summaryrefslogtreecommitdiffstats
path: root/bsps/m68k/uC5282/start/bspstart.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/m68k/uC5282/start/bspstart.c')
-rw-r--r--bsps/m68k/uC5282/start/bspstart.c673
1 files changed, 673 insertions, 0 deletions
diff --git a/bsps/m68k/uC5282/start/bspstart.c b/bsps/m68k/uC5282/start/bspstart.c
new file mode 100644
index 0000000000..33ce737ceb
--- /dev/null
+++ b/bsps/m68k/uC5282/start/bspstart.c
@@ -0,0 +1,673 @@
+/*
+ * This routine does the bulk of the system initialisation.
+ */
+
+/*
+ * Author: W. Eric Norum <norume@aps.anl.gov>
+ *
+ * COPYRIGHT (c) 2005.
+ * On-Line Applications Research Corporation (OAR).
+ *
+ * The license and distribution terms for this file may be
+ * found in the file LICENSE in this distribution or at
+ * http://www.rtems.org/license/LICENSE.
+ */
+
+#include <bsp.h>
+#include <bsp/bootcard.h>
+#include <rtems/error.h>
+#include <errno.h>
+#include <stdio.h>
+#include <inttypes.h>
+#include <mcf5282/mcf5282.h>
+
+/*
+ * Location of 'VME' access
+ */
+#define VME_ONE_BASE 0x30000000
+#define VME_TWO_BASE 0x31000000
+
+/*
+ * Linker Script Defined Variables
+ */
+extern char RamSize[];
+extern char RamBase[];
+extern char _CPUClockSpeed[];
+extern char _PLLRefClockSpeed[];
+
+uint32_t BSP_sys_clk_speed = (uint32_t)_CPUClockSpeed;
+uint32_t BSP_pll_ref_clock = (uint32_t)_PLLRefClockSpeed;
+
+/*
+ * CPU-space access
+ * The NOP after writing the CACR is there to address the following issue as
+ * described in "Device Errata MCF5282DE", Rev. 1.7, 09/2004:
+ *
+ * 6 Possible Cache Corruption after Setting CACR[CINV]
+ * 6.1 Description
+ * The cache on the MCF5282 was enhanced to function as a unified data and
+ * instruction cache, an instruction cache, or an operand cache. The cache
+ * function and organization is controlled by the cache control register (CACR).
+ * The CINV (Bit 24 = cache invalidate) bit in the CACR causes a cache clear.
+ * If the cache is configured as a unified cache and the CINV bit is set, the
+ * scope of the cache clear is controlled by two other bits in the CACR,
+ * INVI (BIT 21 = CINV instruction cache only) and INVD (BIT 20 = CINV data
+ * cache only). These bits allow the entire cache, just the instruction
+ * portion of the cache, or just the data portion of the cache to be cleared.
+ * If a write to the CACR is performed to clear the cache (CINV = BIT 24 set)
+ * and only a partial clear will be done (INVI = BIT 21 or INVD = BIT 20 set),
+ * then cache corruption may occur.
+ *
+ * 6.2 Workaround
+ * All loads of the CACR that perform a cache clear operation (CINV = BIT 24)
+ * should be followed immediately by a NOP instruction. This avoids the cache
+ * corruption problem.
+ * DATECODES AFFECTED: All
+ *
+ *
+ * Buffered writes must be disabled as described in "MCF5282 Chip Errata",
+ * MCF5282DE, Rev. 6, 5/2009:
+ * SECF124: Buffered Write May Be Executed Twice
+ * Errata type: Silicon
+ * Affected component: Cache
+ * Description: If buffered writes are enabled using the CACR or ACR
+ * registers, the imprecise write transaction generated
+ * by a buffered write may be executed twice.
+ * Workaround: Do not enable buffered writes in the CACR or ACR registers:
+ * CACR[8] = DBWE (default buffered write enable) must be 0
+ * ACRn[5] = BUFW (buffered write enable) must be 0
+ * Fix plan: Currently, there are no plans to fix this.
