summaryrefslogblamecommitdiffstats
path: root/freebsd/sys/kern/sys_pipe.c
blob: 45d3ed139980348b71f61406074271ffba669c2e (plain) (tree)
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305




































































































































                                                                            


                      











                                                                       
                 





















                                      
































                                                                                                  




































































































                                                                             
                 
                                          


                                              




































































                                                                          
                 
                                                 


                                    




















































































                                                                          





















                                                              

























                                                                               
                 





                                                 



                                                         





































































































































































































































































                                                                                        
                 
                                                     


                                                                                         


















                                                                           
                 
                                                  


                                                      
























                                                                           

































                                                                   










































































































































































































































































































































































































































                                                                                          
                 
                                                     


                                                                                         














































                                                                             
                 
                                                  


                                                      











                                      

































                                                                          

              
                 









                                          
                      









































































                                                                               
















                                                                               































































                                                                                       
















                                                              




                                                                     
                 







                                  




                                             




                    
                 
                          
                      


























                                                                   
                 
                               
                      









                                                                            
                 



                                        





                                                                           




                                                          












                                                          








                                        
                 
                                


                                                                        















                                                                              
                 


                                                                                      


                                                        


































































































































                                                                       








                                                             




























































                                                                          































                                                                    
#include <machine/rtems-bsd-kernel-space.h>

/*-
 * Copyright (c) 1996 John S. Dyson
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice immediately at the beginning of the file, without modification,
 *    this list of conditions, and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Absolutely no warranty of function or purpose is made by the author
 *    John S. Dyson.
 * 4. Modifications may be freely made to this file if the above conditions
 *    are met.
 */

/*
 * This file contains a high-performance replacement for the socket-based
 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
 * all features of sockets, but does do everything that pipes normally
 * do.
 */

/*
 * This code has two modes of operation, a small write mode and a large
 * write mode.  The small write mode acts like conventional pipes with
 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
 * and PIPE_SIZE in size, the sending process pins the underlying pages in
 * memory, and the receiving process copies directly from these pinned pages
 * in the sending process.
 *
 * If the sending process receives a signal, it is possible that it will
 * go away, and certainly its address space can change, because control
 * is returned back to the user-mode side.  In that case, the pipe code
 * arranges to copy the buffer supplied by the user process, to a pageable
 * kernel buffer, and the receiving process will grab the data from the
 * pageable kernel buffer.  Since signals don't happen all that often,
 * the copy operation is normally eliminated.
 *
 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
 * happen for small transfers so that the system will not spend all of
 * its time context switching.
 *
 * In order to limit the resource use of pipes, two sysctls exist:
 *
 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
 * address space available to us in pipe_map. This value is normally
 * autotuned, but may also be loader tuned.
 *
 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
 * memory in use by pipes.
 *
 * Based on how large pipekva is relative to maxpipekva, the following
 * will happen:
 *
 * 0% - 50%:
 *     New pipes are given 16K of memory backing, pipes may dynamically
 *     grow to as large as 64K where needed.
 * 50% - 75%:
 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
 *     existing pipes may NOT grow.
 * 75% - 100%:
 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
 *     existing pipes will be shrunk down to 4K whenever possible.
 *
 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
 * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
 * resize which MUST occur for reverse-direction pipes when they are
 * first used.
 *
 * Additional information about the current state of pipes may be obtained
 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
 * and kern.ipc.piperesizefail.
 *
 * Locking rules:  There are two locks present here:  A mutex, used via
 * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
 * the flag, as mutexes can not persist over uiomove.  The mutex
 * exists only to guard access to the flag, and is not in itself a
 * locking mechanism.  Also note that there is only a single mutex for
 * both directions of a pipe.
 *
 * As pipelock() may have to sleep before it can acquire the flag, it
 * is important to reread all data after a call to pipelock(); everything
 * in the structure may have changed.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <rtems/bsd/sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/filio.h>
#include <sys/kernel.h>
#include <rtems/bsd/sys/lock.h>
#include <sys/mutex.h>
#include <sys/ttycom.h>
#include <sys/stat.h>
#include <sys/malloc.h>
#include <sys/poll.h>
#include <sys/selinfo.h>
#include <sys/signalvar.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/pipe.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/uio.h>
#include <sys/event.h>

#include <security/mac/mac_framework.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/uma.h>

/* XXX */
#ifdef __rtems__
static
#endif /* __rtems__ */
int	do_pipe(struct thread *td, int fildes[2], int flags);

/*
 * Use this define if you want to disable *fancy* VM things.  Expect an
 * approx 30% decrease in transfer rate.  This could be useful for
 * NetBSD or OpenBSD.
 */
/* #define PIPE_NODIRECT */

/*
 * interfaces to the outside world
 */
#ifndef __rtems__
static fo_rdwr_t	pipe_read;
static fo_rdwr_t	pipe_write;
static fo_truncate_t	pipe_truncate;
static fo_ioctl_t	pipe_ioctl;
static fo_poll_t	pipe_poll;
static fo_kqfilter_t	pipe_kqfilter;
static fo_stat_t	pipe_stat;
static fo_close_t	pipe_close;

static struct fileops pipeops = {
	.fo_read = pipe_read,
	.fo_write = pipe_write,
	.fo_truncate = pipe_truncate,
	.fo_ioctl = pipe_ioctl,
	.fo_poll = pipe_poll,
	.fo_kqfilter = pipe_kqfilter,
	.fo_stat = pipe_stat,
	.fo_close = pipe_close,
	.fo_chmod = invfo_chmod,
	.fo_chown = invfo_chown,
	.fo_flags = DFLAG_PASSABLE
};
#else /* __rtems__ */
#define PIPE_NODIRECT
#define	PRIBIO			(0)

static int rtems_bsd_pipe_open(rtems_libio_t *iop, const char *path, int oflag, mode_t mode);
static int rtems_bsd_pipe_close(rtems_libio_t *iop);
static ssize_t rtems_bsd_pipe_read(rtems_libio_t *iop, void *buffer, size_t count);
static ssize_t rtems_bsd_pipe_write(rtems_libio_t *iop, const void *buffer, size_t count);
static int rtems_bsd_pipe_ioctl(rtems_libio_t *iop, ioctl_command_t request, void *buffer);
static int rtems_bsd_pipe_stat(const rtems_filesystem_location_info_t *loc,	struct stat *buf);
static int rtems_bsd_pipe_fcntl(rtems_libio_t *iop, int cmd);
static int rtems_bsd_pipe_poll(rtems_libio_t *iop, int events);
int rtems_bsd_pipe_kqfilter(rtems_libio_t *iop, struct knote *kn);

static const rtems_filesystem_file_handlers_r pipeops = {
	.open_h = rtems_bsd_pipe_open,
	.close_h = rtems_bsd_pipe_close,
	.read_h = rtems_bsd_pipe_read,
	.write_h = rtems_bsd_pipe_write,
	.ioctl_h = rtems_bsd_pipe_ioctl,
	.lseek_h = rtems_filesystem_default_lseek,
	.fstat_h = rtems_bsd_pipe_stat,
	.ftruncate_h = rtems_filesystem_default_ftruncate,
	.fsync_h = rtems_filesystem_default_fsync_or_fdatasync,
	.fdatasync_h = rtems_filesystem_default_fsync_or_fdatasync,
	.fcntl_h = rtems_bsd_pipe_fcntl,
	.poll_h = rtems_bsd_pipe_poll,
	.kqfilter_h = rtems_bsd_pipe_kqfilter
};

long	maxpipekva;			/* Limit on pipe KVA */

#endif /* __rtems__ */

static void	filt_pipedetach(struct knote *kn);
static int	filt_piperead(struct knote *kn, long hint);
static int	filt_pipewrite(struct knote *kn, long hint);

static struct filterops pipe_rfiltops = {
	.f_isfd = 1,
	.f_detach = filt_pipedetach,
	.f_event = filt_piperead
};
static struct filterops pipe_wfiltops = {
	.f_isfd = 1,
	.f_detach = filt_pipedetach,
	.f_event = filt_pipewrite
};

