summaryrefslogtreecommitdiff
path: root/testsuites/isvv/14_immediate_ceiling_protocol/immediate_ceiling.c
blob: 4d1916820d6412e5d120eabf49b86eefd4a2179b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/* SPDX-License-Identifier: BSD-2-Clause */

/*
 * Copyright (C) 2022 Critical Software SA
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <rtems.h>
#include <rtems/bspIo.h>
#include "../shared/utils.h"
#include "../shared/isvv_rtems_aux.h"
#include <string.h>

/**
 *
 * @brief Tests ICPP of semaphores with two configurations:
 *
 * 1. Configured WITH ICPP
 * One test case which creates a mutex WITH the priority ceiling configured,
 * and shows that our high priority task NEVER overruns the time in its critical region
 *
 * 2. Configured WITHOUT ICPP
 * One test case which creates a mutex WITHOUT the priority ceiling configured,
 * and shows that our high priority task will FREQUENTLY overrun the time in its critical region
 */

// Different periods for our periodic tasks needed for robustness and reliability as
// Execution is dependant on processor clock speed i.e 250 MHz for gr740 and 80 MHz for gr712rc
#ifdef gr740
#define T0_PERIOD 400
#define T1_PERIOD 200
#else
#define T0_PERIOD 600
#define T1_PERIOD 300
#endif

#ifdef PRIO_CEILING
#define PRIO_PROTOCOL_SWITCH RTEMS_PRIORITY_CEILING
#else
#define PRIO_PROTOCOL_SWITCH RTEMS_NO_PRIORITY_CEILING
#endif

#define MAX_ITER (256U)
#define FFT_SIZE (1024U)
#define FFT_SIZE_LOG2 (10U)
#define TC_MAX (16U)
#define FILTER_REPETITIONS (2U)
#define SNR_THRESHOLD (1000000.0f)

const uint16_t FS = 48000U;
const uint16_t FREQ[TC_MAX] = {2500U, 1500U, 15000U, 500U,
                               1000U, 800U, 440U, 8000U,
                               100U, 3500U, 12345U, 1200U,
                               20000U, 715U, 5000U, 4500U};

const float NOISE_FACTOR[TC_MAX] = {0.0001f, 0.2250f, 0.00068f, 0.30f,
                                    0.004f, 0.0123f, 0.0054f, 0.00054f,
                                    0.01f, 0.0325f, 0.012f, 0.00032f,
                                    0.075f, 0.0423f, 0.0354f, 0.00002f};

static float inSensorDataRe[FFT_SIZE];
static float inSensorDataIm[FFT_SIZE];

#define ITOA_STR_SIZE (8 * sizeof(int) + 1)

#define MAX_TLS_SIZE RTEMS_ALIGN_UP(64, RTEMS_TASK_STORAGE_ALIGNMENT)

#define TASK_ATTRIBUTES RTEMS_FLOATING_POINT

#define TASK_STORAGE_SIZE                        \
    RTEMS_TASK_STORAGE_SIZE(                     \
        MAX_TLS_SIZE + RTEMS_MINIMUM_STACK_SIZE, \
        TASK_ATTRIBUTES)

#undef TEST_PROCESSORS
#define TEST_PROCESSORS 1
#define TASK_COUNT 3
#define EVENT_FINISHED_PROCESSING RTEMS_EVENT_0

#define T1_TUNE_REPS 50
#define T2_COARSE_TUNING_REPS 2
#define T2_FINE_TUNING_REPS 1300

typedef struct
{
    rtems_id main_task;
    rtems_id task_ids[TASK_COUNT];
    rtems_id period_0_id;
    rtems_id period_1_id;
    int64_t t2_max_ticks;
    uint16_t priority_inversion_occurrences;
    float m1_data;
    rtems_id m1_data_mutex;
    float scaling_fft_factor;
} test_context;

/* create storage areas for each worker, using task construct forces
the user to create these manually*/
RTEMS_ALIGNED(RTEMS_TASK_STORAGE_ALIGNMENT)
static char task_storage[TASK_COUNT][TASK_STORAGE_SIZE];

