summaryrefslogtreecommitdiff
path: root/bsps/riscv/griscv/clock/clockdrv.c
blob: 4cf15fe4f8f66f9a70f3324aa197cec782997c0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*
 *  Clock Tick Device Driver
 *
 *  This routine initializes GRLIB gptimer 1 which used for the clock tick.
 *
 *  The tick frequency is directly programmed to the configured number of
 *  microseconds per tick.
 *
 *  COPYRIGHT (c) 1989-2006.
 *  On-Line Applications Research Corporation (OAR).
 *
 *  Modified for GRLIB BSP.
 *  COPYRIGHT (c) 2004.
 *  Gaisler Research.
 *
 *  Copyright (c) 2014, 2018 embedded brains GmbH
 *
 *  The license and distribution terms for this file may be
 *  found in the file LICENSE in this distribution or at
 *  http://www.rtems.org/license/LICENSE.
 */

#include <bsp.h>
#include <amba.h>
#include <bsp/irq.h>
#include <bspopts.h>
#include <bsp/fatal.h>
#include <rtems/rtems/intr.h>
#include <grlib/ambapp.h>
#include <rtems/score/profiling.h>
#include <rtems/timecounter.h>
#include <rtems/score/cpuimpl.h>
#include <rtems/score/riscv-utility.h>

volatile uint32_t _RISCV_Counter_register;

/* The GRLIB BSP Timer driver can rely on the Driver Manager if the
 * DrvMgr is initialized during startup. Otherwise the classic driver
 * must be used.
 *
 * The DrvMgr Clock driver is located in the shared/timer directory
 */
#ifndef RTEMS_DRVMGR_STARTUP

/* GRLIB Timer system interrupt number */
static int clkirq;

static void (*grlib_tc_tick)(void);

static struct timecounter grlib_tc;

#ifdef RTEMS_PROFILING
#define IRQMP_TIMESTAMP_S1_S2 ((1U << 25) | (1U << 26))

static void grlib_tc_tick_irqmp_timestamp(void)
{
  volatile struct irqmp_timestamp_regs *irqmp_ts =
    &GRLIB_IrqCtrl_Regs->timestamp[0];
  unsigned int first = irqmp_ts->assertion;
  unsigned int second = irqmp_ts->counter;

  irqmp_ts->control |= IRQMP_TIMESTAMP_S1_S2;

  _Profiling_Update_max_interrupt_delay(_Per_CPU_Get(), second - first);

  rtems_timecounter_tick();
}
#endif

static void grlib_tc_tick_irqmp_timestamp_init(void)
{
#ifdef RTEMS_PROFILING
  /*
   * Ignore the first clock interrupt, since it contains the sequential system
   * initialization time.  Do the timestamp initialization on the fly.
   */

#ifdef RTEMS_SMP
  static Atomic_Uint counter = ATOMIC_INITIALIZER_UINT(0);

  bool done =
    _Atomic_Fetch_add_uint(&counter, 1, ATOMIC_ORDER_RELAXED)
      == rtems_scheduler_get_processor_maximum() - 1;
#else
  bool done = true;
#endif

  volatile struct irqmp_timestamp_regs *irqmp_ts =
    &GRLIB_IrqCtrl_Regs->timestamp[0];
  unsigned int ks = 1U << 5;

  irqmp_ts->control = ks | IRQMP_TIMESTAMP_S1_S2 | (unsigned int) clkirq;

  if (done) {
    grlib_tc_tick = grlib_tc_tick_irqmp_timestamp;
  }
#endif

  rtems_timecounter_tick();
}

static void grlib_tc_do_tick(void)
{
  (*grlib_tc_tick)();
}

#define Adjust_clkirq_for_node() do { clkirq += GRLIB_CLOCK_INDEX; } while(0)

#define Clock_driver_support_find_timer() \
  do { \
    /* Assume timer found during BSP initialization */ \
    if (GRLIB_Timer_Regs) { \
      clkirq = (GRLIB_Timer_Regs->cfg & 0xf8) >> 3; \
      \
      Adjust_clkirq_for_node(); \
    } \
  } while (0)

#define Clock_driver_support_install_isr( _new ) \
  bsp_clock_handler_install(_new)

static void bsp_clock_handler_install(rtems_isr *new)
{
  rtems_status_code sc;

  sc = rtems_interrupt_handler_install(
    clkirq,
    "Clock",
    RTEMS_INTERRUPT_UNIQUE,
    new,
    NULL
  );
  if (sc != RTEMS_SUCCESSFUL) {
    rtems_fatal(RTEMS_FATAL_SOURCE_BSP, LEON3_FATAL_CLOCK_INITIALIZATION);
  }
}

#define Clock_driver_support_set_interrupt_affinity(online_processors) \
  bsp_interrupt_set_affinity(clkirq, online_processors)

uint32_t _CPU_Counter_frequency( void )
{
  return grlib_up_counter_frequency();
}


static uint32_t _RISCV_Get_timecount_csr(struct timecounter *tc)
{
  return read_csr(time);
}

static void grlib_clock_initialize(void)
{
  volatile struct gptimer_regs *gpt;
  struct timecounter *tc;

  gpt = GRLIB_Timer_Regs;
  tc = &grlib_tc;

  gpt->timer[GRLIB_CLOCK_INDEX].reload =
    rtems_configuration_get_microseconds_per_tick() - 1;
  gpt->timer[GRLIB_CLOCK_INDEX].ctrl =
    GPTIMER_TIMER_CTRL_EN | GPTIMER_TIMER_CTRL_RS |
      GPTIMER_TIMER_CTRL_LD | GPTIMER_TIMER_CTRL_IE;

    /* Use the RISCV time register as up-counter */
  tc->tc_get_timecount = _RISCV_Get_timecount_csr;
  tc->tc_frequency = grlib_up_counter_frequency();

#ifdef RTEMS_PROFILING
  volatile struct irqmp_timestamp_regs *irqmp_ts =
    &GRLIB_IrqCtrl_Regs->timestamp[0];

    if (!irqmp_has_timestamp(irqmp_ts)) {
      bsp_fatal(GRLIB_FATAL_CLOCK_NO_IRQMP_TIMESTAMP_SUPPORT);
    }
#endif

  grlib_tc_tick = grlib_tc_tick_irqmp_timestamp_init;

  tc->tc_counter_mask = 0xffffffff;
  tc->tc_quality = RTEMS_TIMECOUNTER_QUALITY_CLOCK_DRIVER;
  rtems_timecounter_install(tc);
}

CPU_Counter_ticks _CPU_Counter_read( void )
{
  unsigned long timec;

  __asm__ volatile ( "csrr %0, time" : "=&r" ( timec ) );

  return timec;
}

#define Clock_driver_support_initialize_hardware() \
  grlib_clock_initialize()

#define Clock_driver_timecounter_tick() grlib_tc_do_tick()

#include "../../../shared/dev/clock/clockimpl.h"

#endif