summaryrefslogtreecommitdiff
path: root/testsuites/isvv/16_task_manager_undefined_behaviour/task_manager_undefined_behaviour.c
blob: 60dcbb8b2f173e3b14742ec94c6d6393c6031d2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/* SPDX-License-Identifier: BSD-2-Clause */

/*
 * Copyright (C) 2022 Critical Software SA
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <rtems.h>
#include <rtems/bspIo.h>
#include "../shared/utils.h"
#include "../shared/isvv_rtems_aux.h"

/**
 *
 * @brief Tests impact of undefined behaviour for task manager
 *
 * This test case performs the calculation of the Mandelbrot set in parallel with
 * execution of task related functions with conditions which may lead to
 * undefined behaviour, and seeks to clarify the impact of them.
 *
 */

#define ITOA_STR_SIZE (8 * sizeof(int) + 1)

#define MAX_TLS_SIZE RTEMS_ALIGN_UP(64, RTEMS_TASK_STORAGE_ALIGNMENT)

#define TASK_STORAGE_SIZE                      \
  RTEMS_TASK_STORAGE_SIZE(                     \
      MAX_TLS_SIZE + RTEMS_MINIMUM_STACK_SIZE, \
      TASK_ATTRIBUTES)

#define TASK_ATTRIBUTES RTEMS_FLOATING_POINT

// We want to create mandelbrot executions whilst our task manager functions
// are executed on another core
#define TASK_COUNT ISVV_TEST_PROCESSORS
#define CALCULATION_TASKS ((TASK_COUNT) - 1)

// Timing related variables to ensure concurrent executions
#define RELATIVE_SLEEP 0
#define FUNCTION_WAIT_MICROSECONDS 10
#define FUNCTION_WAIT_NANOSECONDS (FUNCTION_WAIT_MICROSECONDS * 1000)

static rtems_id start_barrier;
static rtems_id TASK_COUNTER_SEMAPHORE;

typedef struct
{
  rtems_id calc_task_id[CALCULATION_TASKS];
  rtems_id undefined_task_id;
  uint32_t functions_start, functions_end;
  bool expected_timeslice_calls;
  bool expected_ASR_calls;
  bool expected_preempt_calls;
  bool expected_interrupt_calls;
  bool expected_combination_calls;
  bool preempt_not_impl;
  bool interrupts_not_impl;
} test_context;

// Create storage areas for each worker, using task construct forces
RTEMS_ALIGNED(RTEMS_TASK_STORAGE_ALIGNMENT)
static char task_storage[TASK_COUNT][TASK_STORAGE_SIZE];

// Storage space for timings
RTEMS_ALIGNED(RTEMS_TASK_STORAGE_ALIGNMENT)
static uint32_t task_before_mandelbrot[CALCULATION_TASKS];

RTEMS_ALIGNED(RTEMS_TASK_STORAGE_ALIGNMENT)
static uint32_t task_after_mandelbrot[CALCULATION_TASKS];

static void calc_task_function(rtems_task_argument *tile)
{
  uint8_t tile_n = (uint8_t) *tile;
  struct timespec uptime;

  WaitAtBarrier(start_barrier);

  // Check time function begins execution of mandelbrot executions
  rtems_clock_get_uptime(&uptime);
  task_before_mandelbrot[tile_n - 1] = (uint32_t)(uptime.tv_sec * 1000000 + uptime.tv_nsec / 1000);

  mandelbrot_tile(tile_n, CALCULATION_TASKS);

  // Check time function finishes execution of mandelbrot executions
  rtems_clock_get_uptime(&uptime);
  task_after_mandelbrot[tile_n - 1] = (uint32_t)(uptime.tv_sec * 1000000 + uptime.tv_nsec / 1000);

  // Task has finished so increment counter
  ReleaseCounterSemaphore(TASK_COUNTER_SEMAPHORE);
  rtems_task_exit();
}

static void undefined_behaviour_task(rtems_task_argument arg)
{
  test_context *ctx = (test_context *)arg;
  struct timespec uptime, function_wait;

  WaitAtBarrier(start_barrier);

  // Wait for 10us to ensure concurrent executions
  function_wait.tv_sec = 0;
  function_wait.tv_nsec = FUNCTION_WAIT_NANOSECONDS;
  clock_nanosleep(CLOCK_MONOTONIC, 0, &function_wait, NULL);

  rtems_clock_get_uptime(&uptime);
  ctx->functions_start = (uint32_t)(uptime.tv_sec * 1000000 + uptime.tv_nsec / 1000);