+ */
+#define m68k_set_cacr_nop(_cacr) \
+ __asm__ volatile ("movec %0,%%cacr\n\tnop" : : "d" (_cacr))
+#define m68k_set_cacr(_cacr) \
+ __asm__ volatile ("movec %0,%%cacr" : : "d" (_cacr))
+#define m68k_set_acr0(_acr0) \
+ __asm__ volatile ("movec %0,%%acr0" : : "d" (_acr0))
+#define m68k_set_acr1(_acr1) \
+ __asm__ volatile ("movec %0,%%acr1" : : "d" (_acr1))
+
+uint32_t mcf5282_acr0_mode = 0;
+uint32_t mcf5282_acr1_mode = 0;
+
+extern void bsp_fake_syscall(int);
+
+/*
+ * The Arcturus boot ROM prints exception information improperly
+ * so use this default exception handler instead. This one also
+ * prints a call backtrace
+ */
+static void handler(int pc)
+{
+ int level;
+ static volatile int reent;
+
+ rtems_interrupt_disable(level);
+ if (reent++) bsp_sysReset(0);
+ {
+ int *p = &pc;
+ int info = p[-1];
+ int pc = p[0];
+ int format = (info >> 28) & 0xF;
+ int faultStatus = ((info >> 24) & 0xC) | ((info >> 16) & 0x3);
+ int vector = (info >> 18) & 0xFF;
+ int statusRegister = info & 0xFFFF;
+ int *fp;
+
+ printk("\n\nPC:%x SR:%x VEC:%x FORMAT:%x STATUS:%x\n", pc,
+ statusRegister,
+ vector,
+ format,
+ faultStatus);
+ fp = &p[-2];
+ for(;;) {
+ int *nfp = (int *)*fp;
+ if ((nfp <= fp)
+ || ((char *)nfp >= RamSize)
+ || ((char *)(nfp[1]) >= RamSize))
+ break;
+ printk("FP:%p -> %p PC:%x\n", fp, nfp, nfp[1]);
+ fp = nfp;
+ }
+ }
+ rtems_task_suspend(0);
+ rtems_panic("done");
+}
+
+void bsp_start( void )
+{
+ int i;
+ const char *clk_speed_str;
+ uint32_t clk_speed, mfd, rfd;
+ uint8_t byte;
+
+ /*
+ * Make sure UART TX is running - necessary for
+ * early printk to work. The firmware monitor
+ * usually enables this anyways but qemu doesn't!
+ */
+ MCF5282_UART_UCR(CONSOLE_PORT) = MCF5282_UART_UCR_TX_ENABLED;
+
+ /*
+ * Set up default exception handler
+ */
+ for (i = 2 ; i < 256 ; i++)
+ if (i != (32+2)) /* Catch all but bootrom system calls */
+ *((void (**)(int))(i * 4)) = handler;
+
+ /*
+ * Invalidate the cache and disable it
+ */
+ m68k_set_acr0(mcf5282_acr0_mode);
+ m68k_set_acr1(mcf5282_acr1_mode);
+ m68k_set_cacr_nop(MCF5XXX_CACR_CINV);
+
+ /*
+ * Cache SDRAM
+ * Enable buffered writes
+ * As Device Errata SECF124 notes this may cause double writes,
+ * but that's not really a big problem and benchmarking tests have
+ * shown that buffered writes do gain some performance.
+ */
+ mcf5282_acr0_mode = MCF5XXX_ACR_AB((uint32_t)RamBase) |
+ MCF5XXX_ACR_AM((uint32_t)RamSize-1) |
+ MCF5XXX_ACR_EN |
+ MCF5XXX_ACR_SM_IGNORE |
+ MCF5XXX_ACR_BWE;
+ m68k_set_acr0(mcf5282_acr0_mode);
+
+ /*
+ * Qemu has no trap handler; install our fake syscall
+ * implementation if there is no existing handler.
