summaryrefslogtreecommitdiffstats
path: root/freebsd/vm/uma_core.c
diff options
context:
space:
mode:
Diffstat (limited to 'freebsd/vm/uma_core.c')
-rw-r--r--freebsd/vm/uma_core.c3439
1 files changed, 3439 insertions, 0 deletions
diff --git a/freebsd/vm/uma_core.c b/freebsd/vm/uma_core.c
new file mode 100644
index 00000000..5e2b2cde
--- /dev/null
+++ b/freebsd/vm/uma_core.c
@@ -0,0 +1,3439 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/*-
+ * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
+ * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
+ * Copyright (c) 2004-2006 Robert N. M. Watson
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice unmodified, this list of conditions, and the following
+ * disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * uma_core.c Implementation of the Universal Memory allocator
+ *
+ * This allocator is intended to replace the multitude of similar object caches
+ * in the standard FreeBSD kernel. The intent is to be flexible as well as
+ * effecient. A primary design goal is to return unused memory to the rest of
+ * the system. This will make the system as a whole more flexible due to the
+ * ability to move memory to subsystems which most need it instead of leaving
+ * pools of reserved memory unused.
+ *
+ * The basic ideas stem from similar slab/zone based allocators whose algorithms
+ * are well known.
+ *
+ */
+
+/*
+ * TODO:
+ * - Improve memory usage for large allocations
+ * - Investigate cache size adjustments
+ */
+
+#include <freebsd/sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+/* I should really use ktr.. */
+/*
+#define UMA_DEBUG 1
+#define UMA_DEBUG_ALLOC 1
+#define UMA_DEBUG_ALLOC_1 1
+*/
+
+#include <freebsd/local/opt_ddb.h>
+#include <freebsd/local/opt_param.h>
+
+#include <freebsd/sys/param.h>
+#include <freebsd/sys/systm.h>
+#include <freebsd/sys/kernel.h>
+#include <freebsd/sys/types.h>
+#include <freebsd/sys/queue.h>
+#include <freebsd/sys/malloc.h>
+#include <freebsd/sys/ktr.h>
+#include <freebsd/sys/lock.h>
+#include <freebsd/sys/sysctl.h>
+#include <freebsd/sys/mutex.h>
+#include <freebsd/sys/proc.h>
+#include <freebsd/sys/sbuf.h>
+#include <freebsd/sys/smp.h>
+#ifndef __rtems__
+#include <freebsd/sys/vmmeter.h>
+#endif /* __rtems__ */
+
+#include <freebsd/vm/vm.h>
+#ifndef __rtems__
+#include <freebsd/vm/vm_object.h>
+#include <freebsd/vm/vm_page.h>
+#include <freebsd/vm/vm_param.h>
+#include <freebsd/vm/vm_map.h>
+#include <freebsd/vm/vm_kern.h>
+#include <freebsd/vm/vm_extern.h>
+#endif /* __rtems__ */
+#include <freebsd/vm/uma.h>
+#include <freebsd/vm/uma_int.h>
+#include <freebsd/vm/uma_dbg.h>
+
+#ifndef __rtems__
+#include <freebsd/machine/vmparam.h>
+
+#include <freebsd/ddb/ddb.h>
+#endif /* __rtems__ */
+
+/*
+ * This is the zone and keg from which all zones are spawned. The idea is that
+ * even the zone & keg heads are allocated from the allocator, so we use the
+ * bss section to bootstrap us.
+ */
+static struct uma_keg masterkeg;
+static struct uma_zone masterzone_k;
+static struct uma_zone masterzone_z;
+static uma_zone_t kegs = &masterzone_k;
+static uma_zone_t zones = &masterzone_z;
+
+/* This is the zone from which all of uma_slab_t's are allocated. */
+static uma_zone_t slabzone;
+static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */
+
+/*
+ * The initial hash tables come out of this zone so they can be allocated
+ * prior to malloc coming up.
+ */
+static uma_zone_t hashzone;
+
+/* The boot-time adjusted value for cache line alignment. */
+static int uma_align_cache = 64 - 1;
+
+static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
+
+/*
+ * Are we allowed to allocate buckets?
+ */
+static int bucketdisable = 1;
+
+/* Linked list of all kegs in the system */
+static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
+
+/* This mutex protects the keg list */
+static struct mtx uma_mtx;
+
+/* Linked list of boot time pages */
+static LIST_HEAD(,uma_slab) uma_boot_pages =
+ LIST_HEAD_INITIALIZER(uma_boot_pages);
+
+/* This mutex protects the boot time pages list */
+static struct mtx uma_boot_pages_mtx;
+
+/* Is the VM done starting up? */
+static int booted = 0;
+
+/* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
+static u_int uma_max_ipers;
+static u_int uma_max_ipers_ref;
+
+/*
+ * This is the handle used to schedule events that need to happen
+ * outside of the allocation fast path.
+ */
+static struct callout uma_callout;
+#define UMA_TIMEOUT 20 /* Seconds for callout interval. */
+
+/*
+ * This structure is passed as the zone ctor arg so that I don't have to create
+ * a special allocation function just for zones.
+ */
+struct uma_zctor_args {
+ char *name;
+ size_t size;
+ uma_ctor ctor;
+ uma_dtor dtor;
+ uma_init uminit;
+ uma_fini fini;
+ uma_keg_t keg;
+ int align;
+ u_int32_t flags;
+};
+
+struct uma_kctor_args {
+ uma_zone_t zone;
+ size_t size;
+ uma_init uminit;
+ uma_fini fini;
+ int align;
+ u_int32_t flags;
+};
+
+struct uma_bucket_zone {
+ uma_zone_t ubz_zone;
+ char *ubz_name;
+ int ubz_entries;
+};
+
+#define BUCKET_MAX 128
+
+struct uma_bucket_zone bucket_zones[] = {
+ { NULL, "16 Bucket", 16 },
+ { NULL, "32 Bucket", 32 },
+ { NULL, "64 Bucket", 64 },
+ { NULL, "128 Bucket", 128 },
+ { NULL, NULL, 0}
+};
+
+#define BUCKET_SHIFT 4
+#define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1)
+
+/*
+ * bucket_size[] maps requested bucket sizes to zones that allocate a bucket
+ * of approximately the right size.
+ */
+static uint8_t bucket_size[BUCKET_ZONES];
+
+/*
+ * Flags and enumerations to be passed to internal functions.
+ */
+enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI };
+
+#define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */
+#define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */
+
+/* Prototypes.. */
+#ifndef __rtems__
+static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
+#endif /* __rtems__ */
+static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
+static void *startup_alloc(uma_zone_t, int, u_int8_t *, int);
+static void page_free(void *, int, u_int8_t);
+static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
+static void cache_drain(uma_zone_t);
+static void bucket_drain(uma_zone_t, uma_bucket_t);
+static void bucket_cache_drain(uma_zone_t zone);
+static int keg_ctor(void *, int, void *, int);
+static void keg_dtor(void *, int, void *);
+static int zone_ctor(void *, int, void *, int);
+static void zone_dtor(void *, int, void *);
+static int zero_init(void *, int, int);
+static void keg_small_init(uma_keg_t keg);
+static void keg_large_init(uma_keg_t keg);
+static void zone_foreach(void (*zfunc)(uma_zone_t));
+static void zone_timeout(uma_zone_t zone);
+static int hash_alloc(struct uma_hash *);
+static int hash_expand(struct uma_hash *, struct uma_hash *);
+static void hash_free(struct uma_hash *hash);
+#ifndef __rtems__
+static void uma_timeout(void *);
+static void uma_startup3(void);
+#endif /* __rtems__ */
+static void *zone_alloc_item(uma_zone_t, void *, int);
+static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip,
+ int);
+#ifndef __rtems__
+static void bucket_enable(void);
+#endif /* __rtems__ */
+static void bucket_init(void);
+static uma_bucket_t bucket_alloc(int, int);
+static void bucket_free(uma_bucket_t);
+static void bucket_zone_drain(void);
+static int zone_alloc_bucket(uma_zone_t zone, int flags);
+static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
+static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
+static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab);
+static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
+ uma_fini fini, int align, u_int32_t flags);
+static inline void zone_relock(uma_zone_t zone, uma_keg_t keg);
+static inline void keg_relock(uma_keg_t keg, uma_zone_t zone);
+
+void uma_print_zone(uma_zone_t);
+void uma_print_stats(void);
+#ifndef __rtems__
+static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
+static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
+
+SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
+
+SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
+ 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
+
+SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
+ 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
+
+/*
+ * This routine checks to see whether or not it's safe to enable buckets.
+ */
+
+static void
+bucket_enable(void)
+{
+ if (cnt.v_free_count < cnt.v_free_min)
+ bucketdisable = 1;
+ else
+ bucketdisable = 0;
+}
+#endif /* __rtems__ */
+
+/*
+ * Initialize bucket_zones, the array of zones of buckets of various sizes.
+ *
+ * For each zone, calculate the memory required for each bucket, consisting
+ * of the header and an array of pointers. Initialize bucket_size[] to point
+ * the range of appropriate bucket sizes at the zone.
+ */
+static void
+bucket_init(void)
+{
+ struct uma_bucket_zone *ubz;
+ int i;
+ int j;
+
+ for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) {
+ int size;
+
+ ubz = &bucket_zones[j];
+ size = roundup(sizeof(struct uma_bucket), sizeof(void *));
+ size += sizeof(void *) * ubz->ubz_entries;
+ ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
+ NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
+ UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET);
+ for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT))
+ bucket_size[i >> BUCKET_SHIFT] = j;
+ }
+}
+
+/*
+ * Given a desired number of entries for a bucket, return the zone from which
+ * to allocate the bucket.
+ */
+static struct uma_bucket_zone *
+bucket_zone_lookup(int entries)
+{
+ int idx;
+
+ idx = howmany(entries, 1 << BUCKET_SHIFT);
+ return (&bucket_zones[bucket_size[idx]]);
+}
+
+static uma_bucket_t
+bucket_alloc(int entries, int bflags)
+{
+ struct uma_bucket_zone *ubz;
+ uma_bucket_t bucket;
+
+ /*
+ * This is to stop us from allocating per cpu buckets while we're
+ * running out of vm.boot_pages. Otherwise, we would exhaust the
+ * boot pages. This also prevents us from allocating buckets in
+ * low memory situations.
+ */
+ if (bucketdisable)
+ return (NULL);
+
+ ubz = bucket_zone_lookup(entries);
+ bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags);
+ if (bucket) {
+#ifdef INVARIANTS
+ bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
+#endif
+ bucket->ub_cnt = 0;
+ bucket->ub_entries = ubz->ubz_entries;
+ }
+
+ return (bucket);
+}
+
+static void
+bucket_free(uma_bucket_t bucket)
+{
+ struct uma_bucket_zone *ubz;
+
+ ubz = bucket_zone_lookup(bucket->ub_entries);
+ zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE,
+ ZFREE_STATFREE);
+}
+
+static void
+bucket_zone_drain(void)
+{
+ struct uma_bucket_zone *ubz;
+
+ for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
+ zone_drain(ubz->ubz_zone);
+}
+
+static inline uma_keg_t
+zone_first_keg(uma_zone_t zone)
+{
+
+ return (LIST_FIRST(&zone->uz_kegs)->kl_keg);
+}
+
+static void
+zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
+{
+ uma_klink_t klink;
+
+ LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
+ kegfn(klink->kl_keg);
+}
+
+#ifndef __rtems__
+/*
+ * Routine called by timeout which is used to fire off some time interval
+ * based calculations. (stats, hash size, etc.)
+ *
+ * Arguments:
+ * arg Unused
+ *
+ * Returns:
+ * Nothing
+ */
+static void
+uma_timeout(void *unused)
+{
+ bucket_enable();
+ zone_foreach(zone_timeout);
+
+ /* Reschedule this event */
+ callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
+}
+#endif /* __rtems__ */
+
+/*
+ * Routine to perform timeout driven calculations. This expands the
+ * hashes and does per cpu statistics aggregation.
+ *
+ * Returns nothing.
+ */
+static void
+keg_timeout(uma_keg_t keg)
+{
+
+ KEG_LOCK(keg);
+ /*
+ * Expand the keg hash table.
+ *
+ * This is done if the number of slabs is larger than the hash size.
+ * What I'm trying to do here is completely reduce collisions. This
+ * may be a little aggressive. Should I allow for two collisions max?
+ */
+ if (keg->uk_flags & UMA_ZONE_HASH &&
+ keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
+ struct uma_hash newhash;
+ struct uma_hash oldhash;
+ int ret;
+
+ /*
+ * This is so involved because allocating and freeing
+ * while the keg lock is held will lead to deadlock.
+ * I have to do everything in stages and check for
+ * races.