/*
 * Default pipe buffer size(s), this can be kind-of large now because pipe
 * space is pageable.  The pipe code will try to maintain locality of
 * reference for performance reasons, so small amounts of outstanding I/O
 * will not wipe the cache.
 */
#define MINPIPESIZE (PIPE_SIZE/3)
#define MAXPIPESIZE (2*PIPE_SIZE/3)

static long amountpipekva;
static int pipefragretry;
static int pipeallocfail;
static int piperesizefail;
static int piperesizeallowed = 1;

SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
	   &maxpipekva, 0, "Pipe KVA limit");
SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
	   &amountpipekva, 0, "Pipe KVA usage");
SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
	  &pipeallocfail, 0, "Pipe allocation failures");
SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
	  &piperesizefail, 0, "Pipe resize failures");
SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
	  &piperesizeallowed, 0, "Pipe resizing allowed");

static void pipeinit(void *dummy __unused);
static void pipeclose(struct pipe *cpipe);
static void pipe_free_kmem(struct pipe *cpipe);
static int pipe_create(struct pipe *pipe, int backing);
static __inline int pipelock(struct pipe *cpipe, int catch);
static __inline void pipeunlock(struct pipe *cpipe);
static __inline void pipeselwakeup(struct pipe *cpipe);
#ifndef PIPE_NODIRECT
static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
static void pipe_destroy_write_buffer(struct pipe *wpipe);
static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
static void pipe_clone_write_buffer(struct pipe *wpipe);
#endif
static int pipespace(struct pipe *cpipe, int size);
static int pipespace_new(struct pipe *cpipe, int size);

static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
static int	pipe_zone_init(void *mem, int size, int flags);
static void	pipe_zone_fini(void *mem, int size);

static uma_zone_t pipe_zone;
static struct unrhdr *pipeino_unr;
static dev_t pipedev_ino;

SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);

static void
pipeinit(void *dummy __unused)
{

	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
	    UMA_ALIGN_PTR, 0);
	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
	pipedev_ino = devfs_alloc_cdp_inode();
	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
}

static int
pipe_zone_ctor(void *mem, int size, void *arg, int flags)
{
	struct pipepair *pp;
	struct pipe *rpipe, *wpipe;

	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));

	pp = (struct pipepair *)mem;

	/*
	 * We zero both pipe endpoints to make sure all the kmem pointers
	 * are NULL, flag fields are zero'd, etc.  We timestamp both
	 * endpoints with the same time.
	 */
	rpipe = &pp->pp_rpipe;
	bzero(rpipe, sizeof(*rpipe));
#ifndef __rtems__
	vfs_timestamp(&rpipe->pipe_ctime);
#else /* __rtems__ */
	rpipe->pipe_ctime.tv_sec = time(NULL);
#endif /* __rtems__ */
	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;

	wpipe = &pp->pp_wpipe;
	bzero(wpipe, sizeof(*wpipe));
	wpipe->pipe_ctime = rpipe->pipe_ctime;
	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;

	rpipe->pipe_peer = wpipe;
	rpipe->pipe_pair = pp;
	wpipe->pipe_peer = rpipe;
	wpipe->pipe_pair = pp;

	/*
	 * Mark both endpoints as present; they will later get free'd
	 * one at a time.  When both are free'd, then the whole pair
	 * is released.
	 */
	rpipe->pipe_present = PIPE_ACTIVE;
	wpipe->pipe_present = PIPE_ACTIVE;

	/*
	 * Eventually, the MAC Framework may initialize the label
	 * in ctor or init, but for now we do it elswhere to avoid
	 * blocking in ctor or init.
	 */
	pp->pp_label = NULL;

	return (0);
}

static int
pipe_zone_init(void *mem, int size, int flags)
{
	struct pipepair *pp;

	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));

	pp = (struct pipepair *)mem;

	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
	return (0);
}

static void
pipe_zone_fini(void *mem, int size)
{
	struct pipepair *pp;

	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));

	pp = (struct pipepair *)mem;

	mtx_destroy(&pp->pp_mtx);
}

/*
 * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
 * the zone pick up the pieces via pipeclose().
 */
int
kern_pipe(struct thread *td, int fildes[2])
{

	return (do_pipe(td, fildes, 0));
}

int
do_pipe(struct thread *td, int fildes[2], int flags)
{
#ifndef __rtems__
	struct filedesc *fdp = td->td_proc->p_fd;
#else /* __rtems__ */
	struct filedesc *fdp = NULL;
#endif /* __rtems__ */
	struct file *rf, *wf;
	struct pipepair *pp;
	struct pipe *rpipe, *wpipe;
	int fd, fflags, error;

	pp = uma_zalloc(pipe_zone, M_WAITOK);
#ifdef MAC
	/*
	 * The MAC label is shared between the connected endpoints.  As a
	 * result mac_pipe_init() and mac_pipe_create() are called once
	 * for the pair, and not on the endpoints.
	 */
	mac_pipe_init(pp);
	mac_pipe_create(td->td_ucred, pp);
#endif
	rpipe = &pp->pp_rpipe;
	wpipe = &pp->pp_wpipe;

	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));

	/* Only the forward direction pipe is backed by default */
	if ((error = pipe_create(rpipe, 1)) != 0 ||
	    (error = pipe_create(wpipe, 0)) != 0) {
		pipeclose(rpipe);
		pipeclose(wpipe);
		return (error);
	}

	rpipe->pipe_state |= PIPE_DIRECTOK;
	wpipe->pipe_state |= PIPE_DIRECTOK;

	error = falloc(td, &rf, &fd, flags);
	if (error) {
		pipeclose(rpipe);
		pipeclose(wpipe);
		return (error);
	}
	/* An extra reference on `rf' has been held for us by falloc(). */
	fildes[0] = fd;

	fflags = FREAD | FWRITE;
	if ((flags & O_NONBLOCK) != 0)
		fflags |= FNONBLOCK;

