summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJennifer Averett <jennifer.averett@oarcorp.com>2012-04-16 09:10:35 -0500
committerJennifer Averett <jennifer.averett@oarcorp.com>2012-04-16 09:17:12 -0500
commit459afb1c761a6080656a8a06cda8b726f7982cb7 (patch)
tree8d9e9651f1c3541b9ac7f83c6b32ddbabdfd656e
parentExplain why we need the interrupt server (diff)
downloadrtems-libbsd-459afb1c761a6080656a8a06cda8b726f7982cb7.tar.bz2
Implemented a version of rmlock using rwlock.
-rw-r--r--Makefile2
-rwxr-xr-xfreebsd-to-rtems.py2
-rw-r--r--freebsd/kern/kern_ntptime.c1045
-rw-r--r--freebsd/sys/_rmlock.h5
-rw-r--r--freebsd/sys/rmlock.h17
-rw-r--r--rtemsbsd/src/rtems-bsd-lock.c2
-rw-r--r--rtemsbsd/src/rtems-bsd-rmlock.c92
-rw-r--r--rtemsbsd/src/rtems-bsd-timeout.c111
8 files changed, 1183 insertions, 93 deletions
diff --git a/Makefile b/Makefile
index 68b37ddb..de2234ed 100644
--- a/Makefile
+++ b/Makefile
@@ -324,6 +324,7 @@ C_FILES = \
freebsd/netinet/tcp_hostcache.c \
freebsd/dev/pci/pci.c \
freebsd/kern/uipc_accf.c \
+ freebsd/kern/kern_ntptime.c \
freebsd/dev/re/if_re.c \
freebsd/dev/fxp/if_fxp.c \
freebsd/dev/e1000/e1000_80003es2lan.c \
@@ -392,6 +393,7 @@ C_FILES += \
rtemsbsd/src/rtems-bsd-uma.c \
rtemsbsd/src/rtems-bsd-taskqueue.c \
rtemsbsd/src/rtems-bsd-timesupport.c \
+ rtemsbsd/src/rtems-bsd-timeout.c \
rtemsbsd/src/rtems-bsd-newproc.c \
rtemsbsd/src/rtems-bsd-vm_glue.c
diff --git a/freebsd-to-rtems.py b/freebsd-to-rtems.py
index d1feef9a..f1300c22 100755
--- a/freebsd-to-rtems.py
+++ b/freebsd-to-rtems.py
@@ -533,6 +533,7 @@ rtems_sourceFiles = [
'src/rtems-bsd-uma.c',
'src/rtems-bsd-taskqueue.c',
'src/rtems-bsd-timesupport.c',
+ 'src/rtems-bsd-timeout.c',
'src/rtems-bsd-newproc.c',
'src/rtems-bsd-vm_glue.c',
]
@@ -1140,6 +1141,7 @@ devNic.addSourceFiles(
'netinet/tcp_hostcache.c',
'dev/pci/pci.c',
'kern/uipc_accf.c',
+ 'kern/kern_ntptime.c',
]
)
diff --git a/freebsd/kern/kern_ntptime.c b/freebsd/kern/kern_ntptime.c
new file mode 100644
index 00000000..33aa4908
--- /dev/null
+++ b/freebsd/kern/kern_ntptime.c
@@ -0,0 +1,1045 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/*-
+ ***********************************************************************
+ * *
+ * Copyright (c) David L. Mills 1993-2001 *
+ * *
+ * Permission to use, copy, modify, and distribute this software and *
+ * its documentation for any purpose and without fee is hereby *
+ * granted, provided that the above copyright notice appears in all *
+ * copies and that both the copyright notice and this permission *
+ * notice appear in supporting documentation, and that the name *
+ * University of Delaware not be used in advertising or publicity *
+ * pertaining to distribution of the software without specific, *
+ * written prior permission. The University of Delaware makes no *
+ * representations about the suitability this software for any *
+ * purpose. It is provided "as is" without express or implied *
+ * warranty. *
+ * *
+ **********************************************************************/
+
+/*
+ * Adapted from the original sources for FreeBSD and timecounters by:
+ * Poul-Henning Kamp <phk@FreeBSD.org>.
+ *
+ * The 32bit version of the "LP" macros seems a bit past its "sell by"
+ * date so I have retained only the 64bit version and included it directly
+ * in this file.
+ *
+ * Only minor changes done to interface with the timecounters over in
+ * sys/kern/kern_clock.c. Some of the comments below may be (even more)
+ * confusing and/or plain wrong in that context.
+ */
+
+#include <freebsd/sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <freebsd/local/opt_ntp.h>
+
+#include <freebsd/sys/param.h>
+#include <freebsd/sys/systm.h>
+#include <freebsd/sys/sysproto.h>
+#include <freebsd/sys/eventhandler.h>
+#include <freebsd/sys/kernel.h>
+#include <freebsd/sys/priv.h>
+#include <freebsd/sys/proc.h>
+#include <freebsd/sys/lock.h>
+#include <freebsd/sys/mutex.h>
+#include <freebsd/sys/time.h>
+#include <freebsd/sys/timex.h>
+#include <freebsd/sys/timetc.h>
+#include <freebsd/sys/timepps.h>
+#include <freebsd/sys/syscallsubr.h>
+#include <freebsd/sys/sysctl.h>
+
+/*
+ * Single-precision macros for 64-bit machines
+ */
+typedef int64_t l_fp;
+#define L_ADD(v, u) ((v) += (u))
+#define L_SUB(v, u) ((v) -= (u))
+#define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
+#define L_NEG(v) ((v) = -(v))
+#define L_RSHIFT(v, n) \
+ do { \
+ if ((v) < 0) \
+ (v) = -(-(v) >> (n)); \
+ else \
+ (v) = (v) >> (n); \
+ } while (0)
+#define L_MPY(v, a) ((v) *= (a))
+#define L_CLR(v) ((v) = 0)
+#define L_ISNEG(v) ((v) < 0)
+#define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
+#define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
+
+/*
+ * Generic NTP kernel interface
+ *
+ * These routines constitute the Network Time Protocol (NTP) interfaces
+ * for user and daemon application programs. The ntp_gettime() routine
+ * provides the time, maximum error (synch distance) and estimated error
+ * (dispersion) to client user application programs. The ntp_adjtime()
+ * routine is used by the NTP daemon to adjust the system clock to an
+ * externally derived time. The time offset and related variables set by
+ * this routine are used by other routines in this module to adjust the
+ * phase and frequency of the clock discipline loop which controls the
+ * system clock.