+ */
+ newhash = keg->uk_hash;
+ KEG_UNLOCK(keg);
+ ret = hash_alloc(&newhash);
+ KEG_LOCK(keg);
+ if (ret) {
+ if (hash_expand(&keg->uk_hash, &newhash)) {
+ oldhash = keg->uk_hash;
+ keg->uk_hash = newhash;
+ } else
+ oldhash = newhash;
+
+ KEG_UNLOCK(keg);
+ hash_free(&oldhash);
+ KEG_LOCK(keg);
+ }
+ }
+ KEG_UNLOCK(keg);
+}
+
+static void
+zone_timeout(uma_zone_t zone)
+{
+
+ zone_foreach_keg(zone, &keg_timeout);
+}
+
+/*
+ * Allocate and zero fill the next sized hash table from the appropriate
+ * backing store.
+ *
+ * Arguments:
+ * hash A new hash structure with the old hash size in uh_hashsize
+ *
+ * Returns:
+ * 1 on sucess and 0 on failure.
+ */
+static int
+hash_alloc(struct uma_hash *hash)
+{
+ int oldsize;
+ int alloc;
+
+ oldsize = hash->uh_hashsize;
+
+ /* We're just going to go to a power of two greater */
+ if (oldsize) {
+ hash->uh_hashsize = oldsize * 2;
+ alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
+ hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
+ M_UMAHASH, M_NOWAIT);
+ } else {
+ alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
+ hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
+ M_WAITOK);
+ hash->uh_hashsize = UMA_HASH_SIZE_INIT;
+ }
+ if (hash->uh_slab_hash) {
+ bzero(hash->uh_slab_hash, alloc);
+ hash->uh_hashmask = hash->uh_hashsize - 1;
+ return (1);
+ }
+
+ return (0);
+}
+
+/*
+ * Expands the hash table for HASH zones. This is done from zone_timeout
+ * to reduce collisions. This must not be done in the regular allocation
+ * path, otherwise, we can recurse on the vm while allocating pages.
+ *
+ * Arguments:
+ * oldhash The hash you want to expand
+ * newhash The hash structure for the new table
+ *
+ * Returns:
+ * Nothing
+ *
+ * Discussion:
+ */
+static int
+hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
+{
+ uma_slab_t slab;
+ int hval;
+ int i;
+
+ if (!newhash->uh_slab_hash)
+ return (0);
+
+ if (oldhash->uh_hashsize >= newhash->uh_hashsize)
+ return (0);
+
+ /*
+ * I need to investigate hash algorithms for resizing without a
+ * full rehash.
+ */
+
+ for (i = 0; i < oldhash->uh_hashsize; i++)
+ while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
+ slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
+ SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
+ hval = UMA_HASH(newhash, slab->us_data);
+ SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
+ slab, us_hlink);
+ }
+
+ return (1);
+}
+
+/*
+ * Free the hash bucket to the appropriate backing store.
+ *
+ * Arguments:
+ * slab_hash The hash bucket we're freeing
+ * hashsize The number of entries in that hash bucket
+ *
+ * Returns:
+ * Nothing
+ */
+static void
+hash_free(struct uma_hash *hash)
+{
+ if (hash->uh_slab_hash == NULL)
+ return;
+ if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
+ zone_free_item(hashzone,
+ hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE);
+ else
+ free(hash->uh_slab_hash, M_UMAHASH);
+}
+
+/*
+ * Frees all outstanding items in a bucket
+ *
+ * Arguments:
+ * zone The zone to free to, must be unlocked.
+ * bucket The free/alloc bucket with items, cpu queue must be locked.
+ *
+ * Returns:
+ * Nothing
+ */
+
+static void
+bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
+{
+ void *item;
+
+ if (bucket == NULL)
+ return;
+
+ while (bucket->ub_cnt > 0) {
+ bucket->ub_cnt--;
+ item = bucket->ub_bucket[bucket->ub_cnt];
+#ifdef INVARIANTS
+ bucket->ub_bucket[bucket->ub_cnt] = NULL;
+ KASSERT(item != NULL,
+ ("bucket_drain: botched ptr, item is NULL"));
+#endif
+ zone_free_item(zone, item, NULL, SKIP_DTOR, 0);
+ }
+}
+
+/*
+ * Drains the per cpu caches for a zone.
+ *
+ * NOTE: This may only be called while the zone is being turn down, and not
+ * during normal operation. This is necessary in order that we do not have
+ * to migrate CPUs to drain the per-CPU caches.
+ *
+ * Arguments:
+ * zone The zone to drain, must be unlocked.
+ *
+ * Returns:
+ * Nothing
+ */
+static void
+cache_drain(uma_zone_t zone)
+{
+ uma_cache_t cache;
+ int cpu;
+
+ /*
+ * XXX: It is safe to not lock the per-CPU caches, because we're
+ * tearing down the zone anyway. I.e., there will be no further use
+ * of the caches at this point.
+ *
+ * XXX: It would good to be able to assert that the zone is being
+ * torn down to prevent improper use of cache_drain().
+ *
+ * XXX: We lock the zone before passing into bucket_cache_drain() as
+ * it is used elsewhere. Should the tear-down path be made special
+ * there in some form?
+ */
+ for (cpu = 0; cpu <= mp_maxid; cpu++) {
+ if (CPU_ABSENT(cpu))
+ continue;
+ cache = &zone->uz_cpu[cpu];
+ bucket_drain(zone, cache->uc_allocbucket);
+ bucket_drain(zone, cache->uc_freebucket);
+ if (cache->uc_allocbucket != NULL)
+ bucket_free(cache->uc_allocbucket);
+ if (cache->uc_freebucket != NULL)
+ bucket_free(cache->uc_freebucket);
+ cache->uc_allocbucket = cache->uc_freebucket = NULL;
+ }
+ ZONE_LOCK(zone);
+ bucket_cache_drain(zone);
+ ZONE_UNLOCK(zone);
+}
+
+/*
+ * Drain the cached buckets from a zone. Expects a locked zone on entry.
+ */
+static void
+bucket_cache_drain(uma_zone_t zone)
+{
+ uma_bucket_t bucket;
+
+ /*
+ * Drain the bucket queues and free the buckets, we just keep two per
+ * cpu (alloc/free).
+ */
+ while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
+ LIST_REMOVE(bucket, ub_link);
+ ZONE_UNLOCK(zone);
+ bucket_drain(zone, bucket);
+ bucket_free(bucket);
+ ZONE_LOCK(zone);
+ }
+
+ /* Now we do the free queue.. */
+ while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
+ LIST_REMOVE(bucket, ub_link);
+ bucket_free(bucket);
+ }
+}
+
+/*
+ * Frees pages from a keg back to the system. This is done on demand from
+ * the pageout daemon.
+ *
+ * Returns nothing.
+ */
+static void
+keg_drain(uma_keg_t keg)
+{
+ struct slabhead freeslabs = { 0 };
+ uma_slab_t slab;
+ uma_slab_t n;
+ u_int8_t flags;
+ u_int8_t *mem;
+ int i;
+
+ /*
+ * We don't want to take pages from statically allocated kegs at this
+ * time
+ */
+ if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
+ return;
+
+#ifdef UMA_DEBUG
+ printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
+#endif
+ KEG_LOCK(keg);
+ if (keg->uk_free == 0)
+ goto finished;
+
+ slab = LIST_FIRST(&keg->uk_free_slab);
+ while (slab) {
+ n = LIST_NEXT(slab, us_link);
+
+ /* We have no where to free these to */
+ if (slab->us_flags & UMA_SLAB_BOOT) {
+ slab = n;
+ continue;
+ }
+
+ LIST_REMOVE(slab, us_link);
+ keg->uk_pages -= keg->uk_ppera;
+ keg->uk_free -= keg->uk_ipers;
+
+ if (keg->uk_flags & UMA_ZONE_HASH)
+ UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
+
+ SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
+
+ slab = n;
+ }
+finished:
+ KEG_UNLOCK(keg);
+
+ while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
+ SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
+ if (keg->uk_fini)
+ for (i = 0; i < keg->uk_ipers; i++)
+ keg->uk_fini(
+ slab->us_data + (keg->uk_rsize * i),
+ keg->uk_size);
+ flags = slab->us_flags;
+ mem = slab->us_data;
+
+#ifndef __rtems__
+ if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
+ vm_object_t obj;
+
+ if (flags & UMA_SLAB_KMEM)
+ obj = kmem_object;
+ else if (flags & UMA_SLAB_KERNEL)
+ obj = kernel_object;
+ else
+ obj = NULL;
+ for (i = 0; i < keg->uk_ppera; i++)
+ vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
+ obj);
+ }
+#endif /* __rtems__ */
+ if (keg->uk_flags & UMA_ZONE_OFFPAGE)
+ zone_free_item(keg->uk_slabzone, slab, NULL,
+ SKIP_NONE, ZFREE_STATFREE);
+#ifdef UMA_DEBUG
+ printf("%s: Returning %d bytes.\n",
+ keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera);
+#endif
+ keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags);
+ }
+}
+
+static void
+zone_drain_wait(uma_zone_t zone, int waitok)
+{
+
+ /*
+ * Set draining to interlock with zone_dtor() so we can release our
+ * locks as we go. Only dtor() should do a WAITOK call since it
+ * is the only call that knows the structure will still be available
+ * when it wakes up.
+ */
+ ZONE_LOCK(zone);
+ while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
+ if (waitok == M_NOWAIT)
+ goto out;
+ mtx_unlock(&uma_mtx);
+ msleep(zone, zone->uz_lock, PVM, "zonedrain", 1);
+ mtx_lock(&uma_mtx);
+ }
+ zone->uz_flags |= UMA_ZFLAG_DRAINING;
+ bucket_cache_drain(zone);
+ ZONE_UNLOCK(zone);
+ /*
+ * The DRAINING flag protects us from being freed while
+ * we're running. Normally the uma_mtx would protect us but we
+ * must be able to release and acquire the right lock for each keg.
+ */
+ zone_foreach_keg(zone, &keg_drain);
+ ZONE_LOCK(zone);
+ zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
+ wakeup(zone);
+out:
+ ZONE_UNLOCK(zone);
+}
+
+void
+zone_drain(uma_zone_t zone)
+{
+
+ zone_drain_wait(zone, M_NOWAIT);
+}
+
+/*
+ * Allocate a new slab for a keg. This does not insert the slab onto a list.
+ *
+ * Arguments:
+ * wait Shall we wait?
+ *
+ * Returns:
+ * The slab that was allocated or NULL if there is no memory and the
+ * caller specified M_NOWAIT.
+ */
+static uma_slab_t
+keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
+{
+ uma_slabrefcnt_t slabref;
+ uma_alloc allocf;
+ uma_slab_t slab;
+ u_int8_t *mem;
+ u_int8_t flags;
+ int i;
+
+ mtx_assert(&keg->uk_lock, MA_OWNED);
+ slab = NULL;
+
+#ifdef UMA_DEBUG
+ printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name);
+#endif
+ allocf = keg->uk_allocf;
+ KEG_UNLOCK(keg);
+
+ if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
+ slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
+ if (slab == NULL) {
+ KEG_LOCK(keg);
+ return NULL;
+ }
+ }
+
+ /*
+ * This reproduces the old vm_zone behavior of zero filling pages the
+ * first time they are added to a zone.
+ *
+ * Malloced items are zeroed in uma_zalloc.
+ */
+
+ if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
+ wait |= M_ZERO;
+ else
+ wait &= ~M_ZERO;
+
+ /* zone is passed for legacy reasons. */
+ mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait);
+ if (mem == NULL) {
+ if (keg->uk_flags & UMA_ZONE_OFFPAGE)
+ zone_free_item(keg->uk_slabzone, slab, NULL,
+ SKIP_NONE, ZFREE_STATFREE);
+ KEG_LOCK(keg);
+ return (NULL);
+ }
+
+ /* Point the slab into the allocated memory */
+ if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
+ slab = (uma_slab_t )(mem + keg->uk_pgoff);
+
+#ifndef __rtems__
+ if (keg->uk_flags & UMA_ZONE_VTOSLAB)
+ for (i = 0; i < keg->uk_ppera; i++)
+ vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
+#endif /* __rtems__ */
+
+ slab->us_keg = keg;
+ slab->us_data = mem;
+ slab->us_freecount = keg->uk_ipers;
+ slab->us_firstfree = 0;
+ slab->us_flags = flags;
+
+ if (keg->uk_flags & UMA_ZONE_REFCNT) {
+ slabref = (uma_slabrefcnt_t)slab;
+ for (i = 0; i < keg->uk_ipers; i++) {
+ slabref->us_freelist[i].us_refcnt = 0;
+ slabref->us_freelist[i].us_item = i+1;
+ }
+ } else {
+ for (i = 0; i < keg->uk_ipers; i++)
+ slab->us_freelist[i].us_item = i+1;
+ }
+
+ if (keg->uk_init != NULL) {
+ for (i = 0; i < keg->uk_ipers; i++)
+ if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
+ keg->uk_size, wait) != 0)
+ break;
+ if (i != keg->uk_ipers) {
+ if (keg->uk_fini != NULL) {
+ for (i--; i > -1; i--)
+ keg->uk_fini(slab->us_data +
+ (keg->uk_rsize * i),
+ keg->uk_size);
+ }
+#ifndef __rtems__
+ if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
+ vm_object_t obj;
+
+ if (flags & UMA_SLAB_KMEM)
+ obj = kmem_object;
+ else if (flags & UMA_SLAB_KERNEL)
+ obj = kernel_object;
+ else
+ obj = NULL;
+ for (i = 0; i < keg->uk_ppera; i++)
+ vsetobj((vm_offset_t)mem +
+ (i * PAGE_SIZE), obj);
+ }
+#endif /* __rtems__ */
+ if (keg->uk_flags & UMA_ZONE_OFFPAGE)
+ zone_free_item(keg->uk_slabzone, slab,
+ NULL, SKIP_NONE, ZFREE_STATFREE);
+ keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera,
+ flags);
+ KEG_LOCK(keg);
+ return (NULL);
+ }
+ }
+ KEG_LOCK(keg);
+
+ if (keg->uk_flags & UMA_ZONE_HASH)
+ UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
+
+ keg->uk_pages += keg->uk_ppera;
+ keg->uk_free += keg->uk_ipers;
+
+ return (slab);
+}
+
+/*
+ * This function is intended to be used early on in place of page_alloc() so
+ * that we may use the boot time page cache to satisfy allocations before
+ * the VM is ready.