+ */
+ if ( 0 == *((void (**)(int))((32+2) * 4)) )
+ *((void (**)(int))((32+2) * 4)) = bsp_fake_syscall;
+
+ /*
+ * Read/write copy of cache registers
+ * Split instruction/data or instruction-only
+ * Allow CPUSHL to invalidate a cache line
+ * Disable buffered writes
+ * No burst transfers on non-cacheable accesses
+ * Default cache mode is *disabled* (cache only ACRx areas)
+ */
+ mcf5xxx_initialize_cacr(
+ MCF5XXX_CACR_CENB |
+ #ifndef RTEMS_MCF5282_BSP_ENABLE_DATA_CACHE
+ MCF5XXX_CACR_DISD |
+ #endif
+ MCF5XXX_CACR_DCM
+ );
+
+ /*
+ * Set up CS* space (fake 'VME')
+ * Two A24/D16 spaces, supervisor data acces
+ */
+ MCF5282_CS1_CSAR = MCF5282_CS_CSAR_BA(VME_ONE_BASE);
+ MCF5282_CS1_CSMR = MCF5282_CS_CSMR_BAM_16M |
+ MCF5282_CS_CSMR_CI |
+ MCF5282_CS_CSMR_SC |
+ MCF5282_CS_CSMR_UC |
+ MCF5282_CS_CSMR_UD |
+ MCF5282_CS_CSMR_V;
+ MCF5282_CS1_CSCR = MCF5282_CS_CSCR_PS_16;
+ MCF5282_CS2_CSAR = MCF5282_CS_CSAR_BA(VME_TWO_BASE);
+ MCF5282_CS2_CSMR = MCF5282_CS_CSMR_BAM_16M |
+ MCF5282_CS_CSMR_CI |
+ MCF5282_CS_CSMR_SC |
+ MCF5282_CS_CSMR_UC |
+ MCF5282_CS_CSMR_UD |
+ MCF5282_CS_CSMR_V;
+ MCF5282_CS2_CSCR = MCF5282_CS_CSCR_PS_16;
+ MCF5282_GPIO_PJPAR |= 0x06;
+
+ /*
+ * Hopefully, the UART clock is still correctly set up
+ * so they can see the printk() output...
+ */
+ clk_speed = 0;
+ printk("Trying to figure out the system clock\n");
+ printk("Checking ENV variable SYS_CLOCK_SPEED:\n");
+ if ( (clk_speed_str = bsp_getbenv("SYS_CLOCK_SPEED")) ) {
+ printk("Found: %s\n", clk_speed_str);
+ for ( clk_speed = 0, i=0;
+ clk_speed_str[i] >= '0' && clk_speed_str[i] <= '9';
+ i++ ) {
+ clk_speed = 10*clk_speed + clk_speed_str[i] - '0';
+ }
+ if ( 0 != clk_speed_str[i] ) {
+ printk("Not a decimal number; I'm not using this setting\n");
+ clk_speed = 0;
+ }
+ } else {
+ printk("Not set.\n");
+ }
+
+ if ( 0 == clk_speed )
+ clk_speed = BSP_sys_clk_speed;
+
+ if ( 0 == clk_speed ) {
+ printk("Using some heuristics to determine clock speed...\n");
+ byte = MCF5282_CLOCK_SYNSR;
+ if ( 0 == byte ) {
+ printk("SYNSR == 0; assuming QEMU at 66MHz\n");
+ BSP_pll_ref_clock = 8250000;
+ mfd = ( 0 << 8 ) | ( 2 << 12 );
+ } else {
+ if ( 0xf8 != byte ) {
+ printk("FATAL ERROR: Unexpected SYNSR contents (0x%02x), can't proceed\n", byte);
+ bsp_sysReset(0);
+ }
+ mfd = MCF5282_CLOCK_SYNCR;
+ }
+ printk("Assuming %" PRIu32 "Hz PLL ref. clock\n", BSP_pll_ref_clock);
+ rfd = (mfd >> 8) & 7;
+ mfd = (mfd >> 12) & 7;
+ /* Check against 'known' cases */
+ if ( 0 != rfd || (2 != mfd && 3 != mfd) ) {
+ printk("WARNING: Pll divisor/multiplier has unknown value; \n");
+ printk(" either your board is not 64MHz or 80Mhz or\n");