+ *
+ * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
+ * defined), the time at each tick interrupt is derived directly from
+ * the kernel time variable. When the kernel time is reckoned in
+ * microseconds, (NTP_NANO undefined), the time is derived from the
+ * kernel time variable together with a variable representing the
+ * leftover nanoseconds at the last tick interrupt. In either case, the
+ * current nanosecond time is reckoned from these values plus an
+ * interpolated value derived by the clock routines in another
+ * architecture-specific module. The interpolation can use either a
+ * dedicated counter or a processor cycle counter (PCC) implemented in
+ * some architectures.
+ *
+ * Note that all routines must run at priority splclock or higher.
+ */
+/*
+ * Phase/frequency-lock loop (PLL/FLL) definitions
+ *
+ * The nanosecond clock discipline uses two variable types, time
+ * variables and frequency variables. Both types are represented as 64-
+ * bit fixed-point quantities with the decimal point between two 32-bit
+ * halves. On a 32-bit machine, each half is represented as a single
+ * word and mathematical operations are done using multiple-precision
+ * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
+ * used.
+ *
+ * A time variable is a signed 64-bit fixed-point number in ns and
+ * fraction. It represents the remaining time offset to be amortized
+ * over succeeding tick interrupts. The maximum time offset is about
+ * 0.5 s and the resolution is about 2.3e-10 ns.
+ *
+ * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
+ * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * |s s s| ns |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * | fraction |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ *
+ * A frequency variable is a signed 64-bit fixed-point number in ns/s
+ * and fraction. It represents the ns and fraction to be added to the
+ * kernel time variable at each second. The maximum frequency offset is
+ * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
+ *
+ * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
+ * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * |s s s s s s s s s s s s s| ns/s |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * | fraction |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ */
+/*
+ * The following variables establish the state of the PLL/FLL and the
+ * residual time and frequency offset of the local clock.
+ */
+#define SHIFT_PLL 4 /* PLL loop gain (shift) */
+#define SHIFT_FLL 2 /* FLL loop gain (shift) */
+
+static int time_state = TIME_OK; /* clock state */
+static int time_status = STA_UNSYNC; /* clock status bits */
+static long time_tai; /* TAI offset (s) */
+static long time_monitor; /* last time offset scaled (ns) */
+static long time_constant; /* poll interval (shift) (s) */
+static long time_precision = 1; /* clock precision (ns) */
+static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
+static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
+static long time_reftime; /* time at last adjustment (s) */
+static l_fp time_offset; /* time offset (ns) */
+static l_fp time_freq; /* frequency offset (ns/s) */
+static l_fp time_adj; /* tick adjust (ns/s) */
+
+static int64_t time_adjtime; /* correction from adjtime(2) (usec) */
+
+#ifdef PPS_SYNC
+/*
+ * The following variables are used when a pulse-per-second (PPS) signal
+ * is available and connected via a modem control lead. They establish
+ * the engineering parameters of the clock discipline loop when
+ * controlled by the PPS signal.
+ */
+#define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
+#define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
+#define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
+#define PPS_PAVG 4 /* phase avg interval (s) (shift) */
+#define PPS_VALID 120 /* PPS signal watchdog max (s) */
+#define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
+#define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
+
+static struct timespec pps_tf[3]; /* phase median filter */
+static l_fp pps_freq; /* scaled frequency offset (ns/s) */
+static long pps_fcount; /* frequency accumulator */
+static long pps_jitter; /* nominal jitter (ns) */
+static long pps_stabil; /* nominal stability (scaled ns/s) */
+static long pps_lastsec; /* time at last calibration (s) */
+static int pps_valid; /* signal watchdog counter */
+static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
+static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
+static int pps_intcnt; /* wander counter */
+
+/*
+ * PPS signal quality monitors
+ */
+static long pps_calcnt; /* calibration intervals */
+static long pps_jitcnt; /* jitter limit exceeded */
+static long pps_stbcnt; /* stability limit exceeded */
+static long pps_errcnt; /* calibration errors */
+#endif /* PPS_SYNC */
+/*
+ * End of phase/frequency-lock loop (PLL/FLL) definitions
+ */
+
+static void ntp_init(void);
+static void hardupdate(long offset);
+static void ntp_gettime1(struct ntptimeval *ntvp);
+static int ntp_is_time_error(void);
+
+#ifndef __rtems__
+static int
+ntp_is_time_error(void)
+{
+ /*
+ * Status word error decode. If any of these conditions occur,
+ * an error is returned, instead of the status word. Most
+ * applications will care only about the fact the system clock
+ * may not be trusted, not about the details.