+ */
+static void *
+startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
+{
+ uma_keg_t keg;
+ uma_slab_t tmps;
+ int pages, check_pages;
+
+ keg = zone_first_keg(zone);
+ pages = howmany(bytes, PAGE_SIZE);
+ check_pages = pages - 1;
+ KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
+
+ /*
+ * Check our small startup cache to see if it has pages remaining.
+ */
+ mtx_lock(&uma_boot_pages_mtx);
+
+ /* First check if we have enough room. */
+ tmps = LIST_FIRST(&uma_boot_pages);
+ while (tmps != NULL && check_pages-- > 0)
+ tmps = LIST_NEXT(tmps, us_link);
+ if (tmps != NULL) {
+ /*
+ * It's ok to lose tmps references. The last one will
+ * have tmps->us_data pointing to the start address of
+ * "pages" contiguous pages of memory.
+ */
+ while (pages-- > 0) {
+ tmps = LIST_FIRST(&uma_boot_pages);
+ LIST_REMOVE(tmps, us_link);
+ }
+ mtx_unlock(&uma_boot_pages_mtx);
+ *pflag = tmps->us_flags;
+ return (tmps->us_data);
+ }
+ mtx_unlock(&uma_boot_pages_mtx);
+ if (booted == 0)
+ panic("UMA: Increase vm.boot_pages");
+ /*
+ * Now that we've booted reset these users to their real allocator.
+ */
+#ifdef UMA_MD_SMALL_ALLOC
+ keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
+#else
+ keg->uk_allocf = page_alloc;
+#endif
+ return keg->uk_allocf(zone, bytes, pflag, wait);
+}
+
+/*
+ * Allocates a number of pages from the system
+ *
+ * Arguments:
+ * bytes The number of bytes requested
+ * wait Shall we wait?
+ *
+ * Returns:
+ * A pointer to the alloced memory or possibly
+ * NULL if M_NOWAIT is set.
+ */
+static void *
+page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
+{
+ void *p; /* Returned page */
+
+ *pflag = UMA_SLAB_KMEM;
+#ifndef __rtems__
+ p = (void *) kmem_malloc(kmem_map, bytes, wait);
+#else /* __rtems__ */
+ p = (void *) malloc(bytes, M_TEMP, wait);
+#endif /* __rtems__ */
+
+ return (p);
+}
+
+#ifndef __rtems__
+/*
+ * Allocates a number of pages from within an object
+ *
+ * Arguments:
+ * bytes The number of bytes requested
+ * wait Shall we wait?
+ *
+ * Returns:
+ * A pointer to the alloced memory or possibly
+ * NULL if M_NOWAIT is set.
+ */
+static void *
+obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
+{
+ vm_object_t object;
+ vm_offset_t retkva, zkva;
+ vm_page_t p;
+ int pages, startpages;
+ uma_keg_t keg;
+
+ keg = zone_first_keg(zone);
+ object = keg->uk_obj;
+ retkva = 0;
+
+ /*
+ * This looks a little weird since we're getting one page at a time.
+ */
+ VM_OBJECT_LOCK(object);
+ p = TAILQ_LAST(&object->memq, pglist);
+ pages = p != NULL ? p->pindex + 1 : 0;
+ startpages = pages;
+ zkva = keg->uk_kva + pages * PAGE_SIZE;
+ for (; bytes > 0; bytes -= PAGE_SIZE) {
+ p = vm_page_alloc(object, pages,
+ VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
+ if (p == NULL) {
+ if (pages != startpages)
+ pmap_qremove(retkva, pages - startpages);
+ while (pages != startpages) {
+ pages--;
+ p = TAILQ_LAST(&object->memq, pglist);
+ vm_page_lock_queues();
+ vm_page_unwire(p, 0);
+ vm_page_free(p);
+ vm_page_unlock_queues();
+ }
+ retkva = 0;
+ goto done;
+ }
+ pmap_qenter(zkva, &p, 1);
+ if (retkva == 0)
+ retkva = zkva;
+ zkva += PAGE_SIZE;
+ pages += 1;
+ }
+done:
+ VM_OBJECT_UNLOCK(object);
+ *flags = UMA_SLAB_PRIV;
+
+ return ((void *)retkva);
+}
+#endif /* __rtems__ */
+
+/*
+ * Frees a number of pages to the system
+ *
+ * Arguments:
+ * mem A pointer to the memory to be freed
+ * size The size of the memory being freed
+ * flags The original p->us_flags field
+ *
+ * Returns:
+ * Nothing
+ */
+static void
+page_free(void *mem, int size, u_int8_t flags)
+{
+#ifndef __rtems__
+ vm_map_t map;
+
+ if (flags & UMA_SLAB_KMEM)
+ map = kmem_map;
+ else if (flags & UMA_SLAB_KERNEL)
+ map = kernel_map;
+ else
+ panic("UMA: page_free used with invalid flags %d", flags);
+
+ kmem_free(map, (vm_offset_t)mem, size);
+#else /* __rtems__ */
+ free( mem, M_TEMP );
+#endif /* __rtems__ */
+}
+
+/*
+ * Zero fill initializer
+ *
+ * Arguments/Returns follow uma_init specifications
+ */
+static int
+zero_init(void *mem, int size, int flags)
+{
+ bzero(mem, size);
+ return (0);
+}
+
+/*
+ * Finish creating a small uma keg. This calculates ipers, and the keg size.
+ *
+ * Arguments
+ * keg The zone we should initialize
+ *
+ * Returns
+ * Nothing
+ */
+static void
+keg_small_init(uma_keg_t keg)
+{
+ u_int rsize;
+ u_int memused;
+ u_int wastedspace;
+ u_int shsize;
+
+ KASSERT(keg != NULL, ("Keg is null in keg_small_init"));
+ rsize = keg->uk_size;
+
+ if (rsize < UMA_SMALLEST_UNIT)
+ rsize = UMA_SMALLEST_UNIT;
+ if (rsize & keg->uk_align)
+ rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
+
+ keg->uk_rsize = rsize;
+ keg->uk_ppera = 1;
+
+ if (keg->uk_flags & UMA_ZONE_REFCNT) {
+ rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */
+ shsize = sizeof(struct uma_slab_refcnt);
+ } else {
+ rsize += UMA_FRITM_SZ; /* Account for linkage */
+ shsize = sizeof(struct uma_slab);
+ }
+
+ keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize;
+ KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0"));
+ memused = keg->uk_ipers * rsize + shsize;
+ wastedspace = UMA_SLAB_SIZE - memused;
+
+ /*
+ * We can't do OFFPAGE if we're internal or if we've been
+ * asked to not go to the VM for buckets. If we do this we
+ * may end up going to the VM (kmem_map) for slabs which we
+ * do not want to do if we're UMA_ZFLAG_CACHEONLY as a
+ * result of UMA_ZONE_VM, which clearly forbids it.
+ */
+ if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
+ (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
+ return;
+
+ if ((wastedspace >= UMA_MAX_WASTE) &&
+ (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) {
+ keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize;
+ KASSERT(keg->uk_ipers <= 255,
+ ("keg_small_init: keg->uk_ipers too high!"));
+#ifdef UMA_DEBUG
+ printf("UMA decided we need offpage slab headers for "
+ "keg: %s, calculated wastedspace = %d, "
+ "maximum wasted space allowed = %d, "
+ "calculated ipers = %d, "
+ "new wasted space = %d\n", keg->uk_name, wastedspace,
+ UMA_MAX_WASTE, keg->uk_ipers,
+ UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize);
+#endif
+ keg->uk_flags |= UMA_ZONE_OFFPAGE;
+ if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
+ keg->uk_flags |= UMA_ZONE_HASH;
+ }
+}
+
+/*
+ * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do
+ * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be
+ * more complicated.
+ *
+ * Arguments
+ * keg The keg we should initialize
+ *
+ * Returns
+ * Nothing
+ */
+static void
+keg_large_init(uma_keg_t keg)
+{
+ int pages;
+
+ KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
+ KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
+ ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
+
+ pages = keg->uk_size / UMA_SLAB_SIZE;
+
+ /* Account for remainder */
+ if ((pages * UMA_SLAB_SIZE) < keg->uk_size)
+ pages++;
+
+ keg->uk_ppera = pages;
+ keg->uk_ipers = 1;
+ keg->uk_rsize = keg->uk_size;
+
+ /* We can't do OFFPAGE if we're internal, bail out here. */
+ if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
+ return;
+
+ keg->uk_flags |= UMA_ZONE_OFFPAGE;
+ if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
+ keg->uk_flags |= UMA_ZONE_HASH;
+}
+
+static void
+keg_cachespread_init(uma_keg_t keg)
+{
+ int alignsize;
+ int trailer;
+ int pages;
+ int rsize;
+
+ alignsize = keg->uk_align + 1;
+ rsize = keg->uk_size;
+ /*
+ * We want one item to start on every align boundary in a page. To
+ * do this we will span pages. We will also extend the item by the
+ * size of align if it is an even multiple of align. Otherwise, it
+ * would fall on the same boundary every time.
+ */
+ if (rsize & keg->uk_align)
+ rsize = (rsize & ~keg->uk_align) + alignsize;
+ if ((rsize & alignsize) == 0)
+ rsize += alignsize;
+ trailer = rsize - keg->uk_size;
+ pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
+ pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
+ keg->uk_rsize = rsize;
+ keg->uk_ppera = pages;
+ keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
+#ifndef __rtems__
+ keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
+#endif /* __rtems__ */
+ KASSERT(keg->uk_ipers <= uma_max_ipers,
+ ("keg_small_init: keg->uk_ipers too high(%d) increase max_ipers",
+ keg->uk_ipers));
+}
+
+/*
+ * Keg header ctor. This initializes all fields, locks, etc. And inserts
+ * the keg onto the global keg list.
+ *
+ * Arguments/Returns follow uma_ctor specifications
+ * udata Actually uma_kctor_args
+ */
+static int
+keg_ctor(void *mem, int size, void *udata, int flags)
+{
+ struct uma_kctor_args *arg = udata;
+ uma_keg_t keg = mem;
+ uma_zone_t zone;
+
+ bzero(keg, size);
+ keg->uk_size = arg->size;
+ keg->uk_init = arg->uminit;
+ keg->uk_fini = arg->fini;
+ keg->uk_align = arg->align;
+ keg->uk_free = 0;
+ keg->uk_pages = 0;
+ keg->uk_flags = arg->flags;
+ keg->uk_allocf = page_alloc;
+ keg->uk_freef = page_free;
+ keg->uk_recurse = 0;
+ keg->uk_slabzone = NULL;
+
+ /*
+ * The master zone is passed to us at keg-creation time.
+ */
+ zone = arg->zone;
+ keg->uk_name = zone->uz_name;
+
+ if (arg->flags & UMA_ZONE_VM)
+ keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
+
+ if (arg->flags & UMA_ZONE_ZINIT)
+ keg->uk_init = zero_init;
+
+#ifndef __rtems__
+ if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
+ keg->uk_flags |= UMA_ZONE_VTOSLAB;
+#endif /* __rtems__ */
+
+ /*
+ * The +UMA_FRITM_SZ added to uk_size is to account for the
+ * linkage that is added to the size in keg_small_init(). If
+ * we don't account for this here then we may end up in
+ * keg_small_init() with a calculated 'ipers' of 0.