+ printk(" it uses a PLL reference other than 8MHz.\n");
+ printk(" I'll proceed anyways but you might have to\n");
+ printk(" reset the board and set uCbootloader ENV\n");
+ printk(" variable \"SYS_CLOCK_SPEED\".\n");
+ }
+ mfd = 2 * (mfd + 2);
+ /* sysclk = pll_ref * 2 * (MFD + 2) / 2^(rfd) */
+ printk(
+ "PLL multiplier: %" PRIu32", output divisor: %" PRIu32 "\n",
+ mfd,
+ rfd
+ );
+ clk_speed = (BSP_pll_ref_clock * mfd) >> rfd;
+ }
+
+ if ( 0 == clk_speed ) {
+ printk("FATAL ERROR: Unable to determine system clock speed\n");
+ bsp_sysReset(0);
+ } else {
+ BSP_sys_clk_speed = clk_speed;
+ printk(
+ "System clock speed: %" PRIu32 "Hz\n", bsp_get_CPU_clock_speed());
+ }
+}
+
+uint32_t bsp_get_CPU_clock_speed(void)
+{
+ return( BSP_sys_clk_speed );
+}
+
+/*
+ * Interrupt controller allocation
+ */
+rtems_status_code
+bsp_allocate_interrupt(int level, int priority)
+{
+ static char used[7];
+ rtems_interrupt_level l;
+ rtems_status_code ret = RTEMS_RESOURCE_IN_USE;
+
+ if ((level < 1) || (level > 7) || (priority < 0) || (priority > 7))
+ return RTEMS_INVALID_NUMBER;
+ rtems_interrupt_disable(l);
+ if ((used[level-1] & (1 << priority)) == 0) {
+ used[level-1] |= (1 << priority);
+ ret = RTEMS_SUCCESSFUL;
+ }
+ rtems_interrupt_enable(l);
+ return ret;
+}
+
+/*
+ * Arcturus bootloader system calls
+ */
+#define syscall_return(type, ret) \
+do { \
+ if ((unsigned long)(ret) >= (unsigned long)(-64)) { \
+ errno = -(ret); \
+ ret = -1; \
+ } \
+ return (type)(ret); \
+} while (0)
+
+#define syscall_1(type,name,d1type,d1) \
+type bsp_##name(d1type d1); \
+type bsp_##name(d1type d1) \
+{ \
+ long ret; \
+ register long __d1 __asm__ ("%d1") = (long)d1; \
+ __asm__ __volatile__ ("move.l %1,%%d0\n\t" \
+ "trap #2\n\t" \
+ "move.l %%d0,%0" \
+ : "=g" (ret) \
+ : "i" (SysCode_##name), "d" (__d1) \
+ : "d0" ); \
+ syscall_return(type,ret); \
+}
+
+#define syscall_2(type,name,d1type,d1,d2type,d2) \
+type bsp_##name(d1type d1, d2type d2); \
+type bsp_##name(d1type d1, d2type d2) \
+{ \
+ long ret; \
+ register long __d1 __asm__ ("%d1") = (long)d1; \
+ register long __d2 __asm__ ("%d2") = (long)d2; \
+ __asm__ __volatile__ ("move.l %1,%%d0\n\t" \
+ "trap #2\n\t" \
+ "move.l %%d0,%0" \
+ : "=g" (ret) \
+ : "i" (SysCode_##name), "d" (__d1),\
+ "d" (__d2) \
+ : "d0" ); \
+ syscall_return(type,ret); \
+}
+
+#define syscall_3(type,name,d1type,d1,d2type,d2,d3type,d3) \
+type bsp_##name(d1type d1, d2type d2, d3type d3); \
+type bsp_##name(d1type d1, d2type d2, d3type d3) \
+{ \
+ long ret; \
+ register long __d1 __asm__ ("%d1") = (long)d1; \
+ register long __d2 __asm__ ("%d2") = (long)d2; \
+ register long __d3 __asm__ ("%d3") = (long)d3; \
