- uint8_t V25[16];
- uint8_t V26[16];
- uint8_t V27[16];
- uint8_t V28[16];
- uint8_t V29[16];
- uint8_t V30[16];
- uint8_t V31[16];
- #endif
- #ifdef PPC_MULTILIB_FPU
- double F0;
- double F1;
- double F2;
- double F3;
- double F4;
- double F5;
- double F6;
- double F7;
- double F8;
- double F9;
- double F10;
- double F11;
- double F12;
- double F13;
- double F14;
- double F15;
- double F16;
- double F17;
- double F18;
- double F19;
- double F20;
- double F21;
- double F22;
- double F23;
- double F24;
- double F25;
- double F26;
- double F27;
- double F28;
- double F29;
- double F30;
- double F31;
- uint64_t FPSCR;
- #endif
-} CPU_Exception_frame;
-
-void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
-
-/*
- * _CPU_Initialize_altivec()
- *
- * Global altivec-related initialization.
- */
-void
-_CPU_Initialize_altivec(void);
-
-/*
- * _CPU_Context_switch_altivec
- *
- * This routine switches the altivec contexts passed to it.
- */
-
-void
-_CPU_Context_switch_altivec(
- ppc_context *from,
- ppc_context *to
-);
-
-/*
- * _CPU_Context_restore_altivec
- *
- * This routine restores the altivec context passed to it.
- */
-
-void
-_CPU_Context_restore_altivec(
- ppc_context *ctxt
-);
-
-/*
- * _CPU_Context_initialize_altivec
- *
- * This routine initializes the altivec context passed to it.
- */
-
-void
-_CPU_Context_initialize_altivec(
- ppc_context *ctxt
-);
-
-void _CPU_Fatal_error(
- uint32_t _error
-);
-
-#endif /* ASM */
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _RTEMS_SCORE_CPU_H */