	/*
	 * Warning: once we've gotten past allocation of the fd for the
	 * read-side, we can only drop the read side via fdrop() in order
	 * to avoid races against processes which manage to dup() the read
	 * side while we are blocked trying to allocate the write side.
	 */
	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
	error = falloc(td, &wf, &fd, flags);
	if (error) {
		fdclose(fdp, rf, fildes[0], td);
		fdrop(rf, td);
		/* rpipe has been closed by fdrop(). */
		pipeclose(wpipe);
		return (error);
	}
	/* An extra reference on `wf' has been held for us by falloc(). */
	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
	fdrop(wf, td);
	fildes[1] = fd;
	fdrop(rf, td);

	return (0);
}

/* ARGSUSED */
int
sys_pipe(struct thread *td, struct pipe_args *uap)
{
	int error;
	int fildes[2];

	error = kern_pipe(td, fildes);
	if (error)
		return (error);

	td->td_retval[0] = fildes[0];
	td->td_retval[1] = fildes[1];

	return (0);
}
#ifdef __rtems__
int
pipe(int fildes[2])
{
	struct thread *td = rtems_bsd_get_curthread_or_null();
	int error;

	if (td != NULL) {
		error = sys_pipe(td, NULL);
	} else {
		error = ENOMEM;
	}

	if (error == 0) {
		fildes[0] = td->td_retval[0];
		fildes[1] = td->td_retval[1];
		return error;
	} else {
		rtems_set_errno_and_return_minus_one(error);
	}
}
#endif /* __rtems__ */

/*
 * Allocate kva for pipe circular buffer, the space is pageable
 * This routine will 'realloc' the size of a pipe safely, if it fails
 * it will retain the old buffer.
 * If it fails it will return ENOMEM.
 */
static int
pipespace_new(cpipe, size)
	struct pipe *cpipe;
	int size;
{
	caddr_t buffer;
	int error, cnt, firstseg;
	static int curfail = 0;
	static struct timeval lastfail;

	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
		("pipespace: resize of direct writes not allowed"));
retry:
	cnt = cpipe->pipe_buffer.cnt;
	if (cnt > size)
		size = cnt;

	size = round_page(size);
#ifndef __rtems__
	buffer = (caddr_t) vm_map_min(pipe_map);

	error = vm_map_find(pipe_map, NULL, 0,
		(vm_offset_t *) &buffer, size, 1,
		VM_PROT_ALL, VM_PROT_ALL, 0);
	if (error != KERN_SUCCESS) {
#else /* __rtems__ */
	buffer = malloc(size, M_TEMP, M_WAITOK | M_ZERO);
	if (buffer == NULL) {
#endif /* __rtems__ */
		if ((cpipe->pipe_buffer.buffer == NULL) &&
			(size > SMALL_PIPE_SIZE)) {
			size = SMALL_PIPE_SIZE;
			pipefragretry++;
			goto retry;
		}
		if (cpipe->pipe_buffer.buffer == NULL) {
			pipeallocfail++;
			if (ppsratecheck(&lastfail, &curfail, 1))
				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
		} else {
			piperesizefail++;
		}
		return (ENOMEM);
	}

	/* copy data, then free old resources if we're resizing */
	if (cnt > 0) {
		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
				buffer, firstseg);
			if ((cnt - firstseg) > 0)
				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
					cpipe->pipe_buffer.in);
		} else {
			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
				buffer, cnt);
		}
	}
	pipe_free_kmem(cpipe);
	cpipe->pipe_buffer.buffer = buffer;
	cpipe->pipe_buffer.size = size;
	cpipe->pipe_buffer.in = cnt;
	cpipe->pipe_buffer.out = 0;
	cpipe->pipe_buffer.cnt = cnt;
	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
	return (0);
}

/*
 * Wrapper for pipespace_new() that performs locking assertions.
 */
static int
pipespace(cpipe, size)
	struct pipe *cpipe;
	int size;
{

	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
		("Unlocked pipe passed to pipespace"));
	return (pipespace_new(cpipe, size));
}

/*
 * lock a pipe for I/O, blocking other access
 */
static __inline int
pipelock(cpipe, catch)
	struct pipe *cpipe;
	int catch;
{
	int error;

	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
	while (cpipe->pipe_state & PIPE_LOCKFL) {
		cpipe->pipe_state |= PIPE_LWANT;
		error = msleep(cpipe, PIPE_MTX(cpipe),
		    catch ? (PRIBIO | PCATCH) : PRIBIO,
		    "pipelk", 0);
		if (error != 0)
			return (error);
	}
	cpipe->pipe_state |= PIPE_LOCKFL;
	return (0);
}

/*
 * unlock a pipe I/O lock
 */
static __inline void
pipeunlock(cpipe)
	struct pipe *cpipe;
{

	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
		("Unlocked pipe passed to pipeunlock"));
	cpipe->pipe_state &= ~PIPE_LOCKFL;
	if (cpipe->pipe_state & PIPE_LWANT) {
		cpipe->pipe_state &= ~PIPE_LWANT;
		wakeup(cpipe);
	}
}

static __inline void
pipeselwakeup(cpipe)
	struct pipe *cpipe;
{

	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
	if (cpipe->pipe_state & PIPE_SEL) {
		selwakeuppri(&cpipe->pipe_sel, PSOCK);
		if (!SEL_WAITING(&cpipe->pipe_sel))
			cpipe->pipe_state &= ~PIPE_SEL;
	}
	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
}

/*
 * Initialize and allocate VM and memory for pipe.  The structure
 * will start out zero'd from the ctor, so we just manage the kmem.
 */
static int
pipe_create(pipe, backing)
	struct pipe *pipe;
	int backing;
{
	int error;

	if (backing) {
		if (amountpipekva > maxpipekva / 2)
			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
		else
			error = pipespace_new(pipe, PIPE_SIZE);
	} else {
		/* If we're not backing this pipe, no need to do anything. */
		error = 0;
	}
	pipe->pipe_ino = -1;
	return (error);
}

/* ARGSUSED */
static int
pipe_read(fp, uio, active_cred, flags, td)
	struct file *fp;
	struct uio *uio;
	struct ucred *active_cred;
	struct thread *td;
	int flags;
{
	struct pipe *rpipe = fp->f_data;
	int error;
	int nread = 0;
	int size;

	PIPE_LOCK(rpipe);
	++rpipe->pipe_busy;
	error = pipelock(rpipe, 1);
	if (error)
		goto unlocked_error;

#ifdef MAC
	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
	if (error)
		goto locked_error;
#endif
	if (amountpipekva > (3 * maxpipekva) / 4) {
		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
			(piperesizeallowed == 1)) {
			PIPE_UNLOCK(rpipe);
			pipespace(rpipe, SMALL_PIPE_SIZE);
			PIPE_LOCK(rpipe);
		}
	}

	while (uio->uio_resid) {
		/*
		 * normal pipe buffer receive
		 */
		if (rpipe->pipe_buffer.cnt > 0) {
			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
			if (size > rpipe->pipe_buffer.cnt)
				size = rpipe->pipe_buffer.cnt;
			if (size > uio->uio_resid)
				size = uio->uio_resid;