+ __asm__ __volatile__ ("move.l %1,%%d0\n\t" \
+ "trap #2\n\t" \
+ "move.l %%d0,%0" \
+ : "=g" (ret) \
+ : "i" (SysCode_##name), "d" (__d1),\
+ "d" (__d2),\
+ "d" (__d3) \
+ : "d0" ); \
+ syscall_return(type,ret); \
+}
+
+#define SysCode_sysReset 0 /* system reset */
+#define SysCode_program 5 /* program flash memory */
+#define SysCode_gethwaddr 12 /* get hardware address */
+#define SysCode_getbenv 14 /* get bootloader environment variable */
+#define SysCode_setbenv 15 /* set bootloader environment variable */
+#define SysCode_flash_erase_range 19 /* erase a section of flash */
+#define SysCode_flash_write_range 20 /* write a section of flash */
+syscall_1(int, sysReset, int, flags)
+syscall_1(unsigned const char *, gethwaddr, int, a)
+syscall_1(const char *, getbenv, const char *, a)
+syscall_1(int, setbenv, const char *, a)
+syscall_2(int, program, bsp_mnode_t *, chain, int, flags)
+syscall_3(int, flash_erase_range, volatile unsigned short *, flashptr, int, start, int, end);
+syscall_3(int, flash_write_range, volatile unsigned short *, flashptr, bsp_mnode_t *, chain, int, offset);
+
+/* Provide a dummy-implementation of these syscalls
+ * for qemu (which lacks the firmware).
+ */
+
+#define __STR(x) #x
+#define __STRSTR(x) __STR(x)
+#define ERRVAL __STRSTR(EACCES)
+
+/* reset-control register */
+#define RCR "__IPSBAR + 0x110000"
+
+__asm__ (
+ "bsp_fake_syscall: \n"
+ " cmpl #0, %d0 \n" /* sysreset */
+ " bne 1f \n"
+ " moveb #0x80, %d0 \n"
+ " moveb %d0, "RCR" \n" /* reset-controller */
+ /* should never get here - but we'd return -EACCESS if we do */
+ "1: \n"
+ " cmpl #12, %d0 \n" /* gethwaddr */
+ " beq 2f \n"
+ " cmpl #14, %d0 \n" /* getbenv */
+ " beq 2f \n"
+ " movel #-"ERRVAL", %d0 \n" /* return -EACCESS */
+ " rte \n"
+ "2: \n"
+ " movel #0, %d0 \n" /* return NULL */
+ " rte \n"
+);
+
+
+/*
+ * 'Extended BSP' routines
+ * Should move to cpukit/score/cpu/m68k/cpu.c someday.
+ */
+
+rtems_status_code bspExtInit(void) { return RTEMS_SUCCESSFUL; }
+int BSP_enableVME_int_lvl(unsigned int level) { return 0; }
+int BSP_disableVME_int_lvl(unsigned int level) { return 0; }
+
+/*
+ * 'VME' interrupt support
+ * Interrupt vectors 192-255 are set aside for use by external logic which
+ * drives IRQ1*. The actual interrupt source is read from the external
+ * logic at FPGA_IRQ_INFO. The most-significant bit of the least-significant
+ * byte read from this location is set as long as the external logic has
+ * interrupts to be serviced. The least-significant six bits indicate the
+ * interrupt source within the external logic and are used to select the
+ * specified interupt handler.