+ */
+ if (keg->uk_flags & UMA_ZONE_REFCNT) {
+ if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
+ keg_cachespread_init(keg);
+ else if ((keg->uk_size+UMA_FRITMREF_SZ) >
+ (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)))
+ keg_large_init(keg);
+ else
+ keg_small_init(keg);
+ } else {
+ if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
+ keg_cachespread_init(keg);
+ else if ((keg->uk_size+UMA_FRITM_SZ) >
+ (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
+ keg_large_init(keg);
+ else
+ keg_small_init(keg);
+ }
+
+ if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
+ if (keg->uk_flags & UMA_ZONE_REFCNT)
+ keg->uk_slabzone = slabrefzone;
+ else
+ keg->uk_slabzone = slabzone;
+ }
+
+ /*
+ * If we haven't booted yet we need allocations to go through the
+ * startup cache until the vm is ready.
+ */
+ if (keg->uk_ppera == 1) {
+#ifdef UMA_MD_SMALL_ALLOC
+ keg->uk_allocf = uma_small_alloc;
+ keg->uk_freef = uma_small_free;
+#endif
+ if (booted == 0)
+ keg->uk_allocf = startup_alloc;
+ } else if (booted == 0 && (keg->uk_flags & UMA_ZFLAG_INTERNAL))
+ keg->uk_allocf = startup_alloc;
+
+ /*
+ * Initialize keg's lock (shared among zones).
+ */
+ if (arg->flags & UMA_ZONE_MTXCLASS)
+ KEG_LOCK_INIT(keg, 1);
+ else
+ KEG_LOCK_INIT(keg, 0);
+
+ /*
+ * If we're putting the slab header in the actual page we need to
+ * figure out where in each page it goes. This calculates a right
+ * justified offset into the memory on an ALIGN_PTR boundary.
+ */
+ if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
+ u_int totsize;
+
+ /* Size of the slab struct and free list */
+ if (keg->uk_flags & UMA_ZONE_REFCNT)
+ totsize = sizeof(struct uma_slab_refcnt) +
+ keg->uk_ipers * UMA_FRITMREF_SZ;
+ else
+ totsize = sizeof(struct uma_slab) +
+ keg->uk_ipers * UMA_FRITM_SZ;
+
+ if (totsize & UMA_ALIGN_PTR)
+ totsize = (totsize & ~UMA_ALIGN_PTR) +
+ (UMA_ALIGN_PTR + 1);
+ keg->uk_pgoff = (UMA_SLAB_SIZE * keg->uk_ppera) - totsize;
+
+ if (keg->uk_flags & UMA_ZONE_REFCNT)
+ totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt)
+ + keg->uk_ipers * UMA_FRITMREF_SZ;
+ else
+ totsize = keg->uk_pgoff + sizeof(struct uma_slab)
+ + keg->uk_ipers * UMA_FRITM_SZ;
+
+ /*
+ * The only way the following is possible is if with our
+ * UMA_ALIGN_PTR adjustments we are now bigger than
+ * UMA_SLAB_SIZE. I haven't checked whether this is
+ * mathematically possible for all cases, so we make
+ * sure here anyway.
+ */
+ if (totsize > UMA_SLAB_SIZE * keg->uk_ppera) {
+ printf("zone %s ipers %d rsize %d size %d\n",
+ zone->uz_name, keg->uk_ipers, keg->uk_rsize,
+ keg->uk_size);
+ panic("UMA slab won't fit.");
+ }
+ }
+
+ if (keg->uk_flags & UMA_ZONE_HASH)
+ hash_alloc(&keg->uk_hash);
+
+#ifdef UMA_DEBUG
+ printf("UMA: %s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n",
+ zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
+ keg->uk_ipers, keg->uk_ppera,
+ (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
+#endif
+
+ LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
+
+ mtx_lock(&uma_mtx);
+ LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
+ mtx_unlock(&uma_mtx);
+ return (0);
+}
+
+/*
+ * Zone header ctor. This initializes all fields, locks, etc.
+ *
+ * Arguments/Returns follow uma_ctor specifications
+ * udata Actually uma_zctor_args
+ */
+static int
+zone_ctor(void *mem, int size, void *udata, int flags)
+{
+ struct uma_zctor_args *arg = udata;
+ uma_zone_t zone = mem;
+ uma_zone_t z;
+ uma_keg_t keg;
+
+ bzero(zone, size);
+ zone->uz_name = arg->name;
+ zone->uz_ctor = arg->ctor;
+ zone->uz_dtor = arg->dtor;
+ zone->uz_slab = zone_fetch_slab;
+ zone->uz_init = NULL;
+ zone->uz_fini = NULL;
+ zone->uz_allocs = 0;
+ zone->uz_frees = 0;
+ zone->uz_fails = 0;
+ zone->uz_fills = zone->uz_count = 0;
+ zone->uz_flags = 0;
+ keg = arg->keg;
+
+ if (arg->flags & UMA_ZONE_SECONDARY) {
+ KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
+ zone->uz_init = arg->uminit;
+ zone->uz_fini = arg->fini;
+ zone->uz_lock = &keg->uk_lock;
+ zone->uz_flags |= UMA_ZONE_SECONDARY;
+ mtx_lock(&uma_mtx);
+ ZONE_LOCK(zone);
+ LIST_FOREACH(z, &keg->uk_zones, uz_link) {
+ if (LIST_NEXT(z, uz_link) == NULL) {
+ LIST_INSERT_AFTER(z, zone, uz_link);
+ break;
+ }
+ }
+ ZONE_UNLOCK(zone);
+ mtx_unlock(&uma_mtx);
+ } else if (keg == NULL) {
+ if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
+ arg->align, arg->flags)) == NULL)
+ return (ENOMEM);
+ } else {
+ struct uma_kctor_args karg;
+ int error;
+
+ /* We should only be here from uma_startup() */
+ karg.size = arg->size;
+ karg.uminit = arg->uminit;
+ karg.fini = arg->fini;
+ karg.align = arg->align;
+ karg.flags = arg->flags;
+ karg.zone = zone;
+ error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
+ flags);
+ if (error)
+ return (error);
+ }
+ /*
+ * Link in the first keg.
+ */
+ zone->uz_klink.kl_keg = keg;
+ LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
+ zone->uz_lock = &keg->uk_lock;
+ zone->uz_size = keg->uk_size;
+ zone->uz_flags |= (keg->uk_flags &
+ (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
+
+ /*
+ * Some internal zones don't have room allocated for the per cpu
+ * caches. If we're internal, bail out here.
+ */
+ if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
+ KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
+ ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
+ return (0);
+ }
+
+ if (keg->uk_flags & UMA_ZONE_MAXBUCKET)
+ zone->uz_count = BUCKET_MAX;
+ else if (keg->uk_ipers <= BUCKET_MAX)
+ zone->uz_count = keg->uk_ipers;
+ else
+ zone->uz_count = BUCKET_MAX;
+ return (0);
+}
+
+/*
+ * Keg header dtor. This frees all data, destroys locks, frees the hash
+ * table and removes the keg from the global list.
+ *
+ * Arguments/Returns follow uma_dtor specifications
+ * udata unused
+ */
+static void
+keg_dtor(void *arg, int size, void *udata)
+{
+ uma_keg_t keg;
+
+ keg = (uma_keg_t)arg;
+ KEG_LOCK(keg);
+ if (keg->uk_free != 0) {
+ printf("Freed UMA keg was not empty (%d items). "
+ " Lost %d pages of memory.\n",
+ keg->uk_free, keg->uk_pages);
+ }
+ KEG_UNLOCK(keg);
+
+ hash_free(&keg->uk_hash);
+
+ KEG_LOCK_FINI(keg);
+}
+
+/*
+ * Zone header dtor.
+ *
+ * Arguments/Returns follow uma_dtor specifications
+ * udata unused
+ */
+static void
+zone_dtor(void *arg, int size, void *udata)
+{
+ uma_klink_t klink;
+ uma_zone_t zone;
+ uma_keg_t keg;
+
+ zone = (uma_zone_t)arg;
+ keg = zone_first_keg(zone);
+
+ if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
+ cache_drain(zone);
+
+ mtx_lock(&uma_mtx);
+ LIST_REMOVE(zone, uz_link);
+ mtx_unlock(&uma_mtx);
+ /*
+ * XXX there are some races here where
+ * the zone can be drained but zone lock
+ * released and then refilled before we
+ * remove it... we dont care for now
+ */
+ zone_drain_wait(zone, M_WAITOK);
+ /*
+ * Unlink all of our kegs.
+ */
+ while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
+ klink->kl_keg = NULL;
+ LIST_REMOVE(klink, kl_link);
+ if (klink == &zone->uz_klink)
+ continue;
+ free(klink, M_TEMP);
+ }
+ /*
+ * We only destroy kegs from non secondary zones.
+ */
+ if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) {
+ mtx_lock(&uma_mtx);
+ LIST_REMOVE(keg, uk_link);
+ mtx_unlock(&uma_mtx);
+ zone_free_item(kegs, keg, NULL, SKIP_NONE,
+ ZFREE_STATFREE);
+ }
+}
+
+/*
+ * Traverses every zone in the system and calls a callback
+ *
+ * Arguments:
+ * zfunc A pointer to a function which accepts a zone
+ * as an argument.
+ *
+ * Returns:
+ * Nothing
+ */
+static void
+zone_foreach(void (*zfunc)(uma_zone_t))
+{
+ uma_keg_t keg;
+ uma_zone_t zone;
+
+ mtx_lock(&uma_mtx);
+ LIST_FOREACH(keg, &uma_kegs, uk_link) {
+ LIST_FOREACH(zone, &keg->uk_zones, uz_link)
+ zfunc(zone);
+ }
+ mtx_unlock(&uma_mtx);
+}
+
+/* Public functions */
+/* See uma.h */
+void
+uma_startup(void *bootmem, int boot_pages)
+{
+ struct uma_zctor_args args;
+ uma_slab_t slab;
+ u_int slabsize;
+ u_int objsize, totsize, wsize;
+ int i;
+
+#ifdef UMA_DEBUG
+ printf("Creating uma keg headers zone and keg.\n");
+#endif
+ mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
+
+ /*
+ * Figure out the maximum number of items-per-slab we'll have if
+ * we're using the OFFPAGE slab header to track free items, given
+ * all possible object sizes and the maximum desired wastage
+ * (UMA_MAX_WASTE).
+ *
+ * We iterate until we find an object size for
+ * which the calculated wastage in keg_small_init() will be
+ * enough to warrant OFFPAGE. Since wastedspace versus objsize
+ * is an overall increasing see-saw function, we find the smallest
+ * objsize such that the wastage is always acceptable for objects
+ * with that objsize or smaller. Since a smaller objsize always
+ * generates a larger possible uma_max_ipers, we use this computed
+ * objsize to calculate the largest ipers possible. Since the
+ * ipers calculated for OFFPAGE slab headers is always larger than
+ * the ipers initially calculated in keg_small_init(), we use
+ * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to
+ * obtain the maximum ipers possible for offpage slab headers.
+ *
+ * It should be noted that ipers versus objsize is an inversly
+ * proportional function which drops off rather quickly so as
+ * long as our UMA_MAX_WASTE is such that the objsize we calculate
+ * falls into the portion of the inverse relation AFTER the steep
+ * falloff, then uma_max_ipers shouldn't be too high (~10 on i386).
+ *
+ * Note that we have 8-bits (1 byte) to use as a freelist index
+ * inside the actual slab header itself and this is enough to
+ * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized
+ * object with offpage slab header would have ipers =
+ * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is
+ * 1 greater than what our byte-integer freelist index can
+ * accomodate, but we know that this situation never occurs as
+ * for UMA_SMALLEST_UNIT-sized objects, we will never calculate
+ * that we need to go to offpage slab headers. Or, if we do,
+ * then we trap that condition below and panic in the INVARIANTS case.
+ */
+ wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE;
+ totsize = wsize;
+ objsize = UMA_SMALLEST_UNIT;
+ while (totsize >= wsize) {
+ totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) /
+ (objsize + UMA_FRITM_SZ);
+ totsize *= (UMA_FRITM_SZ + objsize);
+ objsize++;
+ }
+ if (objsize > UMA_SMALLEST_UNIT)
+ objsize--;
+ uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64);
+
+ wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE;
+ totsize = wsize;
+ objsize = UMA_SMALLEST_UNIT;
+ while (totsize >= wsize) {
+ totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) /
+ (objsize + UMA_FRITMREF_SZ);
+ totsize *= (UMA_FRITMREF_SZ + objsize);
+ objsize++;
+ }
+ if (objsize > UMA_SMALLEST_UNIT)
+ objsize--;
+ uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64);
+
+ KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255),
+ ("uma_startup: calculated uma_max_ipers values too large!"));
+
+#ifdef UMA_DEBUG
+ printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers);
+ printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n",
+ uma_max_ipers_ref);
+#endif
+
+ /* "manually" create the initial zone */
+ args.name = "UMA Kegs";
+ args.size = sizeof(struct uma_keg);
+ args.ctor = keg_ctor;
+ args.dtor = keg_dtor;
+ args.uminit = zero_init;
+ args.fini = NULL;
+ args.keg = &masterkeg;
+ args.align = 32 - 1;
+ args.flags = UMA_ZFLAG_INTERNAL;
+ /* The initial zone has no Per cpu queues so it's smaller */
+ zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
+
+#ifdef UMA_DEBUG
+ printf("Filling boot free list.\n");
+#endif
+ for (i = 0; i < boot_pages; i++) {
+ slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
+ slab->us_data = (u_int8_t *)slab;
+ slab->us_flags = UMA_SLAB_BOOT;
+ LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
+ }
+ mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
+
+#ifdef UMA_DEBUG
+ printf("Creating uma zone headers zone and keg.\n");
+#endif
+ args.name = "UMA Zones";
+ args.size = sizeof(struct uma_zone) +
+ (sizeof(struct uma_cache) * (mp_maxid + 1));
+ args.ctor = zone_ctor;
+ args.dtor = zone_dtor;
+ args.uminit = zero_init;
+ args.fini = NULL;
+ args.keg = NULL;
+ args.align = 32 - 1;
+ args.flags = UMA_ZFLAG_INTERNAL;
+ /* The initial zone has no Per cpu queues so it's smaller */
+ zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
+
+#ifdef UMA_DEBUG
+ printf("Initializing pcpu cache locks.\n");
+#endif
+#ifdef UMA_DEBUG
+ printf("Creating slab and hash zones.\n");
+#endif
+
+ /*
+ * This is the max number of free list items we'll have with
+ * offpage slabs.