			PIPE_UNLOCK(rpipe);
			error = uiomove(
			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
			    size, uio);
			PIPE_LOCK(rpipe);
			if (error)
				break;

			rpipe->pipe_buffer.out += size;
			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
				rpipe->pipe_buffer.out = 0;

			rpipe->pipe_buffer.cnt -= size;

			/*
			 * If there is no more to read in the pipe, reset
			 * its pointers to the beginning.  This improves
			 * cache hit stats.
			 */
			if (rpipe->pipe_buffer.cnt == 0) {
				rpipe->pipe_buffer.in = 0;
				rpipe->pipe_buffer.out = 0;
			}
			nread += size;
#ifndef PIPE_NODIRECT
		/*
		 * Direct copy, bypassing a kernel buffer.
		 */
		} else if ((size = rpipe->pipe_map.cnt) &&
			   (rpipe->pipe_state & PIPE_DIRECTW)) {
			if (size > uio->uio_resid)
				size = (u_int) uio->uio_resid;

			PIPE_UNLOCK(rpipe);
			error = uiomove_fromphys(rpipe->pipe_map.ms,
			    rpipe->pipe_map.pos, size, uio);
			PIPE_LOCK(rpipe);
			if (error)
				break;
			nread += size;
			rpipe->pipe_map.pos += size;
			rpipe->pipe_map.cnt -= size;
			if (rpipe->pipe_map.cnt == 0) {
				rpipe->pipe_state &= ~PIPE_DIRECTW;
				wakeup(rpipe);
			}
#endif
		} else {
			/*
			 * detect EOF condition
			 * read returns 0 on EOF, no need to set error
			 */
			if (rpipe->pipe_state & PIPE_EOF)
				break;

			/*
			 * If the "write-side" has been blocked, wake it up now.
			 */
			if (rpipe->pipe_state & PIPE_WANTW) {
				rpipe->pipe_state &= ~PIPE_WANTW;
				wakeup(rpipe);
			}

			/*
			 * Break if some data was read.
			 */
			if (nread > 0)
				break;

			/*
			 * Unlock the pipe buffer for our remaining processing.
			 * We will either break out with an error or we will
			 * sleep and relock to loop.
			 */
			pipeunlock(rpipe);

			/*
			 * Handle non-blocking mode operation or
			 * wait for more data.
			 */
#ifndef __rtems__
			if (fp->f_flag & FNONBLOCK) {
#else /* __rtems__ */
			if (rtems_bsd_libio_flags_to_fflag(fp->f_io.flags) & FNONBLOCK) {
#endif /* __rtems__ */
				error = EAGAIN;
			} else {
				rpipe->pipe_state |= PIPE_WANTR;
				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
				    PRIBIO | PCATCH,
				    "piperd", 0)) == 0)
					error = pipelock(rpipe, 1);
			}
			if (error)
				goto unlocked_error;
		}
	}
#ifdef MAC
locked_error:
#endif
	pipeunlock(rpipe);

	/* XXX: should probably do this before getting any locks. */
	if (error == 0)
#ifndef __rtems__
		vfs_timestamp(&rpipe->pipe_atime);
#else /* __rtems__ */
		rpipe->pipe_atime.tv_sec = time(NULL);
#endif /* __rtems__ */
unlocked_error:
	--rpipe->pipe_busy;

	/*
	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
	 */
	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
		wakeup(rpipe);
	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
		/*
		 * Handle write blocking hysteresis.
		 */
		if (rpipe->pipe_state & PIPE_WANTW) {
			rpipe->pipe_state &= ~PIPE_WANTW;
			wakeup(rpipe);
		}
	}

	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
		pipeselwakeup(rpipe);

	PIPE_UNLOCK(rpipe);
	return (error);
}
#ifdef __rtems__
static ssize_t
rtems_bsd_pipe_read(rtems_libio_t *iop, void *buffer, size_t count)
{
	struct thread *td = rtems_bsd_get_curthread_or_null();
	struct file *fp = rtems_bsd_iop_to_fp(iop);
	struct iovec iov = {
		.iov_base = buffer,
		.iov_len = count
	};
	struct uio auio = {
		.uio_iov = &iov,
		.uio_iovcnt = 1,
		.uio_offset = 0,
		.uio_resid = count,
		.uio_segflg = UIO_USERSPACE,
		.uio_rw = UIO_READ,
		.uio_td = td
	};
	int error;

	if (td != NULL) {
		error = pipe_read(fp, &auio, NULL, 0, NULL);
	} else {
		error = ENOMEM;
	}

	if (error == 0) {
		return (count - auio.uio_resid);
	} else {
		rtems_set_errno_and_return_minus_one(error);
	}
}
#endif /* __rtems__ */

#ifndef PIPE_NODIRECT
/*
 * Map the sending processes' buffer into kernel space and wire it.
 * This is similar to a physical write operation.
 */
static int
pipe_build_write_buffer(wpipe, uio)
	struct pipe *wpipe;
	struct uio *uio;
{
	u_int size;
	int i;

	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
		("Clone attempt on non-direct write pipe!"));

	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
                size = wpipe->pipe_buffer.size;
	else
                size = uio->uio_iov->iov_len;

	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
		return (EFAULT);

/*
 * set up the control block
 */
	wpipe->pipe_map.npages = i;
	wpipe->pipe_map.pos =
	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
	wpipe->pipe_map.cnt = size;

/*
 * and update the uio data
 */

	uio->uio_iov->iov_len -= size;
	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
	if (uio->uio_iov->iov_len == 0)
		uio->uio_iov++;
	uio->uio_resid -= size;
	uio->uio_offset += size;
	return (0);
}

/*
 * unmap and unwire the process buffer
 */
static void
pipe_destroy_write_buffer(wpipe)
	struct pipe *wpipe;
{

	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
	wpipe->pipe_map.npages = 0;
}

/*
 * In the case of a signal, the writing process might go away.  This
 * code copies the data into the circular buffer so that the source
 * pages can be freed without loss of data.
 */
static void
pipe_clone_write_buffer(wpipe)
	struct pipe *wpipe;
{
	struct uio uio;
	struct iovec iov;
	int size;
	int pos;

	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
	size = wpipe->pipe_map.cnt;
	pos = wpipe->pipe_map.pos;

	wpipe->pipe_buffer.in = size;
	wpipe->pipe_buffer.out = 0;
	wpipe->pipe_buffer.cnt = size;
	wpipe->pipe_state &= ~PIPE_DIRECTW;

	PIPE_UNLOCK(wpipe);
	iov.iov_base = wpipe->pipe_buffer.buffer;
	iov.iov_len = size;
	uio.uio_iov = &iov;
	uio.uio_iovcnt = 1;
	uio.uio_offset = 0;
	uio.uio_resid = size;
	uio.uio_segflg = UIO_SYSSPACE;
	uio.uio_rw = UIO_READ;
	uio.uio_td = curthread;
	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
	PIPE_LOCK(wpipe);
	pipe_destroy_write_buffer(wpipe);
}