  /*
   * Start execution of task-manager related functions following formula of:
   *
   * Defined behaviour
   * Undefined behaviour
   * Defined behaviour
   *
   * NOTE REGARDING SPECIFICATION:
   * This test of undefined behaviour shall be conducted for:
   *  - rtems_task_mode()
   * This test of undefined behaviour shall NOT be conducted for:
   *  - rtems_task_create()
   * As confirmed in RTEMS-SMP-VAL-001 implementation in the space profile for this directive
   * is not allowed, and therefore testing is defunct.
   *
   * To check the current status of the task execution mode, we must call rtems_task_mode
   * passing in RTEMS_CURRENT_MODE as the mask, which causes the first parameter to be ignored
   * and returns the state in the third parameter. As such we will use this to check possible
   * invalidation of state from undefined behaviour calls with appropriate assertions.
   *
   * When we set mutually exclusive options which are combined with a bitwise OR, what we see
   * is the non-default option being applied. Where setting certain options isn't possible due
   * to the SMP and space profile configuration, we will assert that appropriate errors being
   * thrown, and that our configuration hasn't been invalidated or corrupted.
   */

  // Define test specific variables
  rtems_mode mode_set;
  rtems_status_code sc;

  const rtems_mode TIMESLICE_MODE = RTEMS_TIMESLICE;
  const rtems_mode NO_ASR_MODE = RTEMS_NO_ASR;
  const rtems_mode NO_ASR_TIMESLICE_MODE = RTEMS_TIMESLICE | RTEMS_NO_ASR;

  /*
   * TIMESLICE
   */

  SetTaskMode(RTEMS_NO_TIMESLICE, RTEMS_TIMESLICE_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_timeslice_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  // INVALID CALL
  SetTaskMode(RTEMS_NO_TIMESLICE | RTEMS_TIMESLICE, RTEMS_TIMESLICE_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_timeslice_calls &= ASSERT_TASK_MODES_EQ(mode_set, TIMESLICE_MODE);

  SetTaskMode(RTEMS_NO_TIMESLICE, RTEMS_TIMESLICE_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_timeslice_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  /*
   * Asynchronous Signal Routine (ASR)
   */

  // First with ASR being set

  SetTaskMode(RTEMS_ASR, RTEMS_ASR_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_ASR_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  // INVALID CALL
  SetTaskMode(RTEMS_NO_ASR | RTEMS_ASR, RTEMS_ASR_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_ASR_calls &= ASSERT_TASK_MODES_EQ(mode_set, NO_ASR_MODE);

  SetTaskMode(RTEMS_ASR, RTEMS_ASR_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_ASR_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  // Then with NO_ASR being set

  SetTaskMode(RTEMS_NO_ASR, RTEMS_ASR_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_ASR_calls &= ASSERT_TASK_MODES_EQ(mode_set, NO_ASR_MODE);

  // INVALID CALL
  SetTaskMode(RTEMS_NO_ASR | RTEMS_ASR, RTEMS_ASR_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_ASR_calls &= ASSERT_TASK_MODES_EQ(mode_set, NO_ASR_MODE);

  SetTaskMode(RTEMS_ASR, RTEMS_ASR_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_ASR_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  /*
   * PREEMPT
   *
   * Disabling Preemption on SMP systems is not possible, and any attempt to do so results in an
   * RTEMS_NOT_IMPLEMENTED error.
   */

  SetTaskMode(RTEMS_PREEMPT, RTEMS_PREEMPT_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_preempt_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  // INVALID CALL
  // We are expecting RTEMS_NOT_IMPLEMENTED due to interrupts not being enabled so don't assert success
  sc = rtems_task_mode(RTEMS_PREEMPT | RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &mode_set);
  ctx->preempt_not_impl = (RTEMS_NOT_IMPLEMENTED == sc);
  mode_set = GetTaskMode();
  ctx->expected_preempt_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  SetTaskMode(RTEMS_PREEMPT, RTEMS_PREEMPT_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_preempt_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  /*
   * INTERRUPT LEVEL
   *
   * RTEMS allows up to 256 values depending on processor architecture to set the interrupt level,
   * where a level of 0 indicates all interrupts are disabled (identical regardless of architecture)
   * and progressive levels indicating more and more interrupts enabled.
   *
   * According to RTEMS CPU Architecture Documentation, maskable interrupts allowed range for the
   * LEON3 / LEON4 processors is from 0 to 15 (16 levels, where 0 indicates all interrupts disabled).
   *
   * However in the RTEMS Qualification SRS for both GR712 and GR740, there exists a constraint
   * (spec:/constraint/interrupts-disabled-smp) which states that 'Where the system was built with
   * SMP support enabled, maskable interrupts are disabled for the executing thread.'
   *
   * Therefore as we are using SMP configuration for these tests, trying to combine mutually exclusive
   * attributes, in this case enabling various interrupt levels through the maskable interrupt passed into
   * the mode_set for this task with values e.g. 0 | 1 | 2 violates this constant and will result in an
   * RTEMS_NOT_IMPLEMENTED error. This is the extent to which we can provide
   * assertions on the correctness of this undefined behaviour.
   */