+ */
+ slabsize = uma_max_ipers * UMA_FRITM_SZ;
+ slabsize += sizeof(struct uma_slab);
+
+ /* Now make a zone for slab headers */
+ slabzone = uma_zcreate("UMA Slabs",
+ slabsize,
+ NULL, NULL, NULL, NULL,
+ UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
+
+ /*
+ * We also create a zone for the bigger slabs with reference
+ * counts in them, to accomodate UMA_ZONE_REFCNT zones.
+ */
+ slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ;
+ slabsize += sizeof(struct uma_slab_refcnt);
+ slabrefzone = uma_zcreate("UMA RCntSlabs",
+ slabsize,
+ NULL, NULL, NULL, NULL,
+ UMA_ALIGN_PTR,
+ UMA_ZFLAG_INTERNAL);
+
+ hashzone = uma_zcreate("UMA Hash",
+ sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
+ NULL, NULL, NULL, NULL,
+ UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
+
+ bucket_init();
+
+#if defined(UMA_MD_SMALL_ALLOC) && !defined(UMA_MD_SMALL_ALLOC_NEEDS_VM)
+ booted = 1;
+#endif
+
+#ifdef UMA_DEBUG
+ printf("UMA startup complete.\n");
+#endif
+}
+
+#ifndef __rtems__
+/* see uma.h */
+void
+uma_startup2(void)
+{
+ booted = 1;
+ bucket_enable();
+#ifdef UMA_DEBUG
+ printf("UMA startup2 complete.\n");
+#endif
+}
+
+/*
+ * Initialize our callout handle
+ *
+ */
+
+static void
+uma_startup3(void)
+{
+#ifdef UMA_DEBUG
+ printf("Starting callout.\n");
+#endif
+ callout_init(&uma_callout, CALLOUT_MPSAFE);
+ callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
+#ifdef UMA_DEBUG
+ printf("UMA startup3 complete.\n");
+#endif
+}
+#endif /* __rtems__ */
+
+static uma_keg_t
+uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
+ int align, u_int32_t flags)
+{
+ struct uma_kctor_args args;
+
+ args.size = size;
+ args.uminit = uminit;
+ args.fini = fini;
+ args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
+ args.flags = flags;
+ args.zone = zone;
+ return (zone_alloc_item(kegs, &args, M_WAITOK));
+}
+
+/* See uma.h */
+void
+uma_set_align(int align)
+{
+
+ if (align != UMA_ALIGN_CACHE)
+ uma_align_cache = align;
+}
+
+/* See uma.h */
+uma_zone_t
+uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
+ uma_init uminit, uma_fini fini, int align, u_int32_t flags)
+
+{
+ struct uma_zctor_args args;
+
+ /* This stuff is essential for the zone ctor */
+ args.name = name;
+ args.size = size;
+ args.ctor = ctor;
+ args.dtor = dtor;
+ args.uminit = uminit;
+ args.fini = fini;
+ args.align = align;
+ args.flags = flags;
+ args.keg = NULL;
+
+ return (zone_alloc_item(zones, &args, M_WAITOK));
+}
+
+/* See uma.h */
+uma_zone_t
+uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
+ uma_init zinit, uma_fini zfini, uma_zone_t master)
+{
+ struct uma_zctor_args args;
+ uma_keg_t keg;
+
+ keg = zone_first_keg(master);
+ args.name = name;
+ args.size = keg->uk_size;
+ args.ctor = ctor;
+ args.dtor = dtor;
+ args.uminit = zinit;
+ args.fini = zfini;
+ args.align = keg->uk_align;
+ args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
+ args.keg = keg;
+
+ /* XXX Attaches only one keg of potentially many. */
+ return (zone_alloc_item(zones, &args, M_WAITOK));
+}
+
+static void
+zone_lock_pair(uma_zone_t a, uma_zone_t b)
+{
+ if (a < b) {
+ ZONE_LOCK(a);
+ mtx_lock_flags(b->uz_lock, MTX_DUPOK);
+ } else {
+ ZONE_LOCK(b);
+ mtx_lock_flags(a->uz_lock, MTX_DUPOK);
+ }
+}
+
+static void
+zone_unlock_pair(uma_zone_t a, uma_zone_t b)
+{
+
+ ZONE_UNLOCK(a);
+ ZONE_UNLOCK(b);
+}
+
+#ifndef __rtems__
+int
+uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
+{
+ uma_klink_t klink;
+ uma_klink_t kl;
+ int error;
+
+ error = 0;
+ klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
+
+ zone_lock_pair(zone, master);
+ /*
+ * zone must use vtoslab() to resolve objects and must already be
+ * a secondary.
+ */
+ if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
+ != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
+ error = EINVAL;
+ goto out;
+ }
+ /*
+ * The new master must also use vtoslab().
+ */
+ if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
+ error = EINVAL;
+ goto out;
+ }
+ /*
+ * Both must either be refcnt, or not be refcnt.
+ */
+ if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
+ (master->uz_flags & UMA_ZONE_REFCNT)) {
+ error = EINVAL;
+ goto out;
+ }
+ /*
+ * The underlying object must be the same size. rsize
+ * may be different.
+ */
+ if (master->uz_size != zone->uz_size) {
+ error = E2BIG;
+ goto out;
+ }
+ /*
+ * Put it at the end of the list.
+ */
+ klink->kl_keg = zone_first_keg(master);
+ LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
+ if (LIST_NEXT(kl, kl_link) == NULL) {
+ LIST_INSERT_AFTER(kl, klink, kl_link);
+ break;
+ }
+ }
+ klink = NULL;
+ zone->uz_flags |= UMA_ZFLAG_MULTI;
+ zone->uz_slab = zone_fetch_slab_multi;
+
+out:
+ zone_unlock_pair(zone, master);
+ if (klink != NULL)
+ free(klink, M_TEMP);
+
+ return (error);
+}
+#endif /* __rtems__ */
+
+
+/* See uma.h */
+void
+uma_zdestroy(uma_zone_t zone)
+{
+
+ zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE);
+}
+
+/* See uma.h */
+void *
+uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
+{
+ void *item;
+ uma_cache_t cache;
+ uma_bucket_t bucket;
+ int cpu;
+
+ /* This is the fast path allocation */
+#ifdef UMA_DEBUG_ALLOC_1
+ printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
+#endif
+ CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
+ zone->uz_name, flags);
+
+ if (flags & M_WAITOK) {
+ WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
+ "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
+ }
+
+ /*
+ * If possible, allocate from the per-CPU cache. There are two
+ * requirements for safe access to the per-CPU cache: (1) the thread
+ * accessing the cache must not be preempted or yield during access,
+ * and (2) the thread must not migrate CPUs without switching which
+ * cache it accesses. We rely on a critical section to prevent
+ * preemption and migration. We release the critical section in
+ * order to acquire the zone mutex if we are unable to allocate from
+ * the current cache; when we re-acquire the critical section, we
+ * must detect and handle migration if it has occurred.
+ */
+zalloc_restart:
+ critical_enter();
+ cpu = curcpu;
+ cache = &zone->uz_cpu[cpu];
+
+zalloc_start:
+ bucket = cache->uc_allocbucket;
+
+ if (bucket) {
+ if (bucket->ub_cnt > 0) {
+ bucket->ub_cnt--;
+ item = bucket->ub_bucket[bucket->ub_cnt];
+#ifdef INVARIANTS
+ bucket->ub_bucket[bucket->ub_cnt] = NULL;
+#endif
+ KASSERT(item != NULL,
+ ("uma_zalloc: Bucket pointer mangled."));
+ cache->uc_allocs++;
+ critical_exit();
+#ifdef INVARIANTS
+ ZONE_LOCK(zone);
+ uma_dbg_alloc(zone, NULL, item);
+ ZONE_UNLOCK(zone);
+#endif
+ if (zone->uz_ctor != NULL) {
+ if (zone->uz_ctor(item, zone->uz_size,
+ udata, flags) != 0) {
+ zone_free_item(zone, item, udata,
+ SKIP_DTOR, ZFREE_STATFAIL |
+ ZFREE_STATFREE);
+ return (NULL);
+ }
+ }
+ if (flags & M_ZERO)
+ bzero(item, zone->uz_size);
+ return (item);
+ } else if (cache->uc_freebucket) {
+ /*
+ * We have run out of items in our allocbucket.
+ * See if we can switch with our free bucket.
+ */
+ if (cache->uc_freebucket->ub_cnt > 0) {
+#ifdef UMA_DEBUG_ALLOC
+ printf("uma_zalloc: Swapping empty with"
+ " alloc.\n");
+#endif
+ bucket = cache->uc_freebucket;
+ cache->uc_freebucket = cache->uc_allocbucket;
+ cache->uc_allocbucket = bucket;
+
+ goto zalloc_start;
+ }
+ }
+ }
+ /*
+ * Attempt to retrieve the item from the per-CPU cache has failed, so
+ * we must go back to the zone. This requires the zone lock, so we
+ * must drop the critical section, then re-acquire it when we go back
+ * to the cache. Since the critical section is released, we may be
+ * preempted or migrate. As such, make sure not to maintain any
+ * thread-local state specific to the cache from prior to releasing
+ * the critical section.
+ */
+ critical_exit();
+ ZONE_LOCK(zone);
+ critical_enter();
+ cpu = curcpu;
+ cache = &zone->uz_cpu[cpu];
+ bucket = cache->uc_allocbucket;
+ if (bucket != NULL) {
+ if (bucket->ub_cnt > 0) {
+ ZONE_UNLOCK(zone);
+ goto zalloc_start;
+ }
+ bucket = cache->uc_freebucket;
+ if (bucket != NULL && bucket->ub_cnt > 0) {
+ ZONE_UNLOCK(zone);
+ goto zalloc_start;
+ }
+ }
+
+ /* Since we have locked the zone we may as well send back our stats */
+ zone->uz_allocs += cache->uc_allocs;
+ cache->uc_allocs = 0;
+ zone->uz_frees += cache->uc_frees;
+ cache->uc_frees = 0;
+
+ /* Our old one is now a free bucket */
+ if (cache->uc_allocbucket) {
+ KASSERT(cache->uc_allocbucket->ub_cnt == 0,
+ ("uma_zalloc_arg: Freeing a non free bucket."));
+ LIST_INSERT_HEAD(&zone->uz_free_bucket,
+ cache->uc_allocbucket, ub_link);
+ cache->uc_allocbucket = NULL;
+ }
+
+ /* Check the free list for a new alloc bucket */
+ if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
+ KASSERT(bucket->ub_cnt != 0,
+ ("uma_zalloc_arg: Returning an empty bucket."));
+
+ LIST_REMOVE(bucket, ub_link);
+ cache->uc_allocbucket = bucket;
+ ZONE_UNLOCK(zone);
+ goto zalloc_start;
+ }
+ /* We are no longer associated with this CPU. */
+ critical_exit();
+
+ /* Bump up our uz_count so we get here less */
+ if (zone->uz_count < BUCKET_MAX)
+ zone->uz_count++;
+
+ /*
+ * Now lets just fill a bucket and put it on the free list. If that
+ * works we'll restart the allocation from the begining.
+ */
+ if (zone_alloc_bucket(zone, flags)) {
+ ZONE_UNLOCK(zone);
+ goto zalloc_restart;
+ }
+ ZONE_UNLOCK(zone);
+ /*
+ * We may not be able to get a bucket so return an actual item.
+ */
+#ifdef UMA_DEBUG
+ printf("uma_zalloc_arg: Bucketzone returned NULL\n");
+#endif
+
+ item = zone_alloc_item(zone, udata, flags);
+ return (item);
+}
+
+static uma_slab_t
+keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
+{
+ uma_slab_t slab;
+
+ mtx_assert(&keg->uk_lock, MA_OWNED);
+ slab = NULL;
+
+ for (;;) {
+ /*
+ * Find a slab with some space. Prefer slabs that are partially
+ * used over those that are totally full. This helps to reduce
+ * fragmentation.