/*
 * This implements the pipe buffer write mechanism.  Note that only
 * a direct write OR a normal pipe write can be pending at any given time.
 * If there are any characters in the pipe buffer, the direct write will
 * be deferred until the receiving process grabs all of the bytes from
 * the pipe buffer.  Then the direct mapping write is set-up.
 */
static int
pipe_direct_write(wpipe, uio)
	struct pipe *wpipe;
	struct uio *uio;
{
	int error;

retry:
	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
	error = pipelock(wpipe, 1);
	if (wpipe->pipe_state & PIPE_EOF)
		error = EPIPE;
	if (error) {
		pipeunlock(wpipe);
		goto error1;
	}
	while (wpipe->pipe_state & PIPE_DIRECTW) {
		if (wpipe->pipe_state & PIPE_WANTR) {
			wpipe->pipe_state &= ~PIPE_WANTR;
			wakeup(wpipe);
		}
		pipeselwakeup(wpipe);
		wpipe->pipe_state |= PIPE_WANTW;
		pipeunlock(wpipe);
		error = msleep(wpipe, PIPE_MTX(wpipe),
		    PRIBIO | PCATCH, "pipdww", 0);
		if (error)
			goto error1;
		else
			goto retry;
	}
	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
	if (wpipe->pipe_buffer.cnt > 0) {
		if (wpipe->pipe_state & PIPE_WANTR) {
			wpipe->pipe_state &= ~PIPE_WANTR;
			wakeup(wpipe);
		}
		pipeselwakeup(wpipe);
		wpipe->pipe_state |= PIPE_WANTW;
		pipeunlock(wpipe);
		error = msleep(wpipe, PIPE_MTX(wpipe),
		    PRIBIO | PCATCH, "pipdwc", 0);
		if (error)
			goto error1;
		else
			goto retry;
	}

	wpipe->pipe_state |= PIPE_DIRECTW;

	PIPE_UNLOCK(wpipe);
	error = pipe_build_write_buffer(wpipe, uio);
	PIPE_LOCK(wpipe);
	if (error) {
		wpipe->pipe_state &= ~PIPE_DIRECTW;
		pipeunlock(wpipe);
		goto error1;
	}

	error = 0;
	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
		if (wpipe->pipe_state & PIPE_EOF) {
			pipe_destroy_write_buffer(wpipe);
			pipeselwakeup(wpipe);
			pipeunlock(wpipe);
			error = EPIPE;
			goto error1;
		}
		if (wpipe->pipe_state & PIPE_WANTR) {
			wpipe->pipe_state &= ~PIPE_WANTR;
			wakeup(wpipe);
		}
		pipeselwakeup(wpipe);
		pipeunlock(wpipe);
		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
		    "pipdwt", 0);
		pipelock(wpipe, 0);
	}

	if (wpipe->pipe_state & PIPE_EOF)
		error = EPIPE;
	if (wpipe->pipe_state & PIPE_DIRECTW) {
		/*
		 * this bit of trickery substitutes a kernel buffer for
		 * the process that might be going away.
		 */
		pipe_clone_write_buffer(wpipe);
	} else {
		pipe_destroy_write_buffer(wpipe);
	}
	pipeunlock(wpipe);
	return (error);

error1:
	wakeup(wpipe);
	return (error);
}
#endif

static int
pipe_write(fp, uio, active_cred, flags, td)
	struct file *fp;
	struct uio *uio;
	struct ucred *active_cred;
	struct thread *td;
	int flags;
{
	int error = 0;
	int desiredsize;
	ssize_t orig_resid;
	struct pipe *wpipe, *rpipe;

	rpipe = fp->f_data;
	wpipe = rpipe->pipe_peer;

	PIPE_LOCK(rpipe);
	error = pipelock(wpipe, 1);
	if (error) {
		PIPE_UNLOCK(rpipe);
		return (error);
	}
	/*
	 * detect loss of pipe read side, issue SIGPIPE if lost.
	 */
	if (wpipe->pipe_present != PIPE_ACTIVE ||
	    (wpipe->pipe_state & PIPE_EOF)) {
		pipeunlock(wpipe);
		PIPE_UNLOCK(rpipe);
		return (EPIPE);
	}
#ifdef MAC
	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
	if (error) {
		pipeunlock(wpipe);
		PIPE_UNLOCK(rpipe);
		return (error);
	}
#endif
	++wpipe->pipe_busy;

	/* Choose a larger size if it's advantageous */
	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
		if (piperesizeallowed != 1)
			break;
		if (amountpipekva > maxpipekva / 2)
			break;
		if (desiredsize == BIG_PIPE_SIZE)
			break;
		desiredsize = desiredsize * 2;
	}

	/* Choose a smaller size if we're in a OOM situation */
	if ((amountpipekva > (3 * maxpipekva) / 4) &&
		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
		(piperesizeallowed == 1))
		desiredsize = SMALL_PIPE_SIZE;

	/* Resize if the above determined that a new size was necessary */
	if ((desiredsize != wpipe->pipe_buffer.size) &&
		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
		PIPE_UNLOCK(wpipe);
		pipespace(wpipe, desiredsize);
		PIPE_LOCK(wpipe);
	}
	if (wpipe->pipe_buffer.size == 0) {
		/*
		 * This can only happen for reverse direction use of pipes
		 * in a complete OOM situation.
		 */
		error = ENOMEM;
		--wpipe->pipe_busy;
		pipeunlock(wpipe);
		PIPE_UNLOCK(wpipe);
		return (error);
	}

	pipeunlock(wpipe);

	orig_resid = uio->uio_resid;

	while (uio->uio_resid) {
		int space;

		pipelock(wpipe, 0);
		if (wpipe->pipe_state & PIPE_EOF) {
			pipeunlock(wpipe);
			error = EPIPE;
			break;
		}
#ifndef PIPE_NODIRECT
		/*
		 * If the transfer is large, we can gain performance if
		 * we do process-to-process copies directly.
		 * If the write is non-blocking, we don't use the
		 * direct write mechanism.
		 *
		 * The direct write mechanism will detect the reader going
		 * away on us.
		 */
		if (uio->uio_segflg == UIO_USERSPACE &&
		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
		    (fp->f_flag & FNONBLOCK) == 0) {
			pipeunlock(wpipe);
			error = pipe_direct_write(wpipe, uio);
			if (error)
				break;
			continue;
		}
#endif

		/*
		 * Pipe buffered writes cannot be coincidental with
		 * direct writes.  We wait until the currently executing
		 * direct write is completed before we start filling the
		 * pipe buffer.  We break out if a signal occurs or the
		 * reader goes away.
		 */
		if (wpipe->pipe_state & PIPE_DIRECTW) {
			if (wpipe->pipe_state & PIPE_WANTR) {
				wpipe->pipe_state &= ~PIPE_WANTR;
				wakeup(wpipe);
			}
			pipeselwakeup(wpipe);
			wpipe->pipe_state |= PIPE_WANTW;
			pipeunlock(wpipe);
			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
			    "pipbww", 0);
			if (error)
				break;
			else
				continue;
		}

		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;

		/* Writes of size <= PIPE_BUF must be atomic. */
		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
			space = 0;

		if (space > 0) {
			int size;	/* Transfer size */
			int segsize;	/* first segment to transfer */