+ */
+#define NVECTOR 256
+#define FPGA_VECTOR (64+1) /* IRQ1* pin connected to external FPGA */
+#define FPGA_IRQ_INFO *((vuint16 *)(0x31000000 + 0xfffffe))
+
+static struct handlerTab {
+ BSP_VME_ISR_t func;
+ void *arg;
+} handlerTab[NVECTOR];
+
+BSP_VME_ISR_t
+BSP_getVME_isr(unsigned long vector, void **pusrArg)
+{
+ if (vector >= NVECTOR)
+ return (BSP_VME_ISR_t)NULL;
+ if (pusrArg)
+ *pusrArg = handlerTab[vector].arg;
+ return handlerTab[vector].func;
+}
+
+static rtems_isr
+fpga_trampoline (rtems_vector_number v)
+{
+ /*
+ * Handle FPGA interrupts until all have been consumed
+ */
+ int loopcount = 0;
+ while (((v = FPGA_IRQ_INFO) & 0x80) != 0) {
+ v = 192 + (v & 0x3f);
+ if (++loopcount >= 50) {
+ rtems_interrupt_level level;
+ rtems_interrupt_disable(level);
+ printk(
+ "\nTOO MANY FPGA INTERRUPTS (LAST WAS 0x%lx) -- "
+ "DISABLING ALL FPGA INTERRUPTS.\n",
+ v & 0x3f
+ );
+ MCF5282_INTC0_IMRL |= MCF5282_INTC_IMRL_INT1;
+ rtems_interrupt_enable(level);
+ return;
+ }
+ if (handlerTab[v].func) {
+ (*handlerTab[v].func)(handlerTab[v].arg, (unsigned long)v);
+ }
+ else {
+ rtems_interrupt_level level;
+ rtems_vector_number nv;
+ rtems_interrupt_disable(level);
+ printk("\nSPURIOUS FPGA INTERRUPT (0x%lx).\n", v & 0x3f);
+ if ((((nv = FPGA_IRQ_INFO) & 0x80) != 0)
+ && ((nv & 0x3f) == (v & 0x3f))) {
+ printk("DISABLING ALL FPGA INTERRUPTS.\n");
+ MCF5282_INTC0_IMRL |= MCF5282_INTC_IMRL_INT1;
+ }
+ rtems_interrupt_enable(level);
+ return;
+ }
+ }
+}
+
+static rtems_isr
+trampoline (rtems_vector_number v)
+{
+ if (handlerTab[v].func)
+ (*handlerTab[v].func)(handlerTab[v].arg, (unsigned long)v);
+}
+
+static void
+enable_irq(unsigned source)
+{
+rtems_interrupt_level level;
+ rtems_interrupt_disable(level);
+ if (source >= 32)
+ MCF5282_INTC0_IMRH &= ~(1 << (source - 32));
+ else
+ MCF5282_INTC0_IMRL &= ~((1 << source) |
+ MCF5282_INTC_IMRL_MASKALL);
+ rtems_interrupt_enable(level);
+}
+
+static int
+init_intc0_bit(unsigned long vector)
+{
+rtems_interrupt_level level;
+
+ /*
+ * Find an unused level/priority if this is an on-chip (INTC0)
+ * source and this is the first time the source is being used.
+ * Interrupt sources 1 through 7 are fixed level/priority
+ */
+
+ if ((vector >= 65) && (vector <= 127)) {
+ int l, p;
+ int source = vector - 64;
+ static unsigned char installed[8];
+
+ rtems_interrupt_disable(level);
+ if (installed[source/8] & (1 << (source % 8))) {
+ rtems_interrupt_enable(level);
+ return 0;
+ }
+ installed[source/8] |= (1 << (source % 8));
+ rtems_interrupt_enable(level);
+ for (l = 1 ; l < 7 ; l++) {
+ for (p = 0 ; p < 8 ; p++) {
+ if ((source < 8)
+ || (bsp_allocate_interrupt(l,p) == RTEMS_SUCCESSFUL)) {
+ if (source < 8)
+ MCF5282_EPORT_EPIER |= 1 << source;
+ else
+ *(&MCF5282_INTC0_ICR1 + (source - 1)) =
+ MCF5282_INTC_ICR_IL(l) |
+ MCF5282_INTC_ICR_IP(p);
+ enable_irq(source);
+ return 0;
+ }
+ }
+ }
+ return -1;
+ }
+ return 0;
+}
+
+int
+BSP_installVME_isr(unsigned long vector, BSP_VME_ISR_t handler, void *usrArg)
+{
+ rtems_isr_entry old_handler;
+ rtems_interrupt_level level;
+
+ /*
+ * Register the handler information
+ */
+ if (vector >= NVECTOR)
+ return -1;
+ handlerTab[vector].func = handler;
+ handlerTab[vector].arg = usrArg;
+
+ /*
+ * If this is an external FPGA ('VME') vector set up the real IRQ.