// TASK 0 - (highest priority w.r.t. the other two) - a SC S/W task
// Checks data after request for recent evidence of solar flare
static void solar_flare_analysis(rtems_task_argument arg)
{
    test_context *ctx = (test_context *)arg;

    uint16_t flare_count = 0;
    uint32_t start_time, end_time, time_in_critical_region;

    ctx->period_0_id = CreateRateMonotonic();

    while (1)
    {
        WaitPeriod(ctx->period_0_id, T0_PERIOD);

        // Timer to see how long it takes to enter and exit critical region
        start_time = rtems_clock_get_ticks_since_boot();
        ObtainMutex(ctx->m1_data_mutex);

        if (ctx->m1_data >= SNR_THRESHOLD)
            flare_count++;

        ReleaseMutex(ctx->m1_data_mutex);

        end_time = rtems_clock_get_ticks_since_boot();
        time_in_critical_region = end_time - start_time;

        // If time spent in critical region is greater than bound for T2 then we know priority inversion has occurred
        if (time_in_critical_region > ctx->t2_max_ticks)
            ctx->priority_inversion_occurrences++;
    }

    // Although this periodic task is executed ad infinitum it is good practice to finalize tasks
    rtems_task_exit();
}

// Task 1 - (medium priority w.r.t. the other two) - a COMS task
// A communication task which periodically receives and has to decode a message
// To simulate this, we are running the lucas-lehmer primality test
static void decode_communications(rtems_task_argument arg)
{
    uint32_t start_time, end_time, elapsed_time;
    test_context *ctx = (test_context *)arg;

    uint32_t res = 0;

    ctx->period_1_id = CreateRateMonotonic();

    while (1)
    {
        WaitPeriod(ctx->period_1_id, T1_PERIOD);

        start_time = rtems_clock_get_ticks_since_boot();

        for (uint16_t i = 0; i < T1_TUNE_REPS; i++)
        {
            for (uint8_t p = 2; p < 100; p++)
            {
                if (is_prime(p) && is_mersenne_prime(p))
                {
                    res = p;
                }
            }
        }

        end_time = rtems_clock_get_ticks_since_boot();
        elapsed_time = end_time - start_time;

        // If the execution time is greater than the period, and hence implicit deadline, then
        // this test cannot sufficiently be completed with the resources and parameters must be changed
        if (elapsed_time >= T1_PERIOD)
            print_string("[ERROR] Execution time of T1 is greater than period. Please reduce T1_TUNE_REPS \n");
    }

    (void)res;
    // Although this periodic task is executed ad infinitum it is good practice to finalize tasks
    rtems_task_exit();
}

// Computes the signal-to-noise ratio for our given data at a given position
static float compute_snr(float scaling_factor, uint32_t iter)
{
    for (uint32_t i = 0; i < FFT_SIZE; i++)
    {
        inSensorDataRe[i] = 0.4995f * cos_aprox(i * 2.0f * PI * FREQ[iter % TC_MAX] / FS) + (noise_generator(0) * NOISE_FACTOR[iter % TC_MAX]);
        inSensorDataIm[i] = 0.4995f * sin_aprox(i * 2.0f * PI * FREQ[iter % TC_MAX] / FS) + (noise_generator(0) * NOISE_FACTOR[iter % TC_MAX]);
    }

    for (uint32_t i = 0; i < FFT_SIZE; i++)
    {
        // Real & Imaginary
        inSensorDataRe[i] = inSensorDataRe[i] * blackman_harris(i, FFT_SIZE) / scaling_factor;
        inSensorDataIm[i] = inSensorDataIm[i] * blackman_harris(i, FFT_SIZE) / scaling_factor;
    }

    fft(&inSensorDataRe[0], &inSensorDataIm[0], FFT_SIZE_LOG2);

    // Look for the peak Value and its index (no DC)
    float maxValue = 0.0;
    int32_t maxValueIndex = -1;
    for (uint32_t i = 3; i < (FFT_SIZE / 2); i++)
    {
        if (inSensorDataRe[i] > maxValue)
        {
            maxValue = inSensorDataRe[i];
            maxValueIndex = i;
        }
    }