  SetTaskMode(RTEMS_INTERRUPT_LEVEL(0), RTEMS_INTERRUPT_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_interrupt_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  // INVALID CALL
  // We are expecting RTEMS_NOT_IMPLEMENTED due to interrupts not being enabled so don't assert success
  sc = rtems_task_mode(RTEMS_INTERRUPT_LEVEL(1) | RTEMS_INTERRUPT_LEVEL(2) | RTEMS_INTERRUPT_LEVEL(3), RTEMS_INTERRUPT_MASK, &mode_set);
  ctx->interrupts_not_impl = (RTEMS_NOT_IMPLEMENTED == sc);
  mode_set = GetTaskMode();
  ctx->expected_interrupt_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  SetTaskMode(RTEMS_INTERRUPT_LEVEL(0), RTEMS_INTERRUPT_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_interrupt_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  /*
   * COMBINATIONS OF MUTUALLY EXCLUSIVE & MUTUALLY INCLUSIVE ATTRIBUTES
   */

  SetTaskMode(RTEMS_DEFAULT_MODES, RTEMS_ALL_MODE_MASKS, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_combination_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  // INVALID CALL
  SetTaskMode(RTEMS_NO_ASR | RTEMS_ASR | RTEMS_TIMESLICE | RTEMS_NO_TIMESLICE, RTEMS_ASR_MASK | RTEMS_TIMESLICE_MASK, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_combination_calls &= ASSERT_TASK_MODES_EQ(mode_set, NO_ASR_TIMESLICE_MODE);

  SetTaskMode(RTEMS_DEFAULT_MODES, RTEMS_ALL_MODE_MASKS, mode_set);
  mode_set = GetTaskMode();
  ctx->expected_combination_calls &= ASSERT_TASK_MODES_EQ(mode_set, RTEMS_DEFAULT_MODES);

  /*
   * FINISHED EXECUTION OF TASK RELATED FUNCTIONS
   */

  rtems_clock_get_uptime(&uptime);
  ctx->functions_end = (uint32_t)(uptime.tv_sec * 1000000 + uptime.tv_nsec / 1000);

  // Only once this task has finished do we know we can progress
  ReleaseCounterSemaphore(TASK_COUNTER_SEMAPHORE);
  rtems_task_exit();
}

static void Init(rtems_task_argument arg)
{
  (void)arg;
  test_context ctx;
  uint8_t wait = 0;
  uint32_t args[CALCULATION_TASKS] = {0};

  TASK_COUNTER_SEMAPHORE = CreateCounterSemaphore(rtems_build_name('T', 'C', 'S', '0'), 0);

  // Config for our mandelbrot tile function
  rtems_task_config calc_task_config = {
      .initial_priority = PRIO_NORMAL,
      .storage_size = TASK_STORAGE_SIZE,
      .maximum_thread_local_storage_size = MAX_TLS_SIZE,
      .initial_modes = RTEMS_DEFAULT_MODES,
      .attributes = TASK_ATTRIBUTES};

  // Create our barrier for mandelbrot tasks + undefined behaviour tasks
  start_barrier = CreateAutomaticBarrier(TASK_COUNT);

  // Finish config for our mandelbrot tile functions and start them
  for (uint32_t i = 0; i < CALCULATION_TASKS; i++)
  {
    calc_task_config.name = rtems_build_name('R', 'U', 'N', (char)i);
    calc_task_config.storage_area = &task_storage[i][0];

    ctx.calc_task_id[i] = DoCreateTask(calc_task_config);
    args[i] = (i + 1);

    StartTask(ctx.calc_task_id[i], (void *)calc_task_function, (void *)&args[i]);
  }

  // Set initial properties to check validity directives and results
  ctx.expected_timeslice_calls = ctx.expected_ASR_calls = ctx.expected_preempt_calls = ctx.expected_interrupt_calls = ctx.expected_combination_calls = TRUE;

  // Config our undefined behaviour task and start it
  rtems_task_config undef_task_config = {
      .name = rtems_build_name('U', 'N', 'D', 'F'),
      .initial_priority = PRIO_NORMAL,
      .storage_size = TASK_STORAGE_SIZE,
      .maximum_thread_local_storage_size = MAX_TLS_SIZE,
      .initial_modes = RTEMS_DEFAULT_MODES,
      .attributes = TASK_ATTRIBUTES,
      .storage_area = &task_storage[TASK_COUNT-1][0]};

  ctx.undefined_task_id = DoCreateTask(undef_task_config);
  StartTask(ctx.undefined_task_id, undefined_behaviour_task, (void *)&ctx);