			/*
			 * Transfer size is minimum of uio transfer
			 * and free space in pipe buffer.
			 */
			if (space > uio->uio_resid)
				size = uio->uio_resid;
			else
				size = space;
			/*
			 * First segment to transfer is minimum of
			 * transfer size and contiguous space in
			 * pipe buffer.  If first segment to transfer
			 * is less than the transfer size, we've got
			 * a wraparound in the buffer.
			 */
			segsize = wpipe->pipe_buffer.size -
				wpipe->pipe_buffer.in;
			if (segsize > size)
				segsize = size;

			/* Transfer first segment */

			PIPE_UNLOCK(rpipe);
			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
					segsize, uio);
			PIPE_LOCK(rpipe);

			if (error == 0 && segsize < size) {
				KASSERT(wpipe->pipe_buffer.in + segsize ==
					wpipe->pipe_buffer.size,
					("Pipe buffer wraparound disappeared"));
				/*
				 * Transfer remaining part now, to
				 * support atomic writes.  Wraparound
				 * happened.
				 */

				PIPE_UNLOCK(rpipe);
				error = uiomove(
				    &wpipe->pipe_buffer.buffer[0],
				    size - segsize, uio);
				PIPE_LOCK(rpipe);
			}
			if (error == 0) {
				wpipe->pipe_buffer.in += size;
				if (wpipe->pipe_buffer.in >=
				    wpipe->pipe_buffer.size) {
					KASSERT(wpipe->pipe_buffer.in ==
						size - segsize +
						wpipe->pipe_buffer.size,
						("Expected wraparound bad"));
					wpipe->pipe_buffer.in = size - segsize;
				}

				wpipe->pipe_buffer.cnt += size;
				KASSERT(wpipe->pipe_buffer.cnt <=
					wpipe->pipe_buffer.size,
					("Pipe buffer overflow"));
			}
			pipeunlock(wpipe);
			if (error != 0)
				break;
		} else {
			/*
			 * If the "read-side" has been blocked, wake it up now.
			 */
			if (wpipe->pipe_state & PIPE_WANTR) {
				wpipe->pipe_state &= ~PIPE_WANTR;
				wakeup(wpipe);
			}

			/*
			 * don't block on non-blocking I/O
			 */
#ifndef __rtems__
			if (fp->f_flag & FNONBLOCK) {
#else /* __rtems__ */
			if (rtems_bsd_libio_flags_to_fflag(fp->f_io.flags) & FNONBLOCK) {
#endif /* __rtems__ */
				error = EAGAIN;
				pipeunlock(wpipe);
				break;
			}

			/*
			 * We have no more space and have something to offer,
			 * wake up select/poll.
			 */
			pipeselwakeup(wpipe);

			wpipe->pipe_state |= PIPE_WANTW;
			pipeunlock(wpipe);
			error = msleep(wpipe, PIPE_MTX(rpipe),
			    PRIBIO | PCATCH, "pipewr", 0);
			if (error != 0)
				break;
		}
	}

	pipelock(wpipe, 0);
	--wpipe->pipe_busy;

	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
		wakeup(wpipe);
	} else if (wpipe->pipe_buffer.cnt > 0) {
		/*
		 * If we have put any characters in the buffer, we wake up
		 * the reader.
		 */
		if (wpipe->pipe_state & PIPE_WANTR) {
			wpipe->pipe_state &= ~PIPE_WANTR;
			wakeup(wpipe);
		}
	}

	/*
	 * Don't return EPIPE if I/O was successful
	 */
	if ((wpipe->pipe_buffer.cnt == 0) &&
	    (uio->uio_resid == 0) &&
	    (error == EPIPE)) {
		error = 0;
	}

	if (error == 0)
#ifndef __rtems__
		vfs_timestamp(&wpipe->pipe_mtime);
#else /* __rtems__ */
		wpipe->pipe_mtime.tv_sec = time(NULL);
#endif /* __rtems__ */

	/*
	 * We have something to offer,
	 * wake up select/poll.
	 */
	if (wpipe->pipe_buffer.cnt)
		pipeselwakeup(wpipe);

	pipeunlock(wpipe);
	PIPE_UNLOCK(rpipe);
	return (error);
}
#ifdef __rtems__
static ssize_t
rtems_bsd_pipe_write(rtems_libio_t *iop, const void *buffer, size_t count)
{
	struct thread *td = rtems_bsd_get_curthread_or_null();
	struct file *fp = rtems_bsd_iop_to_fp(iop);
	struct iovec iov = {
		.iov_base = __DECONST(void *, buffer),
		.iov_len = count
	};
	struct uio auio = {
		.uio_iov = &iov,
		.uio_iovcnt = 1,
		.uio_offset = 0,
		.uio_resid = count,
		.uio_segflg = UIO_USERSPACE,
		.uio_rw = UIO_WRITE,
		.uio_td = td
	};
	int error;

	if (td != NULL) {
		error = pipe_write(fp, &auio, NULL, 0, NULL);
	} else {
		error = ENOMEM;
	}

	if (error == 0) {
		return (count - auio.uio_resid);
	} else {
		rtems_set_errno_and_return_minus_one(error);
	}
}
#endif /* __rtems__ */

/* ARGSUSED */
#ifndef __rtems__
static int
pipe_truncate(fp, length, active_cred, td)
	struct file *fp;
	off_t length;
	struct ucred *active_cred;
	struct thread *td;
{

	return (EINVAL);
}
#endif /* __rtems__ */

/*
 * we implement a very minimal set of ioctls for compatibility with sockets.
 */
static int
pipe_ioctl(fp, cmd, data, active_cred, td)
	struct file *fp;
	u_long cmd;
	void *data;
	struct ucred *active_cred;
	struct thread *td;
{
	struct pipe *mpipe = fp->f_data;
	int error;

	PIPE_LOCK(mpipe);

#ifdef MAC
	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
	if (error) {
		PIPE_UNLOCK(mpipe);
		return (error);
	}
#endif

	error = 0;
	switch (cmd) {

	case FIONBIO:
		break;

	case FIOASYNC:
		if (*(int *)data) {
			mpipe->pipe_state |= PIPE_ASYNC;
		} else {
			mpipe->pipe_state &= ~PIPE_ASYNC;
		}
		break;

	case FIONREAD:
		if (mpipe->pipe_state & PIPE_DIRECTW)
			*(int *)data = mpipe->pipe_map.cnt;
		else
			*(int *)data = mpipe->pipe_buffer.cnt;
		break;

	case FIOSETOWN:
		PIPE_UNLOCK(mpipe);
		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
		goto out_unlocked;

	case FIOGETOWN:
		*(int *)data = fgetown(&mpipe->pipe_sigio);
		break;

	/* This is deprecated, FIOSETOWN should be used instead. */
	case TIOCSPGRP:
		PIPE_UNLOCK(mpipe);
		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
		goto out_unlocked;