+ */
+ if ((vector >= 192) && (vector <= 255)) {
+ int i;
+ static volatile int setupDone;
+ rtems_interrupt_disable(level);
+ if (setupDone) {
+ rtems_interrupt_enable(level);
+ return 0;
+ }
+ setupDone = 1;
+ rtems_interrupt_catch(fpga_trampoline, FPGA_VECTOR, &old_handler);
+ i = init_intc0_bit(FPGA_VECTOR);
+ rtems_interrupt_enable(level);
+ return i;
+ }
+
+ /*
+ * Make the connection between the interrupt and the local handler
+ */
+ rtems_interrupt_catch(trampoline, vector, &old_handler);
+
+ return init_intc0_bit(vector);
+}
+
+int
+BSP_removeVME_isr(unsigned long vector, BSP_VME_ISR_t handler, void *usrArg)
+{
+ if (vector >= NVECTOR)
+ return -1;
+ if ((handlerTab[vector].func != handler)
+ || (handlerTab[vector].arg != usrArg))
+ return -1;
+ handlerTab[vector].func = (BSP_VME_ISR_t)NULL;
+ return 0;
+}
+
+int
+BSP_vme2local_adrs(unsigned am, unsigned long vmeaddr, unsigned long *plocaladdr)
+{
+ unsigned long offset;
+
+ switch (am) {
+ default: return -1;
+ case VME_AM_SUP_SHORT_IO: offset = 0x31FF0000; break; /* A16/D16 */
+ case VME_AM_STD_SUP_DATA: offset = 0x30000000; break; /* A24/D16 */
+ case VME_AM_EXT_SUP_DATA: offset = 0x31000000; break; /* A32/D32 */
+ }
+ *plocaladdr = vmeaddr + offset;
+ return 0;
+}
+
+void
+bsp_reset_cause(char *buf, size_t capacity)
+{
+ int bit, rsr;
+ size_t i;
+ const char *cp;
+
+ if (buf == NULL)
+ return;
+ if (capacity)
+ buf[0] = '\0';
+ rsr = MCF5282_RESET_RSR;
+ for (i = 0, bit = 0x80 ; bit != 0 ; bit >>= 1) {
+ if (rsr & bit) {
+ switch (bit) {
+ case MCF5282_RESET_RSR_LVD: cp = "Low voltage"; break;
+ case MCF5282_RESET_RSR_SOFT: cp = "Software reset"; break;
+ case MCF5282_RESET_RSR_WDR: cp = "Watchdog reset"; break;
+ case MCF5282_RESET_RSR_POR: cp = "Power-on reset"; break;
+ case MCF5282_RESET_RSR_EXT: cp = "External reset"; break;
+ case MCF5282_RESET_RSR_LOC: cp = "Loss of clock"; break;
+ case MCF5282_RESET_RSR_LOL: cp = "Loss of lock"; break;
+ default: cp = "??"; break;
+ }
+ i += snprintf(buf+i, capacity-i, cp);
+ if (i >= capacity)
+ break;
+ rsr &= ~bit;
+ if (rsr == 0)
+ break;
+ i += snprintf(buf+i, capacity-i, ", ");
+ if (i >= capacity)
+ break;
+ }
+ }
+}