    // Calculates the signal and noise power (no DC)
    float sig = 0.0f;
    float noise = 0.0f;

    for (uint32_t i = 3; i < (FFT_SIZE / 2); i++)
    {
        if ((i > maxValueIndex - 8) && (i < maxValueIndex + 8))
        {
            sig += (2 * inSensorDataRe[i]);
        }
        else
        {
            noise += (2 * inSensorDataRe[i]);
        }
    }

    if (!(sig > 0.0f))
    {
        sig = 0.0000000001f;
    }
    if (!(noise > 0.0f))
    {
        noise = 0.0000000001f;
    }

    return sig / noise;
}

// Task 2 - (lowest priority w.r.t. the other two) - a SC S/W task
// Gathers signal data from sensors, computes the signal to noise ratio, then writes to a shared buffer
static void gather_meteorological_data(rtems_task_argument arg)
{
    test_context *ctx = (test_context *)arg;

    uint32_t iter = 0;

    while (iter < MAX_ITER)
    {
        ObtainMutex(ctx->m1_data_mutex);

        ctx->m1_data = compute_snr(ctx->scaling_fft_factor, iter);

        ReleaseMutex(ctx->m1_data_mutex);

        iter++;
    }

    print_string("Finished Processing Data \n");
    SendEvents(ctx->main_task, EVENT_FINISHED_PROCESSING);
    rtems_task_exit();
}

static void Init(rtems_task_argument arg)
{
    (void)arg;
    test_context ctx;

    char str[ITOA_STR_SIZE];

    uint32_t t1_start_time, t1_end_time, t1_elapsed_time;
    uint32_t t2_start_time, t2_end_time, t2_elapsed_time_in_critical_region;

    // With the ICPP we set the ceiling priority to the highest priority of any task that may hold it,
    // In this case it should be T0 with priority PRIO_VERY_HIGH.
    rtems_status_code sc;
    sc = rtems_semaphore_create(rtems_build_name('M', '1', 'M', 'X'), 1,
                                RTEMS_BINARY_SEMAPHORE | RTEMS_PRIORITY |
                                    PRIO_PROTOCOL_SWITCH,
                                PRIO_VERY_HIGH, &ctx.m1_data_mutex);
    ASSERT_SUCCESS(sc);

    /*
     * Due to the logic of the ICPP, and the fact that the Init task automatically has a priority
     * of 1 (PRIO_VERY_ULTRA_HIGH, the highest possible for any user defined task) we must either decrease
     * the priority of the Init task or increase the priority of the ceiling to be equal to the Init task,
     * and configure the priorities of our defined tasks (T0, T1, T2)
     *
     * For consistency, we will keep our defined tasks with the same priority as in Test Case 13 and reduce the priority
     * of the Init task, which only needs to acquire the semaphore to find the time T2 spends in its critical region
     *
     * See (https://docs.rtems.org/branches/master/c-user/key_concepts.html#immediate-ceiling-priority-protocol-icpp)
     */

    rtems_task_priority task_prio;
    sc = rtems_task_set_priority(RTEMS_SELF, PRIO_VERY_HIGH, &task_prio);
    ASSERT_SUCCESS(sc);

    // FFT Initialization
    (void)memset(&inSensorDataRe[0], 0, FFT_SIZE);
    (void)memset(&inSensorDataIm[0], 0, FFT_SIZE);

    // Calculates mean of Blackman-Harris terms
    ctx.scaling_fft_factor = 0.0;
    for (uint32_t i = 0; i < FFT_SIZE; i++)
    {
        ctx.scaling_fft_factor += blackman_harris(i, FFT_SIZE);
    }

    ctx.scaling_fft_factor = ctx.scaling_fft_factor / ((float)FFT_SIZE);

    // Find length of time T1 takes to execute
    uint32_t res = 0;

    t1_start_time = rtems_clock_get_ticks_since_boot();

    for (uint16_t i = 0; i < T1_TUNE_REPS; i++)
    {
        for (uint8_t p = 2; p < 100; p++)
        {
            if (is_prime(p) && is_mersenne_prime(p))
            {
                res = p;
            }
        }
    }

    t1_end_time = rtems_clock_get_ticks_since_boot();
    t1_elapsed_time = t1_end_time - t1_start_time;

    print_string("[DEBUG] e(T1) is: ");
    print_string(itoa(t1_elapsed_time, &str[0], 10));
    print_string("\n");

    (void)res;

    // Find the amount of time it takes for T2 to complete its critical region on
    // an empirical basis of the max, for any of our given data, to find the upper bound
    // that T0 should wait, enabling us to detect priority inversion
    ctx.t2_max_ticks = -1;

    for (uint8_t i = 0; i < TC_MAX; i++)
    {
        t2_start_time = rtems_clock_get_ticks_since_boot();