+ *
+ * Hardware or software error
+ */
+ if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
+
+ /*
+ * PPS signal lost when either time or frequency synchronization
+ * requested
+ */
+ (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
+ !(time_status & STA_PPSSIGNAL)) ||
+
+ /*
+ * PPS jitter exceeded when time synchronization requested
+ */
+ (time_status & STA_PPSTIME &&
+ time_status & STA_PPSJITTER) ||
+
+ /*
+ * PPS wander exceeded or calibration error when frequency
+ * synchronization requested
+ */
+ (time_status & STA_PPSFREQ &&
+ time_status & (STA_PPSWANDER | STA_PPSERROR)))
+ return (1);
+
+ return (0);
+}
+
+static void
+ntp_gettime1(struct ntptimeval *ntvp)
+{
+ struct timespec atv; /* nanosecond time */
+
+ GIANT_REQUIRED;
+
+ nanotime(&atv);
+ ntvp->time.tv_sec = atv.tv_sec;
+ ntvp->time.tv_nsec = atv.tv_nsec;
+ ntvp->maxerror = time_maxerror;
+ ntvp->esterror = time_esterror;
+ ntvp->tai = time_tai;
+ ntvp->time_state = time_state;
+
+ if (ntp_is_time_error())
+ ntvp->time_state = TIME_ERROR;
+}
+
+/*
+ * ntp_gettime() - NTP user application interface
+ *
+ * See the timex.h header file for synopsis and API description. Note that
+ * the TAI offset is returned in the ntvtimeval.tai structure member.
+ */
+#ifndef _SYS_SYSPROTO_HH_
+struct ntp_gettime_args {
+ struct ntptimeval *ntvp;
+};
+#endif
+/* ARGSUSED */
+int
+ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
+{
+ struct ntptimeval ntv;
+
+ mtx_lock(&Giant);
+ ntp_gettime1(&ntv);
+ mtx_unlock(&Giant);
+
+ td->td_retval[0] = ntv.time_state;
+ return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
+}
+
+static int
+ntp_sysctl(SYSCTL_HANDLER_ARGS)
+{
+ struct ntptimeval ntv; /* temporary structure */
+
+ ntp_gettime1(&ntv);
+
+ return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
+}
+
+SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
+SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
+ 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
+
+#ifdef PPS_SYNC
+SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
+SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
+SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
+
+SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
+SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
+#endif
+
+/*
+ * ntp_adjtime() - NTP daemon application interface
+ *
+ * See the timex.h header file for synopsis and API description. Note that
+ * the timex.constant structure member has a dual purpose to set the time
+ * constant and to set the TAI offset.
+ */
+#ifndef _SYS_SYSPROTO_HH_
+struct ntp_adjtime_args {
+ struct timex *tp;
+};
+#endif
+
+int
+ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
+{
+ struct timex ntv; /* temporary structure */
+ long freq; /* frequency ns/s) */
+ int modes; /* mode bits from structure */
+ int s; /* caller priority */
+ int error;
+
+ error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
+ if (error)
+ return(error);
+
+ /*
+ * Update selected clock variables - only the superuser can
+ * change anything. Note that there is no error checking here on
+ * the assumption the superuser should know what it is doing.
+ * Note that either the time constant or TAI offset are loaded
+ * from the ntv.constant member, depending on the mode bits. If
+ * the STA_PLL bit in the status word is cleared, the state and
+ * status words are reset to the initial values at boot.
+ */
+ mtx_lock(&Giant);
+ modes = ntv.modes;
+ if (modes)
+ error = priv_check(td, PRIV_NTP_ADJTIME);
+ if (error)
+ goto done2;
+ s = splclock();
+ if (modes & MOD_MAXERROR)
+ time_maxerror = ntv.maxerror;
+ if (modes & MOD_ESTERROR)
+ time_esterror = ntv.esterror;
+ if (modes & MOD_STATUS) {
+ if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
+ time_state = TIME_OK;
+ time_status = STA_UNSYNC;
+#ifdef PPS_SYNC
+ pps_shift = PPS_FAVG;
+#endif /* PPS_SYNC */
+ }
+ time_status &= STA_RONLY;
+ time_status |= ntv.status & ~STA_RONLY;
+ }
+ if (modes & MOD_TIMECONST) {
+ if (ntv.constant < 0)
+ time_constant = 0;
+ else if (ntv.constant > MAXTC)
+ time_constant = MAXTC;
+ else
+ time_constant = ntv.constant;
+ }
+ if (modes & MOD_TAI) {
+ if (ntv.constant > 0) /* XXX zero & negative numbers ? */
+ time_tai = ntv.constant;
+ }
+#ifdef PPS_SYNC
+ if (modes & MOD_PPSMAX) {
+ if (ntv.shift < PPS_FAVG)
+ pps_shiftmax = PPS_FAVG;
+ else if (ntv.shift > PPS_FAVGMAX)
+ pps_shiftmax = PPS_FAVGMAX;
+ else
+ pps_shiftmax = ntv.shift;
+ }
+#endif /* PPS_SYNC */
+ if (modes & MOD_NANO)
+ time_status |= STA_NANO;
+ if (modes & MOD_MICRO)
+ time_status &= ~STA_NANO;
+ if (modes & MOD_CLKB)
+ time_status |= STA_CLK;
+ if (modes & MOD_CLKA)
+ time_status &= ~STA_CLK;
+ if (modes & MOD_FREQUENCY) {
+ freq = (ntv.freq * 1000LL) >> 16;
+ if (freq > MAXFREQ)
+ L_LINT(time_freq, MAXFREQ);
+ else if (freq < -MAXFREQ)
+ L_LINT(time_freq, -MAXFREQ);
+ else {
+ /*
+ * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
+ * time_freq is [ns/s * 2^32]
+ */
+ time_freq = ntv.freq * 1000LL * 65536LL;
+ }
+#ifdef PPS_SYNC
+ pps_freq = time_freq;
+#endif /* PPS_SYNC */
+ }
+ if (modes & MOD_OFFSET) {
+ if (time_status & STA_NANO)
+ hardupdate(ntv.offset);
+ else
+ hardupdate(ntv.offset * 1000);
+ }
+
+ /*
+ * Retrieve all clock variables. Note that the TAI offset is
+ * returned only by ntp_gettime();
+ */
+ if (time_status & STA_NANO)
+ ntv.offset = L_GINT(time_offset);
+ else
+ ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
+ ntv.freq = L_GINT((time_freq / 1000LL) << 16);
+ ntv.maxerror = time_maxerror;
+ ntv.esterror = time_esterror;
+ ntv.status = time_status;
+ ntv.constant = time_constant;
+ if (time_status & STA_NANO)
+ ntv.precision = time_precision;
+ else
+ ntv.precision = time_precision / 1000;
+ ntv.tolerance = MAXFREQ * SCALE_PPM;
+#ifdef PPS_SYNC
+ ntv.shift = pps_shift;
+ ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
+ if (time_status & STA_NANO)
+ ntv.jitter = pps_jitter;
+ else
+ ntv.jitter = pps_jitter / 1000;
+ ntv.stabil = pps_stabil;
+ ntv.calcnt = pps_calcnt;
+ ntv.errcnt = pps_errcnt;
+ ntv.jitcnt = pps_jitcnt;
+ ntv.stbcnt = pps_stbcnt;
+#endif /* PPS_SYNC */
+ splx(s);
+
+ error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
+ if (error)
+ goto done2;
+
+ if (ntp_is_time_error())
+ td->td_retval[0] = TIME_ERROR;
+ else
+ td->td_retval[0] = time_state;
+
+done2:
+ mtx_unlock(&Giant);
+ return (error);
+}
+#endif /* __rtems__ */
+
+/*
+ * second_overflow() - called after ntp_tick_adjust()
+ *
+ * This routine is ordinarily called immediately following the above
+ * routine ntp_tick_adjust(). While these two routines are normally
+ * combined, they are separated here only for the purposes of
+ * simulation.