	/* This is deprecated, FIOGETOWN should be used instead. */
	case TIOCGPGRP:
		*(int *)data = -fgetown(&mpipe->pipe_sigio);
		break;

	default:
		error = ENOTTY;
		break;
	}
	PIPE_UNLOCK(mpipe);
out_unlocked:
	return (error);
}
#ifdef __rtems__
static int
rtems_bsd_pipe_ioctl(rtems_libio_t *iop, ioctl_command_t request, void *buffer)
{
	struct thread *td = rtems_bsd_get_curthread_or_null();
	struct file *fp = rtems_bsd_iop_to_fp(iop);
	int error;

	if (td != NULL) {
		error = pipe_ioctl(fp, request, buffer, NULL, td);
	} else {
		error = ENOMEM;
	}

	return rtems_bsd_error_to_status_and_errno(error);
}
#endif /* __rtems__ */

static int
pipe_poll(fp, events, active_cred, td)
	struct file *fp;
	int events;
	struct ucred *active_cred;
	struct thread *td;
{
	struct pipe *rpipe = fp->f_data;
	struct pipe *wpipe;
	int revents = 0;
#ifdef MAC
	int error;
#endif

	wpipe = rpipe->pipe_peer;
	PIPE_LOCK(rpipe);
#ifdef MAC
	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
	if (error)
		goto locked_error;
#endif
	if (events & (POLLIN | POLLRDNORM))
		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
		    (rpipe->pipe_buffer.cnt > 0))
			revents |= events & (POLLIN | POLLRDNORM);

	if (events & (POLLOUT | POLLWRNORM))
		if (wpipe->pipe_present != PIPE_ACTIVE ||
		    (wpipe->pipe_state & PIPE_EOF) ||
		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
			 wpipe->pipe_buffer.size == 0)))
			revents |= events & (POLLOUT | POLLWRNORM);

	if ((events & POLLINIGNEOF) == 0) {
		if (rpipe->pipe_state & PIPE_EOF) {
			revents |= (events & (POLLIN | POLLRDNORM));
			if (wpipe->pipe_present != PIPE_ACTIVE ||
			    (wpipe->pipe_state & PIPE_EOF))
				revents |= POLLHUP;
		}
	}

	if (revents == 0) {
		if (events & (POLLIN | POLLRDNORM)) {
			selrecord(td, &rpipe->pipe_sel);
			if (SEL_WAITING(&rpipe->pipe_sel))
				rpipe->pipe_state |= PIPE_SEL;
		}

		if (events & (POLLOUT | POLLWRNORM)) {
			selrecord(td, &wpipe->pipe_sel);
			if (SEL_WAITING(&wpipe->pipe_sel))
				wpipe->pipe_state |= PIPE_SEL;
		}
	}
#ifdef MAC
locked_error:
#endif
	PIPE_UNLOCK(rpipe);

	return (revents);
}
#ifdef __rtems__
static int
rtems_bsd_pipe_poll(rtems_libio_t *iop, int events)
{
	struct thread *td = rtems_bsd_get_curthread_or_null();
	struct file *fp = rtems_bsd_iop_to_fp(iop);
	int error;

	if (td != NULL) {
		error = pipe_poll(fp, events, NULL, td);
	} else {
		error = ENOMEM;
	}

	return error;
}
#endif /* __rtems__ */

/*
 * We shouldn't need locks here as we're doing a read and this should
 * be a natural race.
 */
#ifndef __rtems__
static int
pipe_stat(fp, ub, active_cred, td)
	struct file *fp;
	struct stat *ub;
	struct ucred *active_cred;
	struct thread *td;
{
	struct pipe *pipe;
#else /* __rtems__ */
static int
pipe_stat(struct pipe *pipe, struct stat *ub)
{
#endif /* __rtems__ */
	int new_unr;
#ifdef MAC
	int error;
#endif

#ifndef __rtems__
	pipe = fp->f_data;
#endif /* __rtems__ */
	PIPE_LOCK(pipe);
#ifdef MAC
	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
	if (error) {
		PIPE_UNLOCK(pipe);
		return (error);
	}
#endif
	/*
	 * Lazily allocate an inode number for the pipe.  Most pipe
	 * users do not call fstat(2) on the pipe, which means that
	 * postponing the inode allocation until it is must be
	 * returned to userland is useful.  If alloc_unr failed,
	 * assign st_ino zero instead of returning an error.
	 * Special pipe_ino values:
	 *  -1 - not yet initialized;
	 *  0  - alloc_unr failed, return 0 as st_ino forever.
	 */
	if (pipe->pipe_ino == (ino_t)-1) {
		new_unr = alloc_unr(pipeino_unr);
		if (new_unr != -1)
			pipe->pipe_ino = new_unr;
		else
			pipe->pipe_ino = 0;
	}
	PIPE_UNLOCK(pipe);

#ifndef __rtems__
	bzero(ub, sizeof(*ub));
#endif /* __rtems__ */
	ub->st_mode = S_IFIFO;
	ub->st_blksize = PAGE_SIZE;
	if (pipe->pipe_state & PIPE_DIRECTW)
		ub->st_size = pipe->pipe_map.cnt;
	else
		ub->st_size = pipe->pipe_buffer.cnt;
	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
	ub->st_atim = pipe->pipe_atime;
	ub->st_mtim = pipe->pipe_mtime;
	ub->st_ctim = pipe->pipe_ctime;
#ifndef __rtems__
	ub->st_uid = fp->f_cred->cr_uid;
	ub->st_gid = fp->f_cred->cr_gid;
	ub->st_dev = pipedev_ino;
	ub->st_ino = pipe->pipe_ino;
#else /* __rtems__ */
	ub->st_uid = BSD_DEFAULT_UID;
	ub->st_gid = BSD_DEFAULT_GID;
	ub->st_dev = rtems_filesystem_make_dev_t(0xcc494cd6U, 0x1d970b4dU);
	ub->st_ino = pipe->pipe_ino;
#endif /* __rtems__ */
	/*
	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
	 */
	return (0);
}
#ifdef __rtems__
static int
rtems_bsd_pipe_stat(
	const rtems_filesystem_location_info_t *loc,
	struct stat *buf
)
{
	struct pipe *pipe = rtems_bsd_loc_to_f_data(loc);
	int error = pipe_stat(pipe, buf);

	return rtems_bsd_error_to_status_and_errno(error);
}
#endif /* __rtems__ */

/* ARGSUSED */
static int
pipe_close(fp, td)
	struct file *fp;
	struct thread *td;
{
	struct pipe *cpipe = fp->f_data;

#ifndef __rtems__
	fp->f_ops = &badfileops;
#else /* __rtems__ */
	fp->f_io.pathinfo.handlers = &rtems_filesystem_handlers_default;
#endif /* __rtems__ */
	fp->f_data = NULL;
	funsetown(&cpipe->pipe_sigio);
	pipeclose(cpipe);
	return (0);
}

static void
pipe_free_kmem(cpipe)
	struct pipe *cpipe;
{

	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
	    ("pipe_free_kmem: pipe mutex locked"));

	if (cpipe->pipe_buffer.buffer != NULL) {
		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
#ifndef __rtems__
		vm_map_remove(pipe_map,
		    (vm_offset_t)cpipe->pipe_buffer.buffer,
		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
#else /* __rtems__ */
		free(cpipe->pipe_buffer.buffer, M_TEMP);
#endif /* __rtems__ */
		cpipe->pipe_buffer.buffer = NULL;
	}
#ifndef PIPE_NODIRECT
	{
		cpipe->pipe_map.cnt = 0;
		cpipe->pipe_map.pos = 0;
		cpipe->pipe_map.npages = 0;
	}
#endif
}