  // Wait for all tasks to complete
  while (wait < TASK_COUNT)
  {
    ObtainCounterSemaphore(TASK_COUNTER_SEMAPHORE);
    wait++;
  }

  // Check concurrent executions
  uint32_t latest_task_start = 0;
  // Wraps around to effectively be maximum allowed value
  uint32_t earliest_task_finish = -1;

  for (uint8_t task = 0; task < CALCULATION_TASKS; task++)
  {
    latest_task_start = MAX(latest_task_start, task_before_mandelbrot[task]);
    earliest_task_finish = MIN(earliest_task_finish, task_after_mandelbrot[task]);
  }

  print_string("\n\n");
  if ((ctx.functions_start >= latest_task_start && ctx.functions_end <= earliest_task_finish))
  {
    print_string("Functions and mandelbrot executed concurrently: true\n\n");
  }
  else
  {
    print_string("Functions and mandelbrot executed concurrently: false\n\n");
  }

  // Check all directives yielded expected results
  if (ctx.expected_timeslice_calls && ctx.expected_ASR_calls && ctx.expected_preempt_calls && ctx.expected_timeslice_calls && ctx.expected_combination_calls)
  {
    print_string("Directives all yielded expected results and configuration is valid: true\n");
  }
  else
  {
    print_string("Directives all yielded expected results and configuration is valid: false\n");
  }

  // Check individual directives themselves
  (ctx.expected_timeslice_calls)    ? print_string("Timeslice directives: SUCCEEDED\n")   : print_string("Timeslice directives: FAILED\n");
  (ctx.expected_ASR_calls)          ? print_string("ASR directives: SUCCEEDED\n")         : print_string("ASR directives: FAILED\n");
  (ctx.expected_preempt_calls)      ? print_string("Preempt directives: SUCCEEDED\n")     : print_string("Preempt directives: FAILED\n");
  (ctx.expected_interrupt_calls)    ? print_string("Interrupt directives: SUCCEEDED\n")   : print_string("Interrupt directives: FAILED\n");
  (ctx.expected_combination_calls)  ? print_string("Combination directives: SUCCEEDED\n") : print_string("Combination directives: FAILED\n");

  // Check status codes returned are expected i.e. disallowed by config
  if (ctx.preempt_not_impl) 
  {
    print_string("Status code returned for RTEMS_PREEMPT is expected: true\n");
  }
  else 
  {
    print_string("Status code returned for RTEMS_PREEMPT is expected: false\n");
  }

  if (ctx.interrupts_not_impl) 
  {
    print_string("Status code returned for RTEMS_INTERRUPT_LEVEL > 0 is expected: true\n");
  }
  else 
  {
    print_string("Status code returned for RTEMS_INTERRUPT_LEVEL > 0 is expected: false\n");
  }

  // Print mandelbrot set
  print_test_results();

  // Perform tidy up operations
  rtems_barrier_delete(start_barrier);
  rtems_semaphore_delete(TASK_COUNTER_SEMAPHORE);
  rtems_fatal(RTEMS_FATAL_SOURCE_EXIT, 0);
}

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

#define CONFIGURE_MAXIMUM_PROCESSORS ISVV_TEST_PROCESSORS

#define CONFIGURE_MAXIMUM_SEMAPHORES 1

// Reduce the priority of the Init task so all other tasks can be schedules to all other cores
#define CONFIGURE_INIT_TASK_PRIORITY PRIO_LOW

#define CONFIGURE_MAXIMUM_BARRIERS 1

#define CONFIGURE_MAXIMUM_TASKS (ISVV_TEST_PROCESSORS + 1)

#define CONFIGURE_SCHEDULER_EDF_SMP

#define CONFIGURE_MINIMUM_TASK_STACK_SIZE RTEMS_MINIMUM_STACK_SIZE + CPU_STACK_ALIGNMENT

#define CONFIGURE_EXTRA_TASK_STACKS RTEMS_MINIMUM_STACK_SIZE

#define CONFIGURE_IDLE_TASK_STORAGE_SIZE TASK_STORAGE_SIZE
#define CONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_SIZE 2 * TASK_STORAGE_SIZE

#define CONFIGURE_MINIMUM_TASKS_WITH_USER_PROVIDED_STORAGE \
  CONFIGURE_MAXIMUM_TASKS

#define CONFIGURE_MICROSECONDS_PER_TICK 1000

#define CONFIGURE_MAXIMUM_FILE_DESCRIPTORS 0

#define CONFIGURE_DISABLE_NEWLIB_REENTRANCY

#define CONFIGURE_APPLICATION_DISABLE_FILESYSTEM

#define CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE MAX_TLS_SIZE

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_SYSTEM_TASK | TASK_ATTRIBUTES)

#define CONFIGURE_INIT

#include <rtems/confdefs.h>