+ */
+void
+ntp_update_second(int64_t *adjustment, time_t *newsec)
+{
+ int tickrate;
+ l_fp ftemp; /* 32/64-bit temporary */
+
+ /*
+ * On rollover of the second both the nanosecond and microsecond
+ * clocks are updated and the state machine cranked as
+ * necessary. The phase adjustment to be used for the next
+ * second is calculated and the maximum error is increased by
+ * the tolerance.
+ */
+ time_maxerror += MAXFREQ / 1000;
+
+ /*
+ * Leap second processing. If in leap-insert state at
+ * the end of the day, the system clock is set back one
+ * second; if in leap-delete state, the system clock is
+ * set ahead one second. The nano_time() routine or
+ * external clock driver will insure that reported time
+ * is always monotonic.
+ */
+ switch (time_state) {
+
+ /*
+ * No warning.
+ */
+ case TIME_OK:
+ if (time_status & STA_INS)
+ time_state = TIME_INS;
+ else if (time_status & STA_DEL)
+ time_state = TIME_DEL;
+ break;
+
+ /*
+ * Insert second 23:59:60 following second
+ * 23:59:59.
+ */
+ case TIME_INS:
+ if (!(time_status & STA_INS))
+ time_state = TIME_OK;
+ else if ((*newsec) % 86400 == 0) {
+ (*newsec)--;
+ time_state = TIME_OOP;
+ time_tai++;
+ }
+ break;
+
+ /*
+ * Delete second 23:59:59.
+ */
+ case TIME_DEL:
+ if (!(time_status & STA_DEL))
+ time_state = TIME_OK;
+ else if (((*newsec) + 1) % 86400 == 0) {
+ (*newsec)++;
+ time_tai--;
+ time_state = TIME_WAIT;
+ }
+ break;
+
+ /*
+ * Insert second in progress.
+ */
+ case TIME_OOP:
+ time_state = TIME_WAIT;
+ break;
+
+ /*
+ * Wait for status bits to clear.
+ */
+ case TIME_WAIT:
+ if (!(time_status & (STA_INS | STA_DEL)))
+ time_state = TIME_OK;
+ }
+
+ /*
+ * Compute the total time adjustment for the next second
+ * in ns. The offset is reduced by a factor depending on
+ * whether the PPS signal is operating. Note that the
+ * value is in effect scaled by the clock frequency,
+ * since the adjustment is added at each tick interrupt.
+ */
+ ftemp = time_offset;
+#ifdef PPS_SYNC
+ /* XXX even if PPS signal dies we should finish adjustment ? */
+ if (time_status & STA_PPSTIME && time_status &
+ STA_PPSSIGNAL)
+ L_RSHIFT(ftemp, pps_shift);
+ else
+ L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
+#else
+ L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
+#endif /* PPS_SYNC */
+ time_adj = ftemp;
+ L_SUB(time_offset, ftemp);
+ L_ADD(time_adj, time_freq);
+
+ /*
+ * Apply any correction from adjtime(2). If more than one second
+ * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
+ * until the last second is slewed the final < 500 usecs.
+ */
+ if (time_adjtime != 0) {
+ if (time_adjtime > 1000000)
+ tickrate = 5000;
+ else if (time_adjtime < -1000000)
+ tickrate = -5000;
+ else if (time_adjtime > 500)
+ tickrate = 500;
+ else if (time_adjtime < -500)
+ tickrate = -500;
+ else
+ tickrate = time_adjtime;
+ time_adjtime -= tickrate;
+ L_LINT(ftemp, tickrate * 1000);
+ L_ADD(time_adj, ftemp);
+ }
+ *adjustment = time_adj;
+
+#ifdef PPS_SYNC
+ if (pps_valid > 0)
+ pps_valid--;
+ else
+ time_status &= ~STA_PPSSIGNAL;
+#endif /* PPS_SYNC */
+}
+
+#ifndef __rtems__
+/*
+ * ntp_init() - initialize variables and structures
+ *
+ * This routine must be called after the kernel variables hz and tick
+ * are set or changed and before the next tick interrupt. In this
+ * particular implementation, these values are assumed set elsewhere in
+ * the kernel. The design allows the clock frequency and tick interval
+ * to be changed while the system is running. So, this routine should
+ * probably be integrated with the code that does that.
+ */
+static void
+ntp_init()
+{
+
+ /*
+ * The following variables are initialized only at startup. Only
+ * those structures not cleared by the compiler need to be
+ * initialized, and these only in the simulator. In the actual
+ * kernel, any nonzero values here will quickly evaporate.