+ */
+ if (keg->uk_free != 0) {
+ if (!LIST_EMPTY(&keg->uk_part_slab)) {
+ slab = LIST_FIRST(&keg->uk_part_slab);
+ } else {
+ slab = LIST_FIRST(&keg->uk_free_slab);
+ LIST_REMOVE(slab, us_link);
+ LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
+ us_link);
+ }
+ MPASS(slab->us_keg == keg);
+ return (slab);
+ }
+
+ /*
+ * M_NOVM means don't ask at all!
+ */
+ if (flags & M_NOVM)
+ break;
+
+ if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
+ keg->uk_flags |= UMA_ZFLAG_FULL;
+ /*
+ * If this is not a multi-zone, set the FULL bit.
+ * Otherwise slab_multi() takes care of it.
+ */
+ if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0)
+ zone->uz_flags |= UMA_ZFLAG_FULL;
+ if (flags & M_NOWAIT)
+ break;
+ msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
+ continue;
+ }
+ keg->uk_recurse++;
+ slab = keg_alloc_slab(keg, zone, flags);
+ keg->uk_recurse--;
+ /*
+ * If we got a slab here it's safe to mark it partially used
+ * and return. We assume that the caller is going to remove
+ * at least one item.
+ */
+ if (slab) {
+ MPASS(slab->us_keg == keg);
+ LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
+ return (slab);
+ }
+ /*
+ * We might not have been able to get a slab but another cpu
+ * could have while we were unlocked. Check again before we
+ * fail.
+ */
+ flags |= M_NOVM;
+ }
+ return (slab);
+}
+
+static inline void
+zone_relock(uma_zone_t zone, uma_keg_t keg)
+{
+ if (zone->uz_lock != &keg->uk_lock) {
+ KEG_UNLOCK(keg);
+ ZONE_LOCK(zone);
+ }
+}
+
+static inline void
+keg_relock(uma_keg_t keg, uma_zone_t zone)
+{
+ if (zone->uz_lock != &keg->uk_lock) {
+ ZONE_UNLOCK(zone);
+ KEG_LOCK(keg);
+ }
+}
+
+static uma_slab_t
+zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
+{
+ uma_slab_t slab;
+
+ if (keg == NULL)
+ keg = zone_first_keg(zone);
+ /*
+ * This is to prevent us from recursively trying to allocate
+ * buckets. The problem is that if an allocation forces us to
+ * grab a new bucket we will call page_alloc, which will go off
+ * and cause the vm to allocate vm_map_entries. If we need new
+ * buckets there too we will recurse in kmem_alloc and bad
+ * things happen. So instead we return a NULL bucket, and make
+ * the code that allocates buckets smart enough to deal with it
+ */
+ if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0)
+ return (NULL);
+
+ for (;;) {
+ slab = keg_fetch_slab(keg, zone, flags);
+ if (slab)
+ return (slab);
+ if (flags & (M_NOWAIT | M_NOVM))
+ break;
+ }
+ return (NULL);
+}
+
+/*
+ * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns
+ * with the keg locked. Caller must call zone_relock() afterwards if the
+ * zone lock is required. On NULL the zone lock is held.
+ *
+ * The last pointer is used to seed the search. It is not required.
+ */
+static uma_slab_t
+zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
+{
+ uma_klink_t klink;
+ uma_slab_t slab;
+ uma_keg_t keg;
+ int flags;
+ int empty;
+ int full;
+
+ /*
+ * Don't wait on the first pass. This will skip limit tests
+ * as well. We don't want to block if we can find a provider
+ * without blocking.
+ */
+ flags = (rflags & ~M_WAITOK) | M_NOWAIT;
+ /*
+ * Use the last slab allocated as a hint for where to start
+ * the search.
+ */
+ if (last) {
+ slab = keg_fetch_slab(last, zone, flags);
+ if (slab)
+ return (slab);
+ zone_relock(zone, last);
+ last = NULL;
+ }
+ /*
+ * Loop until we have a slab incase of transient failures
+ * while M_WAITOK is specified. I'm not sure this is 100%
+ * required but we've done it for so long now.
+ */
+ for (;;) {
+ empty = 0;
+ full = 0;
+ /*
+ * Search the available kegs for slabs. Be careful to hold the
+ * correct lock while calling into the keg layer.
+ */
+ LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
+ keg = klink->kl_keg;
+ keg_relock(keg, zone);
+ if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
+ slab = keg_fetch_slab(keg, zone, flags);
+ if (slab)
+ return (slab);
+ }
+ if (keg->uk_flags & UMA_ZFLAG_FULL)
+ full++;
+ else
+ empty++;
+ zone_relock(zone, keg);
+ }
+ if (rflags & (M_NOWAIT | M_NOVM))
+ break;
+ flags = rflags;
+ /*
+ * All kegs are full. XXX We can't atomically check all kegs
+ * and sleep so just sleep for a short period and retry.
+ */
+ if (full && !empty) {
+ zone->uz_flags |= UMA_ZFLAG_FULL;
+ msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100);
+ zone->uz_flags &= ~UMA_ZFLAG_FULL;
+ continue;
+ }
+ }
+ return (NULL);
+}
+
+static void *
+slab_alloc_item(uma_zone_t zone, uma_slab_t slab)
+{
+ uma_keg_t keg;
+ uma_slabrefcnt_t slabref;
+ void *item;
+ u_int8_t freei;
+
+ keg = slab->us_keg;
+ mtx_assert(&keg->uk_lock, MA_OWNED);
+
+ freei = slab->us_firstfree;
+ if (keg->uk_flags & UMA_ZONE_REFCNT) {
+ slabref = (uma_slabrefcnt_t)slab;
+ slab->us_firstfree = slabref->us_freelist[freei].us_item;
+ } else {
+ slab->us_firstfree = slab->us_freelist[freei].us_item;
+ }
+ item = slab->us_data + (keg->uk_rsize * freei);
+
+ slab->us_freecount--;
+ keg->uk_free--;
+#ifdef INVARIANTS
+ uma_dbg_alloc(zone, slab, item);
+#endif
+ /* Move this slab to the full list */
+ if (slab->us_freecount == 0) {
+ LIST_REMOVE(slab, us_link);
+ LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
+ }
+
+ return (item);
+}
+
+static int
+zone_alloc_bucket(uma_zone_t zone, int flags)
+{
+ uma_bucket_t bucket;
+ uma_slab_t slab;
+ uma_keg_t keg;
+ int16_t saved;
+ int max, origflags = flags;
+
+ /*
+ * Try this zone's free list first so we don't allocate extra buckets.
+ */
+ if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
+ KASSERT(bucket->ub_cnt == 0,
+ ("zone_alloc_bucket: Bucket on free list is not empty."));
+ LIST_REMOVE(bucket, ub_link);
+ } else {
+ int bflags;
+
+ bflags = (flags & ~M_ZERO);
+ if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
+ bflags |= M_NOVM;
+
+ ZONE_UNLOCK(zone);
+ bucket = bucket_alloc(zone->uz_count, bflags);
+ ZONE_LOCK(zone);
+ }
+
+ if (bucket == NULL) {
+ return (0);
+ }
+
+#ifdef SMP
+ /*
+ * This code is here to limit the number of simultaneous bucket fills
+ * for any given zone to the number of per cpu caches in this zone. This
+ * is done so that we don't allocate more memory than we really need.
+ */
+ if (zone->uz_fills >= mp_ncpus)
+ goto done;
+
+#endif
+ zone->uz_fills++;
+
+ max = MIN(bucket->ub_entries, zone->uz_count);
+ /* Try to keep the buckets totally full */
+ saved = bucket->ub_cnt;
+ slab = NULL;
+ keg = NULL;
+ while (bucket->ub_cnt < max &&
+ (slab = zone->uz_slab(zone, keg, flags)) != NULL) {
+ keg = slab->us_keg;
+ while (slab->us_freecount && bucket->ub_cnt < max) {
+ bucket->ub_bucket[bucket->ub_cnt++] =
+ slab_alloc_item(zone, slab);
+ }
+
+ /* Don't block on the next fill */
+ flags |= M_NOWAIT;
+ }
+ if (slab)
+ zone_relock(zone, keg);
+
+ /*
+ * We unlock here because we need to call the zone's init.
+ * It should be safe to unlock because the slab dealt with
+ * above is already on the appropriate list within the keg
+ * and the bucket we filled is not yet on any list, so we
+ * own it.
+ */
+ if (zone->uz_init != NULL) {
+ int i;
+
+ ZONE_UNLOCK(zone);
+ for (i = saved; i < bucket->ub_cnt; i++)
+ if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
+ origflags) != 0)
+ break;
+ /*
+ * If we couldn't initialize the whole bucket, put the
+ * rest back onto the freelist.
+ */
+ if (i != bucket->ub_cnt) {
+ int j;
+
+ for (j = i; j < bucket->ub_cnt; j++) {
+ zone_free_item(zone, bucket->ub_bucket[j],
+ NULL, SKIP_FINI, 0);
+#ifdef INVARIANTS
+ bucket->ub_bucket[j] = NULL;
+#endif
+ }
+ bucket->ub_cnt = i;
+ }
+ ZONE_LOCK(zone);
+ }
+
+ zone->uz_fills--;
+ if (bucket->ub_cnt != 0) {
+ LIST_INSERT_HEAD(&zone->uz_full_bucket,
+ bucket, ub_link);
+ return (1);
+ }
+#ifdef SMP
+done:
+#endif
+ bucket_free(bucket);
+
+ return (0);
+}
+/*
+ * Allocates an item for an internal zone
+ *
+ * Arguments
+ * zone The zone to alloc for.
+ * udata The data to be passed to the constructor.
+ * flags M_WAITOK, M_NOWAIT, M_ZERO.
+ *
+ * Returns
+ * NULL if there is no memory and M_NOWAIT is set
+ * An item if successful
+ */
+
+static void *
+zone_alloc_item(uma_zone_t zone, void *udata, int flags)
+{
+ uma_slab_t slab;
+ void *item;
+
+ item = NULL;
+
+#ifdef UMA_DEBUG_ALLOC
+ printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
+#endif
+ ZONE_LOCK(zone);
+
+ slab = zone->uz_slab(zone, NULL, flags);
+ if (slab == NULL) {
+ zone->uz_fails++;
+ ZONE_UNLOCK(zone);
+ return (NULL);
+ }
+
+ item = slab_alloc_item(zone, slab);
+
+ zone_relock(zone, slab->us_keg);
+ zone->uz_allocs++;
+ ZONE_UNLOCK(zone);
+
+ /*
+ * We have to call both the zone's init (not the keg's init)
+ * and the zone's ctor. This is because the item is going from
+ * a keg slab directly to the user, and the user is expecting it
+ * to be both zone-init'd as well as zone-ctor'd.
+ */
+ if (zone->uz_init != NULL) {
+ if (zone->uz_init(item, zone->uz_size, flags) != 0) {
+ zone_free_item(zone, item, udata, SKIP_FINI,
+ ZFREE_STATFAIL | ZFREE_STATFREE);
+ return (NULL);
+ }
+ }
+ if (zone->uz_ctor != NULL) {
+ if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
+ zone_free_item(zone, item, udata, SKIP_DTOR,
+ ZFREE_STATFAIL | ZFREE_STATFREE);
+ return (NULL);
+ }
+ }
+ if (flags & M_ZERO)
+ bzero(item, zone->uz_size);
+
+ return (item);
+}
+
+/* See uma.h */
+void
+uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
+{
+ uma_cache_t cache;
+ uma_bucket_t bucket;
+ int bflags;
+ int cpu;
+
+#ifdef UMA_DEBUG_ALLOC_1
+ printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
+#endif
+ CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
+ zone->uz_name);
+
+ /* uma_zfree(..., NULL) does nothing, to match free(9). */
+ if (item == NULL)
+ return;
+
+ if (zone->uz_dtor)
+ zone->uz_dtor(item, zone->uz_size, udata);
+
+#ifdef INVARIANTS
+ ZONE_LOCK(zone);
+ if (zone->uz_flags & UMA_ZONE_MALLOC)
+ uma_dbg_free(zone, udata, item);
+ else
+ uma_dbg_free(zone, NULL, item);
+ ZONE_UNLOCK(zone);
+#endif
+ /*
+ * The race here is acceptable. If we miss it we'll just have to wait
+ * a little longer for the limits to be reset.
+ */
+ if (zone->uz_flags & UMA_ZFLAG_FULL)
+ goto zfree_internal;
+
+ /*
+ * If possible, free to the per-CPU cache. There are two
+ * requirements for safe access to the per-CPU cache: (1) the thread
+ * accessing the cache must not be preempted or yield during access,
+ * and (2) the thread must not migrate CPUs without switching which
+ * cache it accesses. We rely on a critical section to prevent
+ * preemption and migration. We release the critical section in
+ * order to acquire the zone mutex if we are unable to free to the
+ * current cache; when we re-acquire the critical section, we must
+ * detect and handle migration if it has occurred.