        ObtainMutex(ctx.m1_data_mutex);

        ctx.m1_data = compute_snr(ctx.scaling_fft_factor, i);

        ReleaseMutex(ctx.m1_data_mutex);

        t2_end_time = rtems_clock_get_ticks_since_boot();
        t2_elapsed_time_in_critical_region = t2_end_time - t2_start_time;

        ctx.t2_max_ticks = MAX(ctx.t2_max_ticks, t2_elapsed_time_in_critical_region);
    }

    print_string("[DEBUG] MAX eCR(T2) is: ");
    print_string(itoa(ctx.t2_max_ticks, &str[0], 10));
    print_string("\n");

    // Build up our task configs
    rtems_task_config configs[TASK_COUNT];
    for (uint8_t i = 0; i < TASK_COUNT; i++)
    {
        configs[i] = (rtems_task_config){
            .name = rtems_build_name('T', 'S', 'K', (char)i),
            .storage_size = TASK_STORAGE_SIZE,
            .storage_area = &task_storage[i][0],
            .maximum_thread_local_storage_size = MAX_TLS_SIZE,
            .initial_modes = RTEMS_DEFAULT_MODES,
            .attributes = RTEMS_FLOATING_POINT};
    }

    // Initialize relevant test variables
    ctx.main_task = rtems_task_self();
    ctx.priority_inversion_occurrences = 0;
    ctx.period_0_id = INVALID_ID;
    ctx.period_1_id = INVALID_ID;

    // Explicitly set the priorities of our tasks
    configs[2].initial_priority = PRIO_VERY_LOW;
    ctx.task_ids[2] = DoCreateTask(configs[2]);

    configs[1].initial_priority = PRIO_NORMAL;
    ctx.task_ids[1] = DoCreateTask(configs[1]);

    configs[0].initial_priority = PRIO_VERY_HIGH;
    ctx.task_ids[0] = DoCreateTask(configs[0]);

    // Start Tasks
    StartTask(ctx.task_ids[2], gather_meteorological_data, &ctx);
    StartTask(ctx.task_ids[1], decode_communications, &ctx);
    StartTask(ctx.task_ids[0], solar_flare_analysis, &ctx);

    // Blocking wait for relevant event until T2 is finished
    ReceiveAllEvents(EVENT_FINISHED_PROCESSING);

    print_string("Total Priority Inversion occurrences: ");
    print_string(itoa(ctx.priority_inversion_occurrences, &str[0], 10));
    print_string("\n");

    rtems_rate_monotonic_delete(ctx.period_0_id);
    rtems_rate_monotonic_delete(ctx.period_1_id);
    rtems_fatal(RTEMS_FATAL_SOURCE_EXIT, 0);
}

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

#define CONFIGURE_MAXIMUM_PROCESSORS TEST_PROCESSORS

#define CONFIGURE_MAXIMUM_TASKS (TASK_COUNT + 1)

#define CONFIGURE_MAXIMUM_PERIODS 2

#define CONFIGURE_MAXIMUM_SEMAPHORES 1

#define CONFIGURE_MINIMUM_TASK_STACK_SIZE RTEMS_MINIMUM_STACK_SIZE + CPU_STACK_ALIGNMENT

#define CONFIGURE_EXTRA_TASK_STACKS RTEMS_MINIMUM_STACK_SIZE

#define CONFIGURE_IDLE_TASK_STORAGE_SIZE TASK_STORAGE_SIZE
#define CONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_SIZE 2 * TASK_STORAGE_SIZE

#define CONFIGURE_MINIMUM_TASKS_WITH_USER_PROVIDED_STORAGE \
    CONFIGURE_MAXIMUM_TASKS

#define CONFIGURE_MICROSECONDS_PER_TICK 1000

#define CONFIGURE_MAXIMUM_FILE_DESCRIPTORS 0

#define CONFIGURE_DISABLE_NEWLIB_REENTRANCY

#define CONFIGURE_APPLICATION_DISABLE_FILESYSTEM

#define CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE MAX_TLS_SIZE

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_SYSTEM_TASK | TASK_ATTRIBUTES)

#define CONFIGURE_INIT_TASK_INITIAL_MODES RTEMS_DEFAULT_MODES

#define CONFIGURE_INIT

#include <rtems/confdefs.h>