+ */
+ L_CLR(time_offset);
+ L_CLR(time_freq);
+#ifdef PPS_SYNC
+ pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
+ pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
+ pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
+ pps_fcount = 0;
+ L_CLR(pps_freq);
+#endif /* PPS_SYNC */
+}
+
+SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
+
+/*
+ * hardupdate() - local clock update
+ *
+ * This routine is called by ntp_adjtime() to update the local clock
+ * phase and frequency. The implementation is of an adaptive-parameter,
+ * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
+ * time and frequency offset estimates for each call. If the kernel PPS
+ * discipline code is configured (PPS_SYNC), the PPS signal itself
+ * determines the new time offset, instead of the calling argument.
+ * Presumably, calls to ntp_adjtime() occur only when the caller
+ * believes the local clock is valid within some bound (+-128 ms with
+ * NTP). If the caller's time is far different than the PPS time, an
+ * argument will ensue, and it's not clear who will lose.
+ *
+ * For uncompensated quartz crystal oscillators and nominal update
+ * intervals less than 256 s, operation should be in phase-lock mode,
+ * where the loop is disciplined to phase. For update intervals greater
+ * than 1024 s, operation should be in frequency-lock mode, where the
+ * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
+ * is selected by the STA_MODE status bit.
+ */
+static void
+hardupdate(offset)
+ long offset; /* clock offset (ns) */
+{
+ long mtemp;
+ l_fp ftemp;
+
+ /*
+ * Select how the phase is to be controlled and from which
+ * source. If the PPS signal is present and enabled to
+ * discipline the time, the PPS offset is used; otherwise, the
+ * argument offset is used.
+ */
+ if (!(time_status & STA_PLL))
+ return;
+ if (!(time_status & STA_PPSTIME && time_status &
+ STA_PPSSIGNAL)) {
+ if (offset > MAXPHASE)
+ time_monitor = MAXPHASE;
+ else if (offset < -MAXPHASE)
+ time_monitor = -MAXPHASE;
+ else
+ time_monitor = offset;
+ L_LINT(time_offset, time_monitor);
+ }
+
+ /*
+ * Select how the frequency is to be controlled and in which
+ * mode (PLL or FLL). If the PPS signal is present and enabled
+ * to discipline the frequency, the PPS frequency is used;
+ * otherwise, the argument offset is used to compute it.
+ */
+ if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
+ time_reftime = time_second;
+ return;
+ }
+ if (time_status & STA_FREQHOLD || time_reftime == 0)
+ time_reftime = time_second;
+ mtemp = time_second - time_reftime;
+ L_LINT(ftemp, time_monitor);
+ L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
+ L_MPY(ftemp, mtemp);
+ L_ADD(time_freq, ftemp);
+ time_status &= ~STA_MODE;
+ if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
+ MAXSEC)) {
+ L_LINT(ftemp, (time_monitor << 4) / mtemp);
+ L_RSHIFT(ftemp, SHIFT_FLL + 4);
+ L_ADD(time_freq, ftemp);
+ time_status |= STA_MODE;
+ }
+ time_reftime = time_second;
+ if (L_GINT(time_freq) > MAXFREQ)
+ L_LINT(time_freq, MAXFREQ);
+ else if (L_GINT(time_freq) < -MAXFREQ)
+ L_LINT(time_freq, -MAXFREQ);
+}
+
+#ifdef PPS_SYNC
+/*
+ * hardpps() - discipline CPU clock oscillator to external PPS signal
+ *
+ * This routine is called at each PPS interrupt in order to discipline
+ * the CPU clock oscillator to the PPS signal. There are two independent
+ * first-order feedback loops, one for the phase, the other for the
+ * frequency. The phase loop measures and grooms the PPS phase offset
+ * and leaves it in a handy spot for the seconds overflow routine. The
+ * frequency loop averages successive PPS phase differences and
+ * calculates the PPS frequency offset, which is also processed by the
+ * seconds overflow routine. The code requires the caller to capture the
+ * time and architecture-dependent hardware counter values in
+ * nanoseconds at the on-time PPS signal transition.
+ *
+ * Note that, on some Unix systems this routine runs at an interrupt
+ * priority level higher than the timer interrupt routine hardclock().
+ * Therefore, the variables used are distinct from the hardclock()
+ * variables, except for the actual time and frequency variables, which
+ * are determined by this routine and updated atomically.
+ */
+void
+hardpps(tsp, nsec)
+ struct timespec *tsp; /* time at PPS */
+ long nsec; /* hardware counter at PPS */
+{
+ long u_sec, u_nsec, v_nsec; /* temps */
+ l_fp ftemp;
+
+ /*
+ * The signal is first processed by a range gate and frequency
+ * discriminator. The range gate rejects noise spikes outside
+ * the range +-500 us. The frequency discriminator rejects input
+ * signals with apparent frequency outside the range 1 +-500
+ * PPM. If two hits occur in the same second, we ignore the
+ * later hit; if not and a hit occurs outside the range gate,
+ * keep the later hit for later comparison, but do not process
+ * it.
+ */
+ time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
+ time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
+ pps_valid = PPS_VALID;
+ u_sec = tsp->tv_sec;
+ u_nsec = tsp->tv_nsec;
+ if (u_nsec >= (NANOSECOND >> 1)) {
+ u_nsec -= NANOSECOND;
+ u_sec++;
+ }
+ v_nsec = u_nsec - pps_tf[0].tv_nsec;
+ if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
+ MAXFREQ)
+ return;
+ pps_tf[2] = pps_tf[1];
+ pps_tf[1] = pps_tf[0];
+ pps_tf[0].tv_sec = u_sec;
+ pps_tf[0].tv_nsec = u_nsec;
+
+ /*
+ * Compute the difference between the current and previous
+ * counter values. If the difference exceeds 0.5 s, assume it
+ * has wrapped around, so correct 1.0 s. If the result exceeds
+ * the tick interval, the sample point has crossed a tick
+ * boundary during the last second, so correct the tick. Very
+ * intricate.