+ */
+zfree_restart:
+ critical_enter();
+ cpu = curcpu;
+ cache = &zone->uz_cpu[cpu];
+
+zfree_start:
+ bucket = cache->uc_freebucket;
+
+ if (bucket) {
+ /*
+ * Do we have room in our bucket? It is OK for this uz count
+ * check to be slightly out of sync.
+ */
+
+ if (bucket->ub_cnt < bucket->ub_entries) {
+ KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
+ ("uma_zfree: Freeing to non free bucket index."));
+ bucket->ub_bucket[bucket->ub_cnt] = item;
+ bucket->ub_cnt++;
+ cache->uc_frees++;
+ critical_exit();
+ return;
+ } else if (cache->uc_allocbucket) {
+#ifdef UMA_DEBUG_ALLOC
+ printf("uma_zfree: Swapping buckets.\n");
+#endif
+ /*
+ * We have run out of space in our freebucket.
+ * See if we can switch with our alloc bucket.
+ */
+ if (cache->uc_allocbucket->ub_cnt <
+ cache->uc_freebucket->ub_cnt) {
+ bucket = cache->uc_freebucket;
+ cache->uc_freebucket = cache->uc_allocbucket;
+ cache->uc_allocbucket = bucket;
+ goto zfree_start;
+ }
+ }
+ }
+ /*
+ * We can get here for two reasons:
+ *
+ * 1) The buckets are NULL
+ * 2) The alloc and free buckets are both somewhat full.
+ *
+ * We must go back the zone, which requires acquiring the zone lock,
+ * which in turn means we must release and re-acquire the critical
+ * section. Since the critical section is released, we may be
+ * preempted or migrate. As such, make sure not to maintain any
+ * thread-local state specific to the cache from prior to releasing
+ * the critical section.
+ */
+ critical_exit();
+ ZONE_LOCK(zone);
+ critical_enter();
+ cpu = curcpu;
+ cache = &zone->uz_cpu[cpu];
+ if (cache->uc_freebucket != NULL) {
+ if (cache->uc_freebucket->ub_cnt <
+ cache->uc_freebucket->ub_entries) {
+ ZONE_UNLOCK(zone);
+ goto zfree_start;
+ }
+ if (cache->uc_allocbucket != NULL &&
+ (cache->uc_allocbucket->ub_cnt <
+ cache->uc_freebucket->ub_cnt)) {
+ ZONE_UNLOCK(zone);
+ goto zfree_start;
+ }
+ }
+
+ /* Since we have locked the zone we may as well send back our stats */
+ zone->uz_allocs += cache->uc_allocs;
+ cache->uc_allocs = 0;
+ zone->uz_frees += cache->uc_frees;
+ cache->uc_frees = 0;
+
+ bucket = cache->uc_freebucket;
+ cache->uc_freebucket = NULL;
+
+ /* Can we throw this on the zone full list? */
+ if (bucket != NULL) {
+#ifdef UMA_DEBUG_ALLOC
+ printf("uma_zfree: Putting old bucket on the free list.\n");
+#endif
+ /* ub_cnt is pointing to the last free item */
+ KASSERT(bucket->ub_cnt != 0,
+ ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
+ LIST_INSERT_HEAD(&zone->uz_full_bucket,
+ bucket, ub_link);
+ }
+ if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
+ LIST_REMOVE(bucket, ub_link);
+ ZONE_UNLOCK(zone);
+ cache->uc_freebucket = bucket;
+ goto zfree_start;
+ }
+ /* We are no longer associated with this CPU. */
+ critical_exit();
+
+ /* And the zone.. */
+ ZONE_UNLOCK(zone);
+
+#ifdef UMA_DEBUG_ALLOC
+ printf("uma_zfree: Allocating new free bucket.\n");
+#endif
+ bflags = M_NOWAIT;
+
+ if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
+ bflags |= M_NOVM;
+ bucket = bucket_alloc(zone->uz_count, bflags);
+ if (bucket) {
+ ZONE_LOCK(zone);
+ LIST_INSERT_HEAD(&zone->uz_free_bucket,
+ bucket, ub_link);
+ ZONE_UNLOCK(zone);
+ goto zfree_restart;
+ }
+
+ /*
+ * If nothing else caught this, we'll just do an internal free.
+ */
+zfree_internal:
+ zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE);
+
+ return;
+}
+
+/*
+ * Frees an item to an INTERNAL zone or allocates a free bucket
+ *
+ * Arguments:
+ * zone The zone to free to
+ * item The item we're freeing
+ * udata User supplied data for the dtor
+ * skip Skip dtors and finis
+ */
+static void
+zone_free_item(uma_zone_t zone, void *item, void *udata,
+ enum zfreeskip skip, int flags)
+{
+ uma_slab_t slab;
+ uma_slabrefcnt_t slabref;
+ uma_keg_t keg;
+ u_int8_t *mem;
+ u_int8_t freei;
+ int clearfull;
+
+ if (skip < SKIP_DTOR && zone->uz_dtor)
+ zone->uz_dtor(item, zone->uz_size, udata);
+
+ if (skip < SKIP_FINI && zone->uz_fini)
+ zone->uz_fini(item, zone->uz_size);
+
+ ZONE_LOCK(zone);
+
+ if (flags & ZFREE_STATFAIL)
+ zone->uz_fails++;
+ if (flags & ZFREE_STATFREE)
+ zone->uz_frees++;
+
+ if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
+ mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
+ keg = zone_first_keg(zone); /* Must only be one. */
+ if (zone->uz_flags & UMA_ZONE_HASH) {
+ slab = hash_sfind(&keg->uk_hash, mem);
+ } else {
+ mem += keg->uk_pgoff;
+ slab = (uma_slab_t)mem;
+ }
+ } else {
+#ifndef __rtems__
+ /* This prevents redundant lookups via free(). */
+ if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL)
+ slab = (uma_slab_t)udata;
+ else
+ slab = vtoslab((vm_offset_t)item);
+ keg = slab->us_keg;
+ keg_relock(keg, zone);
+#else /* __rtems__ */
+ panic("uma virtual memory not supported!" );
+#endif /* __rtems__ */
+ }
+ MPASS(keg == slab->us_keg);
+
+ /* Do we need to remove from any lists? */
+ if (slab->us_freecount+1 == keg->uk_ipers) {
+ LIST_REMOVE(slab, us_link);
+ LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
+ } else if (slab->us_freecount == 0) {
+ LIST_REMOVE(slab, us_link);
+ LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
+ }
+
+ /* Slab management stuff */
+ freei = ((unsigned long)item - (unsigned long)slab->us_data)
+ / keg->uk_rsize;
+
+#ifdef INVARIANTS
+ if (!skip)
+ uma_dbg_free(zone, slab, item);
+#endif
+
+ if (keg->uk_flags & UMA_ZONE_REFCNT) {
+ slabref = (uma_slabrefcnt_t)slab;
+ slabref->us_freelist[freei].us_item = slab->us_firstfree;
+ } else {
+ slab->us_freelist[freei].us_item = slab->us_firstfree;
+ }
+ slab->us_firstfree = freei;
+ slab->us_freecount++;
+
+ /* Zone statistics */
+ keg->uk_free++;
+
+ clearfull = 0;
+ if (keg->uk_flags & UMA_ZFLAG_FULL) {
+ if (keg->uk_pages < keg->uk_maxpages) {
+ keg->uk_flags &= ~UMA_ZFLAG_FULL;
+ clearfull = 1;
+ }
+
+ /*
+ * We can handle one more allocation. Since we're clearing ZFLAG_FULL,
+ * wake up all procs blocked on pages. This should be uncommon, so
+ * keeping this simple for now (rather than adding count of blocked
+ * threads etc).
+ */
+ wakeup(keg);
+ }
+ if (clearfull) {
+ zone_relock(zone, keg);
+ zone->uz_flags &= ~UMA_ZFLAG_FULL;
+ wakeup(zone);
+ ZONE_UNLOCK(zone);
+ } else
+ KEG_UNLOCK(keg);
+}
+
+/* See uma.h */
+void
+uma_zone_set_max(uma_zone_t zone, int nitems)
+{
+ uma_keg_t keg;
+
+ ZONE_LOCK(zone);
+ keg = zone_first_keg(zone);
+ keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
+ if (keg->uk_maxpages * keg->uk_ipers < nitems)
+ keg->uk_maxpages += keg->uk_ppera;
+
+ ZONE_UNLOCK(zone);
+}
+
+/* See uma.h */
+int
+uma_zone_get_max(uma_zone_t zone)
+{
+ int nitems;
+ uma_keg_t keg;
+
+ ZONE_LOCK(zone);
+ keg = zone_first_keg(zone);
+ nitems = keg->uk_maxpages * keg->uk_ipers;
+ ZONE_UNLOCK(zone);
+
+ return (nitems);
+}
+
+/* See uma.h */
+int
+uma_zone_get_cur(uma_zone_t zone)
+{
+ int64_t nitems;
+ u_int i;
+
+ ZONE_LOCK(zone);
+ nitems = zone->uz_allocs - zone->uz_frees;
+ CPU_FOREACH(i) {
+ /*
+ * See the comment in sysctl_vm_zone_stats() regarding the
+ * safety of accessing the per-cpu caches. With the zone lock
+ * held, it is safe, but can potentially result in stale data.
+ */
+ nitems += zone->uz_cpu[i].uc_allocs -
+ zone->uz_cpu[i].uc_frees;
+ }
+ ZONE_UNLOCK(zone);
+
+ return (nitems < 0 ? 0 : nitems);
+}
+
+/* See uma.h */
+void
+uma_zone_set_init(uma_zone_t zone, uma_init uminit)
+{
+ uma_keg_t keg;
+
+ ZONE_LOCK(zone);
+ keg = zone_first_keg(zone);
+ KASSERT(keg->uk_pages == 0,
+ ("uma_zone_set_init on non-empty keg"));
+ keg->uk_init = uminit;
+ ZONE_UNLOCK(zone);
+}
+
+/* See uma.h */
+void
+uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
+{
+ uma_keg_t keg;
+
+ ZONE_LOCK(zone);
+ keg = zone_first_keg(zone);
+ KASSERT(keg->uk_pages == 0,
+ ("uma_zone_set_fini on non-empty keg"));
+ keg->uk_fini = fini;
+ ZONE_UNLOCK(zone);
+}
+
+/* See uma.h */
+void
+uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
+{
+ ZONE_LOCK(zone);
+ KASSERT(zone_first_keg(zone)->uk_pages == 0,
+ ("uma_zone_set_zinit on non-empty keg"));
+ zone->uz_init = zinit;
+ ZONE_UNLOCK(zone);
+}
+
+/* See uma.h */
+void
+uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
+{
+ ZONE_LOCK(zone);
+ KASSERT(zone_first_keg(zone)->uk_pages == 0,
+ ("uma_zone_set_zfini on non-empty keg"));
+ zone->uz_fini = zfini;
+ ZONE_UNLOCK(zone);
+}
+
+/* See uma.h */
+/* XXX uk_freef is not actually used with the zone locked */
+void
+uma_zone_set_freef(uma_zone_t zone, uma_free freef)
+{
+
+ ZONE_LOCK(zone);
+ zone_first_keg(zone)->uk_freef = freef;
+ ZONE_UNLOCK(zone);
+}
+
+/* See uma.h */
+/* XXX uk_allocf is not actually used with the zone locked */
+void
+uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
+{
+ uma_keg_t keg;
+
+ ZONE_LOCK(zone);
+ keg = zone_first_keg(zone);
+ keg->uk_flags |= UMA_ZFLAG_PRIVALLOC;
+ keg->uk_allocf = allocf;
+ ZONE_UNLOCK(zone);
+}
+
+#ifndef __rtems__
+/* See uma.h */
+int
+uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
+{
+ uma_keg_t keg;
+ vm_offset_t kva;
+ int pages;
+
+ keg = zone_first_keg(zone);
+ pages = count / keg->uk_ipers;
+
+ if (pages * keg->uk_ipers < count)
+ pages++;
+
+ kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE);
+
+ if (kva == 0)
+ return (0);
+ if (obj == NULL) {
+ obj = vm_object_allocate(OBJT_DEFAULT,
+ pages);
+ } else {
+ VM_OBJECT_LOCK_INIT(obj, "uma object");
+ _vm_object_allocate(OBJT_DEFAULT,
+ pages, obj);
+ }
+ ZONE_LOCK(zone);
+ keg->uk_kva = kva;
+ keg->uk_obj = obj;
+ keg->uk_maxpages = pages;
+ keg->uk_allocf = obj_alloc;
+ keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC;
+ ZONE_UNLOCK(zone);
+ return (1);
+}
+#endif /* __rtems__ */
+
+/* See uma.h */
+void
+uma_prealloc(uma_zone_t zone, int items)
+{
+ int slabs;
+ uma_slab_t slab;
+ uma_keg_t keg;
+
+ keg = zone_first_keg(zone);
+ ZONE_LOCK(zone);
+ slabs = items / keg->uk_ipers;
+ if (slabs * keg->uk_ipers < items)
+ slabs++;
+ while (slabs > 0) {
+ slab = keg_alloc_slab(keg, zone, M_WAITOK);
+ if (slab == NULL)
+ break;
+ MPASS(slab->us_keg == keg);
+ LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
+ slabs--;
+ }
+ ZONE_UNLOCK(zone);
+}
+
+#ifndef __rtems__
+/* See uma.h */
+u_int32_t *
+uma_find_refcnt(uma_zone_t zone, void *item)
+{
+ uma_slabrefcnt_t slabref;
+ uma_keg_t keg;
+ u_int32_t *refcnt;
+ int idx;
+
+ slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item &
+ (~UMA_SLAB_MASK));
+ keg = slabref->us_keg;
+ KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT,
+ ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
+ idx = ((unsigned long)item - (unsigned long)slabref->us_data)
+ / keg->uk_rsize;
+ refcnt = &slabref->us_freelist[idx].us_refcnt;
+ return refcnt;
+}
+#endif /* __rtems__ */
+
+/* See uma.h */
+void
+uma_reclaim(void)
+{
+#ifdef UMA_DEBUG
+ printf("UMA: vm asked us to release pages!\n");
+#endif
+#ifndef __rtems__
+ bucket_enable();
+#endif /* __rtems__ */
+ zone_foreach(zone_drain);
+ /*
+ * Some slabs may have been freed but this zone will be visited early
+ * we visit again so that we can free pages that are empty once other
+ * zones are drained. We have to do the same for buckets.