/*
 * shutdown the pipe
 */
static void
pipeclose(cpipe)
	struct pipe *cpipe;
{
	struct pipepair *pp;
	struct pipe *ppipe;
	ino_t ino;

	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));

	PIPE_LOCK(cpipe);
	pipelock(cpipe, 0);
	pp = cpipe->pipe_pair;

	pipeselwakeup(cpipe);

	/*
	 * If the other side is blocked, wake it up saying that
	 * we want to close it down.
	 */
	cpipe->pipe_state |= PIPE_EOF;
	while (cpipe->pipe_busy) {
		wakeup(cpipe);
		cpipe->pipe_state |= PIPE_WANT;
		pipeunlock(cpipe);
		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
		pipelock(cpipe, 0);
	}


	/*
	 * Disconnect from peer, if any.
	 */
	ppipe = cpipe->pipe_peer;
	if (ppipe->pipe_present == PIPE_ACTIVE) {
		pipeselwakeup(ppipe);

		ppipe->pipe_state |= PIPE_EOF;
		wakeup(ppipe);
		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
	}

	/*
	 * Mark this endpoint as free.  Release kmem resources.  We
	 * don't mark this endpoint as unused until we've finished
	 * doing that, or the pipe might disappear out from under
	 * us.
	 */
	PIPE_UNLOCK(cpipe);
	pipe_free_kmem(cpipe);
	PIPE_LOCK(cpipe);
	cpipe->pipe_present = PIPE_CLOSING;
	pipeunlock(cpipe);

	/*
	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
	 * PIPE_FINALIZED, that allows other end to free the
	 * pipe_pair, only after the knotes are completely dismantled.
	 */
	knlist_clear(&cpipe->pipe_sel.si_note, 1);
	cpipe->pipe_present = PIPE_FINALIZED;
	seldrain(&cpipe->pipe_sel);
	knlist_destroy(&cpipe->pipe_sel.si_note);

	/*
	 * Postpone the destroy of the fake inode number allocated for
	 * our end, until pipe mtx is unlocked.
	 */
	ino = cpipe->pipe_ino;

	/*
	 * If both endpoints are now closed, release the memory for the
	 * pipe pair.  If not, unlock.
	 */
	if (ppipe->pipe_present == PIPE_FINALIZED) {
		PIPE_UNLOCK(cpipe);
#ifdef MAC
		mac_pipe_destroy(pp);
#endif
		uma_zfree(pipe_zone, cpipe->pipe_pair);
	} else
		PIPE_UNLOCK(cpipe);

	if (ino != 0 && ino != (ino_t)-1)
		free_unr(pipeino_unr, ino);
}

/*ARGSUSED*/
static int
pipe_kqfilter(struct file *fp, struct knote *kn)
{
	struct pipe *cpipe;

	cpipe = kn->kn_fp->f_data;
	PIPE_LOCK(cpipe);
	switch (kn->kn_filter) {
	case EVFILT_READ:
		kn->kn_fop = &pipe_rfiltops;
		break;
	case EVFILT_WRITE:
		kn->kn_fop = &pipe_wfiltops;
		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
			/* other end of pipe has been closed */
			PIPE_UNLOCK(cpipe);
			return (EPIPE);
		}
		cpipe = cpipe->pipe_peer;
		break;
	default:
		PIPE_UNLOCK(cpipe);
		return (EINVAL);
	}

	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
	PIPE_UNLOCK(cpipe);
	return (0);
}
#ifdef __rtems__
int
rtems_bsd_pipe_kqfilter(rtems_libio_t *iop, struct knote *kn)
{
	struct file *fp = rtems_bsd_iop_to_fp(iop);

	return pipe_kqfilter(fp, kn);
}
#endif /* __rtems__ */

static void
filt_pipedetach(struct knote *kn)
{
	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;

	PIPE_LOCK(cpipe);
	if (kn->kn_filter == EVFILT_WRITE)
		cpipe = cpipe->pipe_peer;
	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
	PIPE_UNLOCK(cpipe);
}

/*ARGSUSED*/
static int
filt_piperead(struct knote *kn, long hint)
{
	struct pipe *rpipe = kn->kn_fp->f_data;
	struct pipe *wpipe = rpipe->pipe_peer;
	int ret;

	PIPE_LOCK(rpipe);
	kn->kn_data = rpipe->pipe_buffer.cnt;
	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
		kn->kn_data = rpipe->pipe_map.cnt;

	if ((rpipe->pipe_state & PIPE_EOF) ||
	    wpipe->pipe_present != PIPE_ACTIVE ||
	    (wpipe->pipe_state & PIPE_EOF)) {
		kn->kn_flags |= EV_EOF;
		PIPE_UNLOCK(rpipe);
		return (1);
	}
	ret = kn->kn_data > 0;
	PIPE_UNLOCK(rpipe);
	return ret;
}

/*ARGSUSED*/
static int
filt_pipewrite(struct knote *kn, long hint)
{
	struct pipe *rpipe = kn->kn_fp->f_data;
	struct pipe *wpipe = rpipe->pipe_peer;

	PIPE_LOCK(rpipe);
	if (wpipe->pipe_present != PIPE_ACTIVE ||
	    (wpipe->pipe_state & PIPE_EOF)) {
		kn->kn_data = 0;
		kn->kn_flags |= EV_EOF;
		PIPE_UNLOCK(rpipe);
		return (1);
	}
	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
	if (wpipe->pipe_state & PIPE_DIRECTW)
		kn->kn_data = 0;

	PIPE_UNLOCK(rpipe);
	return (kn->kn_data >= PIPE_BUF);
}
#ifdef __rtems__
static int
rtems_bsd_pipe_open(rtems_libio_t *iop, const char *path, int oflag,
    mode_t mode)
{
	return rtems_bsd_error_to_status_and_errno(ENXIO);
}

static int
rtems_bsd_pipe_close(rtems_libio_t *iop)
{
	struct file *fp = rtems_bsd_iop_to_fp(iop);
	int error = pipe_close(fp, NULL);

	return rtems_bsd_error_to_status_and_errno(error);
}

static int
rtems_bsd_pipe_fcntl(rtems_libio_t *iop, int cmd)
{
	int error = 0;

	if (cmd == F_SETFL) {
		struct file *fp = rtems_bsd_iop_to_fp(iop);
		int nbio = iop->flags & LIBIO_FLAGS_NO_DELAY;

		error = pipe_ioctl(fp, FIONBIO, &nbio, NULL, NULL);
	}

	return rtems_bsd_error_to_status_and_errno(error);
}
#endif /* __rtems__ */