+ */
+ u_nsec = nsec;
+ if (u_nsec > (NANOSECOND >> 1))
+ u_nsec -= NANOSECOND;
+ else if (u_nsec < -(NANOSECOND >> 1))
+ u_nsec += NANOSECOND;
+ pps_fcount += u_nsec;
+ if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
+ return;
+ time_status &= ~STA_PPSJITTER;
+
+ /*
+ * A three-stage median filter is used to help denoise the PPS
+ * time. The median sample becomes the time offset estimate; the
+ * difference between the other two samples becomes the time
+ * dispersion (jitter) estimate.
+ */
+ if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
+ if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
+ v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
+ u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
+ } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
+ v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
+ u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
+ } else {
+ v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
+ u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
+ }
+ } else {
+ if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
+ v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
+ u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
+ } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
+ v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
+ u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
+ } else {
+ v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
+ u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
+ }
+ }
+
+ /*
+ * Nominal jitter is due to PPS signal noise and interrupt
+ * latency. If it exceeds the popcorn threshold, the sample is
+ * discarded. otherwise, if so enabled, the time offset is
+ * updated. We can tolerate a modest loss of data here without
+ * much degrading time accuracy.
+ */
+ if (u_nsec > (pps_jitter << PPS_POPCORN)) {
+ time_status |= STA_PPSJITTER;
+ pps_jitcnt++;
+ } else if (time_status & STA_PPSTIME) {
+ time_monitor = -v_nsec;
+ L_LINT(time_offset, time_monitor);
+ }
+ pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
+ u_sec = pps_tf[0].tv_sec - pps_lastsec;
+ if (u_sec < (1 << pps_shift))
+ return;
+
+ /*
+ * At the end of the calibration interval the difference between
+ * the first and last counter values becomes the scaled
+ * frequency. It will later be divided by the length of the
+ * interval to determine the frequency update. If the frequency
+ * exceeds a sanity threshold, or if the actual calibration
+ * interval is not equal to the expected length, the data are
+ * discarded. We can tolerate a modest loss of data here without
+ * much degrading frequency accuracy.
+ */
+ pps_calcnt++;
+ v_nsec = -pps_fcount;
+ pps_lastsec = pps_tf[0].tv_sec;
+ pps_fcount = 0;
+ u_nsec = MAXFREQ << pps_shift;
+ if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
+ pps_shift)) {
+ time_status |= STA_PPSERROR;
+ pps_errcnt++;
+ return;
+ }
+
+ /*
+ * Here the raw frequency offset and wander (stability) is
+ * calculated. If the wander is less than the wander threshold
+ * for four consecutive averaging intervals, the interval is
+ * doubled; if it is greater than the threshold for four
+ * consecutive intervals, the interval is halved. The scaled
+ * frequency offset is converted to frequency offset. The
+ * stability metric is calculated as the average of recent
+ * frequency changes, but is used only for performance
+ * monitoring.
+ */
+ L_LINT(ftemp, v_nsec);
+ L_RSHIFT(ftemp, pps_shift);
+ L_SUB(ftemp, pps_freq);
+ u_nsec = L_GINT(ftemp);
+ if (u_nsec > PPS_MAXWANDER) {
+ L_LINT(ftemp, PPS_MAXWANDER);
+ pps_intcnt--;
+ time_status |= STA_PPSWANDER;
+ pps_stbcnt++;
+ } else if (u_nsec < -PPS_MAXWANDER) {
+ L_LINT(ftemp, -PPS_MAXWANDER);
+ pps_intcnt--;
+ time_status |= STA_PPSWANDER;
+ pps_stbcnt++;
+ } else {
+ pps_intcnt++;
+ }
+ if (pps_intcnt >= 4) {
+ pps_intcnt = 4;
+ if (pps_shift < pps_shiftmax) {
+ pps_shift++;
+ pps_intcnt = 0;
+ }
+ } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
+ pps_intcnt = -4;
+ if (pps_shift > PPS_FAVG) {
+ pps_shift--;
+ pps_intcnt = 0;
+ }
+ }
+ if (u_nsec < 0)
+ u_nsec = -u_nsec;
+ pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
+
+ /*
+ * The PPS frequency is recalculated and clamped to the maximum
+ * MAXFREQ. If enabled, the system clock frequency is updated as
+ * well.