+ */
+ zone_drain(slabzone);
+ zone_drain(slabrefzone);
+ bucket_zone_drain();
+}
+
+/* See uma.h */
+int
+uma_zone_exhausted(uma_zone_t zone)
+{
+ int full;
+
+ ZONE_LOCK(zone);
+ full = (zone->uz_flags & UMA_ZFLAG_FULL);
+ ZONE_UNLOCK(zone);
+ return (full);
+}
+
+int
+uma_zone_exhausted_nolock(uma_zone_t zone)
+{
+ return (zone->uz_flags & UMA_ZFLAG_FULL);
+}
+
+void *
+uma_large_malloc(int size, int wait)
+{
+ void *mem;
+ uma_slab_t slab;
+ u_int8_t flags;
+
+ slab = zone_alloc_item(slabzone, NULL, wait);
+ if (slab == NULL)
+ return (NULL);
+ mem = page_alloc(NULL, size, &flags, wait);
+ if (mem) {
+#ifndef __rtems__
+ vsetslab((vm_offset_t)mem, slab);
+#endif /* __rtems__ */
+ slab->us_data = mem;
+ slab->us_flags = flags | UMA_SLAB_MALLOC;
+ slab->us_size = size;
+ } else {
+ zone_free_item(slabzone, slab, NULL, SKIP_NONE,
+ ZFREE_STATFAIL | ZFREE_STATFREE);
+ }
+
+ return (mem);
+}
+
+void
+uma_large_free(uma_slab_t slab)
+{
+#ifndef __rtems__
+ vsetobj((vm_offset_t)slab->us_data, kmem_object);
+#endif /* __rtems__ */
+ page_free(slab->us_data, slab->us_size, slab->us_flags);
+ zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE);
+}
+
+void
+uma_print_stats(void)
+{
+ zone_foreach(uma_print_zone);
+}
+
+static void
+slab_print(uma_slab_t slab)
+{
+ printf("slab: keg %p, data %p, freecount %d, firstfree %d\n",
+ slab->us_keg, slab->us_data, slab->us_freecount,
+ slab->us_firstfree);
+}
+
+static void
+cache_print(uma_cache_t cache)
+{
+ printf("alloc: %p(%d), free: %p(%d)\n",
+ cache->uc_allocbucket,
+ cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
+ cache->uc_freebucket,
+ cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
+}
+
+static void
+uma_print_keg(uma_keg_t keg)
+{
+ uma_slab_t slab;
+
+ printf("keg: %s(%p) size %d(%d) flags %d ipers %d ppera %d "
+ "out %d free %d limit %d\n",
+ keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
+ keg->uk_ipers, keg->uk_ppera,
+ (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
+ (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
+ printf("Part slabs:\n");
+ LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
+ slab_print(slab);
+ printf("Free slabs:\n");
+ LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
+ slab_print(slab);
+ printf("Full slabs:\n");
+ LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
+ slab_print(slab);
+}
+
+void
+uma_print_zone(uma_zone_t zone)
+{
+ uma_cache_t cache;
+ uma_klink_t kl;
+ int i;
+
+ printf("zone: %s(%p) size %d flags %d\n",
+ zone->uz_name, zone, zone->uz_size, zone->uz_flags);
+ LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
+ uma_print_keg(kl->kl_keg);
+ for (i = 0; i <= mp_maxid; i++) {
+ if (CPU_ABSENT(i))
+ continue;
+ cache = &zone->uz_cpu[i];
+ printf("CPU %d Cache:\n", i);
+ cache_print(cache);
+ }
+}
+
+#ifndef __rtems__
+#ifdef DDB
+/*
+ * Generate statistics across both the zone and its per-cpu cache's. Return
+ * desired statistics if the pointer is non-NULL for that statistic.
+ *
+ * Note: does not update the zone statistics, as it can't safely clear the
+ * per-CPU cache statistic.
+ *
+ * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
+ * safe from off-CPU; we should modify the caches to track this information
+ * directly so that we don't have to.
+ */
+static void
+uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp,
+ u_int64_t *freesp)
+{
+ uma_cache_t cache;
+ u_int64_t allocs, frees;
+ int cachefree, cpu;
+
+ allocs = frees = 0;
+ cachefree = 0;
+ for (cpu = 0; cpu <= mp_maxid; cpu++) {
+ if (CPU_ABSENT(cpu))
+ continue;
+ cache = &z->uz_cpu[cpu];
+ if (cache->uc_allocbucket != NULL)
+ cachefree += cache->uc_allocbucket->ub_cnt;
+ if (cache->uc_freebucket != NULL)
+ cachefree += cache->uc_freebucket->ub_cnt;
+ allocs += cache->uc_allocs;
+ frees += cache->uc_frees;
+ }
+ allocs += z->uz_allocs;
+ frees += z->uz_frees;
+ if (cachefreep != NULL)
+ *cachefreep = cachefree;
+ if (allocsp != NULL)
+ *allocsp = allocs;
+ if (freesp != NULL)
+ *freesp = frees;
+}
+#endif /* DDB */
+
+static int
+sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
+{
+ uma_keg_t kz;
+ uma_zone_t z;
+ int count;
+
+ count = 0;
+ mtx_lock(&uma_mtx);
+ LIST_FOREACH(kz, &uma_kegs, uk_link) {
+ LIST_FOREACH(z, &kz->uk_zones, uz_link)
+ count++;
+ }
+ mtx_unlock(&uma_mtx);
+ return (sysctl_handle_int(oidp, &count, 0, req));
+}
+
+static int
+sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
+{
+ struct uma_stream_header ush;
+ struct uma_type_header uth;
+ struct uma_percpu_stat ups;
+ uma_bucket_t bucket;
+ struct sbuf sbuf;
+ uma_cache_t cache;
+ uma_klink_t kl;
+ uma_keg_t kz;
+ uma_zone_t z;
+ uma_keg_t k;
+ char *buffer;
+ int buflen, count, error, i;
+
+ mtx_lock(&uma_mtx);
+restart:
+ mtx_assert(&uma_mtx, MA_OWNED);
+ count = 0;
+ LIST_FOREACH(kz, &uma_kegs, uk_link) {
+ LIST_FOREACH(z, &kz->uk_zones, uz_link)
+ count++;
+ }
+ mtx_unlock(&uma_mtx);
+
+ buflen = sizeof(ush) + count * (sizeof(uth) + sizeof(ups) *
+ (mp_maxid + 1)) + 1;
+ buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
+
+ mtx_lock(&uma_mtx);
+ i = 0;
+ LIST_FOREACH(kz, &uma_kegs, uk_link) {
+ LIST_FOREACH(z, &kz->uk_zones, uz_link)
+ i++;
+ }
+ if (i > count) {
+ free(buffer, M_TEMP);
+ goto restart;
+ }
+ count = i;
+
+ sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN);
+
+ /*
+ * Insert stream header.
+ */
+ bzero(&ush, sizeof(ush));
+ ush.ush_version = UMA_STREAM_VERSION;
+ ush.ush_maxcpus = (mp_maxid + 1);
+ ush.ush_count = count;
+ if (sbuf_bcat(&sbuf, &ush, sizeof(ush)) < 0) {
+ mtx_unlock(&uma_mtx);
+ error = ENOMEM;
+ goto out;
+ }
+
+ LIST_FOREACH(kz, &uma_kegs, uk_link) {
+ LIST_FOREACH(z, &kz->uk_zones, uz_link) {
+ bzero(&uth, sizeof(uth));
+ ZONE_LOCK(z);
+ strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
+ uth.uth_align = kz->uk_align;
+ uth.uth_size = kz->uk_size;
+ uth.uth_rsize = kz->uk_rsize;
+ LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
+ k = kl->kl_keg;
+ uth.uth_maxpages += k->uk_maxpages;
+ uth.uth_pages += k->uk_pages;
+ uth.uth_keg_free += k->uk_free;
+ uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
+ * k->uk_ipers;
+ }
+
+ /*
+ * A zone is secondary is it is not the first entry
+ * on the keg's zone list.
+ */
+ if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
+ (LIST_FIRST(&kz->uk_zones) != z))
+ uth.uth_zone_flags = UTH_ZONE_SECONDARY;
+
+ LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
+ uth.uth_zone_free += bucket->ub_cnt;
+ uth.uth_allocs = z->uz_allocs;
+ uth.uth_frees = z->uz_frees;
+ uth.uth_fails = z->uz_fails;
+ if (sbuf_bcat(&sbuf, &uth, sizeof(uth)) < 0) {
+ ZONE_UNLOCK(z);
+ mtx_unlock(&uma_mtx);
+ error = ENOMEM;
+ goto out;
+ }
+ /*
+ * While it is not normally safe to access the cache
+ * bucket pointers while not on the CPU that owns the
+ * cache, we only allow the pointers to be exchanged
+ * without the zone lock held, not invalidated, so
+ * accept the possible race associated with bucket
+ * exchange during monitoring.
+ */
+ for (i = 0; i < (mp_maxid + 1); i++) {
+ bzero(&ups, sizeof(ups));
+ if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
+ goto skip;
+ if (CPU_ABSENT(i))
+ goto skip;
+ cache = &z->uz_cpu[i];
+ if (cache->uc_allocbucket != NULL)
+ ups.ups_cache_free +=
+ cache->uc_allocbucket->ub_cnt;
+ if (cache->uc_freebucket != NULL)
+ ups.ups_cache_free +=
+ cache->uc_freebucket->ub_cnt;
+ ups.ups_allocs = cache->uc_allocs;
+ ups.ups_frees = cache->uc_frees;
+skip:
+ if (sbuf_bcat(&sbuf, &ups, sizeof(ups)) < 0) {
+ ZONE_UNLOCK(z);
+ mtx_unlock(&uma_mtx);
+ error = ENOMEM;
+ goto out;
+ }
+ }
+ ZONE_UNLOCK(z);
+ }
+ }
+ mtx_unlock(&uma_mtx);
+ sbuf_finish(&sbuf);
+ error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
+out:
+ free(buffer, M_TEMP);
+ return (error);
+}
+
+#ifdef DDB
+DB_SHOW_COMMAND(uma, db_show_uma)
+{
+ u_int64_t allocs, frees;
+ uma_bucket_t bucket;
+ uma_keg_t kz;
+ uma_zone_t z;
+ int cachefree;
+
+ db_printf("%18s %8s %8s %8s %12s\n", "Zone", "Size", "Used", "Free",
+ "Requests");
+ LIST_FOREACH(kz, &uma_kegs, uk_link) {
+ LIST_FOREACH(z, &kz->uk_zones, uz_link) {
+ if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
+ allocs = z->uz_allocs;
+ frees = z->uz_frees;
+ cachefree = 0;
+ } else
+ uma_zone_sumstat(z, &cachefree, &allocs,
+ &frees);
+ if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
+ (LIST_FIRST(&kz->uk_zones) != z)))
+ cachefree += kz->uk_free;
+ LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
+ cachefree += bucket->ub_cnt;
+ db_printf("%18s %8ju %8jd %8d %12ju\n", z->uz_name,
+ (uintmax_t)kz->uk_size,
+ (intmax_t)(allocs - frees), cachefree,
+ (uintmax_t)allocs);
+ }
+ }
+}
+#endif
+#endif /* __rtems__ */