+ */
+ L_ADD(pps_freq, ftemp);
+ u_nsec = L_GINT(pps_freq);
+ if (u_nsec > MAXFREQ)
+ L_LINT(pps_freq, MAXFREQ);
+ else if (u_nsec < -MAXFREQ)
+ L_LINT(pps_freq, -MAXFREQ);
+ if (time_status & STA_PPSFREQ)
+ time_freq = pps_freq;
+}
+#endif /* PPS_SYNC */
+
+#ifndef _SYS_SYSPROTO_HH_
+struct adjtime_args {
+ struct timeval *delta;
+ struct timeval *olddelta;
+};
+#endif
+/* ARGSUSED */
+int
+adjtime(struct thread *td, struct adjtime_args *uap)
+{
+ struct timeval delta, olddelta, *deltap;
+ int error;
+
+ if (uap->delta) {
+ error = copyin(uap->delta, &delta, sizeof(delta));
+ if (error)
+ return (error);
+ deltap = &delta;
+ } else
+ deltap = NULL;
+ error = kern_adjtime(td, deltap, &olddelta);
+ if (uap->olddelta && error == 0)
+ error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
+ return (error);
+}
+
+int
+kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
+{
+ struct timeval atv;
+ int error;
+
+ mtx_lock(&Giant);
+ if (olddelta) {
+ atv.tv_sec = time_adjtime / 1000000;
+ atv.tv_usec = time_adjtime % 1000000;
+ if (atv.tv_usec < 0) {
+ atv.tv_usec += 1000000;
+ atv.tv_sec--;
+ }
+ *olddelta = atv;
+ }
+ if (delta) {
+ if ((error = priv_check(td, PRIV_ADJTIME))) {
+ mtx_unlock(&Giant);
+ return (error);
+ }
+ time_adjtime = (int64_t)delta->tv_sec * 1000000 +
+ delta->tv_usec;
+ }
+ mtx_unlock(&Giant);
+ return (0);
+}
+
+static struct callout resettodr_callout;
+static int resettodr_period = 1800;
+
+static void
+periodic_resettodr(void *arg __unused)
+{
+
+ if (!ntp_is_time_error()) {
+ mtx_lock(&Giant);
+ resettodr();
+ mtx_unlock(&Giant);
+ }
+ if (resettodr_period > 0)
+ callout_schedule(&resettodr_callout, resettodr_period * hz);
+}
+
+static void
+shutdown_resettodr(void *arg __unused, int howto __unused)
+{
+
+ callout_drain(&resettodr_callout);
+ if (resettodr_period > 0 && !ntp_is_time_error()) {
+ mtx_lock(&Giant);
+ resettodr();
+ mtx_unlock(&Giant);
+ }
+}
+
+static int
+sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
+{
+ int error;
+
+ error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
+ if (error || !req->newptr)
+ return (error);
+ if (resettodr_period == 0)
+ callout_stop(&resettodr_callout);
+ else
+ callout_reset(&resettodr_callout, resettodr_period * hz,
+ periodic_resettodr, NULL);
+ return (0);
+}
+
+SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW,
+ &resettodr_period, 1800, sysctl_resettodr_period, "I",
+ "Save system time to RTC with this period (in seconds)");
+TUNABLE_INT("machdep.rtc_save_period", &resettodr_period);
+
+static void
+start_periodic_resettodr(void *arg __unused)
+{
+
+ EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
+ SHUTDOWN_PRI_FIRST);
+ callout_init(&resettodr_callout, 1);
+ if (resettodr_period == 0)
+ return;
+ callout_reset(&resettodr_callout, resettodr_period * hz,
+ periodic_resettodr, NULL);
+}
+
+SYSINIT(periodic_resettodr, SI_SUB_RUN_SCHEDULER, SI_ORDER_MIDDLE,
+ start_periodic_resettodr, NULL);
+#endif /* __rtems__ */
diff --git a/freebsd/sys/_rmlock.h b/freebsd/sys/_rmlock.h
index a520a37c..87fe1ee8 100644
--- a/freebsd/sys/_rmlock.h
+++ b/freebsd/sys/_rmlock.h
@@ -43,6 +43,7 @@
LIST_HEAD(rmpriolist,rm_priotracker);
+#ifndef __rtems__
struct rmlock {
struct lock_object lock_object;
volatile int rm_noreadtoken;
@@ -50,6 +51,10 @@ struct rmlock {
struct mtx rm_lock;
};
+#else /* __rtems__ */
+ #include <freebsd/sys/rwlock.h>
+ #define rmlock rwlock
+#endif /* __rtems__ */
struct rm_priotracker {
struct rm_queue rmp_cpuQueue; /* Must be first */
diff --git a/freebsd/sys/rmlock.h b/freebsd/sys/rmlock.h
index afb38262..ec676b74 100644
--- a/freebsd/sys/rmlock.h
+++ b/freebsd/sys/rmlock.h
@@ -44,6 +44,7 @@
#define RM_NOWITNESS 0x00000001
#define RM_RECURSE 0x00000002
+#ifndef __rtems__
void rm_init(struct rmlock *rm, const char *name);
void rm_init_flags(struct rmlock *rm, const char *name, int opts);
void rm_destroy(struct rmlock *rm);
@@ -84,6 +85,22 @@ void _rm_runlock(struct rmlock *rm, struct rm_priotracker *tracker);
#define rm_runlock(rm,tracker) _rm_runlock((rm), (tracker))
#endif
+#else /* __rtems__ */
+ #define rm_init(rm, name) rw_init(rm, name)
+ #define rm_init_flags(rm, name, opts) rw_init_flags(rm, name, opts)
+ #define rm_destroy(rm) rw_destroy(rm)
+ #define rm_wowned(rm) rw_wowned(rm)
+ #define rm_sysinit(arg) rw_sysinit(arg)
+ #define rm_sysinit_flags(arg) rw_sysinit_flags(arg)
+
+ #define rm_wlock(rm) rw_wlock((rm))
+ #define rm_wunlock(rm) rw_wunlock((rm))
+ #define rm_rlock(rm,tracker) rw_rlock((rm))
+ #define rm_runlock(rm,tracker) rw_runlock((rm))
+#endif /* __rtems__ */
+
+
+
struct rm_args {
struct rmlock *ra_rm;
const char *ra_desc;
diff --git a/rtemsbsd/src/rtems-bsd-lock.c b/rtemsbsd/src/rtems-bsd-lock.c
index c0733b7c..bdfc0dc8 100644
--- a/rtemsbsd/src/rtems-bsd-lock.c
+++ b/rtemsbsd/src/rtems-bsd-lock.c
@@ -39,7 +39,7 @@ struct lock_class *lock_classes[LOCK_CLASS_MAX + 1] = {
&lock_class_mtx_spin,
&lock_class_mtx_sleep,
&lock_class_sx,
- &lock_class_rm,
+ &lock_class_rw,
&lock_class_rw,
};
diff --git a/rtemsbsd/src/rtems-bsd-rmlock.c b/rtemsbsd/src/rtems-bsd-rmlock.c
deleted file mode 100644
index 0f642d9e..00000000
--- a/rtemsbsd/src/rtems-bsd-rmlock.c
+++ /dev/null
@@ -1,92 +0,0 @@
-/**
- * @file
- *
- * @ingroup rtems_bsd_rtems
- *
- * @brief TODO.
- */
-
-/*
- * COPYRIGHT (c) 2012.
- * On-Line Applications Research Corporation (OAR).
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rtems.com/license/LICENSE.
- */
-
-#include <freebsd/machine/rtems-bsd-config.h>
-
-#include <sys/types.h>
-#include <freebsd/sys/param.h>
-#include <freebsd/sys/types.h>
-#include <freebsd/sys/systm.h>
-#include <freebsd/sys/lock.h>
-#include <freebsd/sys/rmlock.h>
-#include <pthread.h>
-
-#define RMPF_ONQUEUE 1
-#define RMPF_SIGNAL 2
-
-/*
- * To support usage of rmlock in CVs and msleep yet another list for the
- * priority tracker would be needed. Using this lock for cv and msleep also
- * does not seem very useful
- */
-
-static __inline void compiler_memory_barrier(void) {
- __asm __volatile("":::"memory");
-}
-
-static void assert_rm(struct lock_object *lock, int what);
-static void lock_rm(struct lock_object *lock, int how);
-#ifdef KDTRACE_HOOKS
-static int owner_rm(struct lock_object *lock, struct thread **owner);
-#endif
-static int unlock_rm(struct lock_object *lock);
-
-struct lock_class lock_class_rm = {
- .lc_name = "rm",
- .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
- .lc_assert = assert_rm,
-#if 0
-#ifdef DDB
- .lc_ddb_show = db_show_rwlock,
-#endif
-#endif
- .lc_lock = lock_rm,
- .lc_unlock = unlock_rm,
-#ifdef KDTRACE_HOOKS
- .lc_owner = owner_rm,
-#endif
-};
-
-static void
-assert_rm(struct lock_object *lock, int what)
-{
-
- panic("assert_rm called");
-}
-
-static void
-lock_rm(struct lock_object *lock, int how)
-{
-
- panic("lock_rm called");
-}
-
-static int
-unlock_rm(struct lock_object *lock)
-{
-
- panic("unlock_rm called");
-}
-
-#ifdef KDTRACE_HOOKS
-static int
-owner_rm(struct lock_object *lock, struct thread **owner)
-{
-
- panic("owner_rm called");
-}
-#endif
diff --git a/rtemsbsd/src/rtems-bsd-timeout.c b/rtemsbsd/src/rtems-bsd-timeout.c
new file mode 100644
index 00000000..e1ed3838
--- /dev/null
+++ b/rtemsbsd/src/rtems-bsd-timeout.c
@@ -0,0 +1,111 @@
+/**
+ * @file
+ *
+ * @ingroup rtems_bsd_rtems
+ *
+ * @brief TODO.
+ */
+
+/*
+ * COPYRIGHT (c) 1989-2012.
+ * On-Line Applications Research Corporation (OAR).
+ *
+ * The license and distribution terms for this file may be
+ * found in the file LICENSE in this distribution or at
+ * http://www.rtems.com/license/LICENSE.
+ */
+
+#include <freebsd/machine/rtems-bsd-config.h>
+#include <freebsd/sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <freebsd/sys/param.h>
+#include <freebsd/sys/systm.h>
+#include <freebsd/sys/bus.h>
+#include <freebsd/sys/callout.h>
+#include <freebsd/sys/condvar.h>
+#include <freebsd/sys/interrupt.h>
+#include <freebsd/sys/kernel.h>
+#include <freebsd/sys/ktr.h>
+#include <freebsd/sys/lock.h>
+#include <freebsd/sys/malloc.h>
+#include <freebsd/sys/mutex.h>
+#include <freebsd/sys/proc.h>
+#include <freebsd/sys/sdt.h>
+
+static int timeout_cpu;
+/*
+ * There is one struct callout_cpu per cpu, holding all relevant
+ * state for the callout processing thread on the individual CPU.
+ * In particular:
+ * cc_ticks is incremented once per tick in callout_cpu().
+ * It tracks the global 'ticks' but in a way that the individual
+ * threads should not worry about races in the order in which
+ * hardclock() and hardclock_cpu() run on the various CPUs.
+ * cc_softclock is advanced in callout_cpu() to point to the
+ * first entry in cc_callwheel that may need handling. In turn,
+ * a softclock() is scheduled so it can serve the various entries i
+ * such that cc_softclock <= i <= cc_ticks .
+ * XXX maybe cc_softclock and cc_ticks should be volatile ?
+ *
+ * cc_ticks is also used in callout_reset_cpu() to determine
+ * when the callout should be served.
+ */
+struct callout_cpu {
+ struct mtx cc_lock;
+ struct callout *cc_callout;
+ struct callout_tailq *cc_callwheel;
+ struct callout_list cc_callfree;
+ struct callout *cc_next;
+ struct callout *cc_curr;
+ void *cc_cookie;
+ int cc_ticks;
+ int cc_softticks;
+ int cc_cancel;
+ int cc_waiting;
+};
+
+/*
+ * timeout --
+ * Execute a function after a specified length of time.
+ *
+ * untimeout --
+ * Cancel previous timeout function call.
+ *
+ * callout_handle_init --
+ * Initialize a handle so that using it with untimeout is benign.
+ *
+ * See AT&T BCI Driver Reference Manual for specification. This
+ * implementation differs from that one in that although an
+ * identification value is returned from timeout, the original
+ * arguments to timeout as well as the identifier are used to
+ * identify entries for untimeout.
+ */
+
+struct callout_handle
+timeout(ftn, arg, to_ticks)
+ timeout_t *ftn;
+ void *arg;
+ int to_ticks;
+{
+ struct callout_cpu *cc;
+ struct callout *new;
+ struct callout_handle handle;
+
+#if 0
+ cc = CC_CPU(timeout_cpu);
+ CC_LOCK(cc);
+ /* Fill in the next free callout structure. */
+ new = SLIST_FIRST(&cc->cc_callfree);
+ if (new == NULL)
+ /* XXX Attempt to malloc first */
+ panic("timeout table full");
+ SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
+ callout_reset(new, to_ticks, ftn, arg);
+ handle.callout = new;
+ CC_UNLOCK(cc);
+#endif
+ return (handle);
+}
+
+