summaryrefslogtreecommitdiff
path: root/bsps/arm/stm32h7/hal/stm32h7xx_hal.c
blob: 8fc0f84c933d6b30de1840b3fffd812903a4bb36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
/**
  ******************************************************************************
  * @file    stm32h7xx_hal.c
  * @author  MCD Application Team
  * @brief   HAL module driver.
  *          This is the common part of the HAL initialization
  *
  @verbatim
  ==============================================================================
                     ##### How to use this driver #####
  ==============================================================================
    [..]
    The common HAL driver contains a set of generic and common APIs that can be
    used by the PPP peripheral drivers and the user to start using the HAL.
    [..]
    The HAL contains two APIs' categories:
         (+) Common HAL APIs
         (+) Services HAL APIs

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"

/** @addtogroup STM32H7xx_HAL_Driver
  * @{
  */

/** @defgroup HAL  HAL
  * @brief HAL module driver.
  * @{
  */

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/**
 * @brief STM32H7xx HAL Driver version number V1.8.0
   */
#define __STM32H7xx_HAL_VERSION_MAIN   (0x01UL) /*!< [31:24] main version */
#define __STM32H7xx_HAL_VERSION_SUB1   (0x08UL) /*!< [23:16] sub1 version */
#define __STM32H7xx_HAL_VERSION_SUB2   (0x00UL) /*!< [15:8]  sub2 version */
#define __STM32H7xx_HAL_VERSION_RC     (0x00UL) /*!< [7:0]  release candidate */
#define __STM32H7xx_HAL_VERSION         ((__STM32H7xx_HAL_VERSION_MAIN << 24)\
                                        |(__STM32H7xx_HAL_VERSION_SUB1 << 16)\
                                        |(__STM32H7xx_HAL_VERSION_SUB2 << 8 )\
                                        |(__STM32H7xx_HAL_VERSION_RC))

#define IDCODE_DEVID_MASK    ((uint32_t)0x00000FFF)
#define VREFBUF_TIMEOUT_VALUE     (uint32_t)10   /* 10 ms  */

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Exported variables --------------------------------------------------------*/

/** @defgroup HAL_Exported_Variables HAL Exported Variables
  * @{
  */
#ifndef __rtems__
__IO uint32_t uwTick;
uint32_t uwTickPrio   = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT;  /* 1KHz */
#endif /* __rtems__ */
/**
  * @}
  */

/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/** @defgroup HAL_Private_Functions  HAL Private Functions
  * @{
  */

/** @defgroup HAL_Group1 Initialization and de-initialization Functions
 *  @brief    Initialization and de-initialization functions
 *
@verbatim
 ===============================================================================
              ##### Initialization and de-initialization functions #####
 ===============================================================================
    [..]  This section provides functions allowing to:
      (+) Initializes the Flash interface the NVIC allocation and initial clock
          configuration. It initializes the systick also when timeout is needed
          and the backup domain when enabled.
      (+) De-Initializes common part of the HAL.
      (+) Configure The time base source to have 1ms time base with a dedicated
          Tick interrupt priority.
        (++) SysTick timer is used by default as source of time base, but user
             can eventually implement his proper time base source (a general purpose
             timer for example or other time source), keeping in mind that Time base
             duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
             handled in milliseconds basis.
        (++) Time base configuration function (HAL_InitTick ()) is called automatically
             at the beginning of the program after reset by HAL_Init() or at any time
             when clock is configured, by HAL_RCC_ClockConfig().
        (++) Source of time base is configured  to generate interrupts at regular
             time intervals. Care must be taken if HAL_Delay() is called from a
             peripheral ISR process, the Tick interrupt line must have higher priority
            (numerically lower) than the peripheral interrupt. Otherwise the caller
            ISR process will be blocked.
       (++) functions affecting time base configurations are declared as __weak
             to make  override possible  in case of other  implementations in user file.
@endverbatim
  * @{
  */

/**
  * @brief  This function is used to initialize the HAL Library; it must be the first
  *         instruction to be executed in the main program (before to call any other
  *         HAL function), it performs the following:
  *           Configures the SysTick to generate an interrupt each 1 millisecond,
  *           which is clocked by the HSI (at this stage, the clock is not yet
  *           configured and thus the system is running from the internal HSI at 16 MHz).
  *           Set NVIC Group Priority to 4.
  *           Calls the HAL_MspInit() callback function defined in user file
  *           "stm32h7xx_hal_msp.c" to do the global low level hardware initialization
  *
  * @note   SysTick is used as time base for the HAL_Delay() function, the application
  *         need to ensure that the SysTick time base is always set to 1 millisecond
  *         to have correct HAL operation.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_Init(void)
{

uint32_t common_system_clock;

#if defined(DUAL_CORE) && defined(CORE_CM4)
   /* Configure Cortex-M4 Instruction cache through ART accelerator */
   __HAL_RCC_ART_CLK_ENABLE();                   /* Enable the Cortex-M4 ART Clock */
   __HAL_ART_CONFIG_BASE_ADDRESS(0x08100000UL);  /* Configure the Cortex-M4 ART Base address to the Flash Bank 2 : */
   __HAL_ART_ENABLE();                           /* Enable the Cortex-M4 ART */
#endif /* DUAL_CORE &&  CORE_CM4 */

  /* Set Interrupt Group Priority */
  HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);

  /* Update the SystemCoreClock global variable */
#if defined(RCC_D1CFGR_D1CPRE)
  common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE)>> RCC_D1CFGR_D1CPRE_Pos]) & 0x1FU);
#else
  common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE)>> RCC_CDCFGR1_CDCPRE_Pos]) & 0x1FU);
#endif

  /* Update the SystemD2Clock global variable */
#if defined(RCC_D1CFGR_HPRE)
  SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE)>> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
#else
  SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)>> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
#endif

#if defined(DUAL_CORE) && defined(CORE_CM4)
  SystemCoreClock = SystemD2Clock;
#else
  SystemCoreClock = common_system_clock;
#endif /* DUAL_CORE && CORE_CM4 */

#ifndef __rtems__
  /* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
  if(HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK)
  {
    return HAL_ERROR;
  }
#endif /* __rtems__ */

  /* Init the low level hardware */
  HAL_MspInit();

  /* Return function status */
  return HAL_OK;
}

#ifndef __rtems__
/**
  * @brief  This function de-Initializes common part of the HAL and stops the systick.
  *         This function is optional.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_DeInit(void)
{
  /* Reset of all peripherals */
  __HAL_RCC_AHB3_FORCE_RESET();
  __HAL_RCC_AHB3_RELEASE_RESET();

  __HAL_RCC_AHB1_FORCE_RESET();
  __HAL_RCC_AHB1_RELEASE_RESET();

  __HAL_RCC_AHB2_FORCE_RESET();
  __HAL_RCC_AHB2_RELEASE_RESET();

  __HAL_RCC_AHB4_FORCE_RESET();
 __HAL_RCC_AHB4_RELEASE_RESET();

  __HAL_RCC_APB3_FORCE_RESET();
  __HAL_RCC_APB3_RELEASE_RESET();

  __HAL_RCC_APB1L_FORCE_RESET();
  __HAL_RCC_APB1L_RELEASE_RESET();

  __HAL_RCC_APB1H_FORCE_RESET();
  __HAL_RCC_APB1H_RELEASE_RESET();

   __HAL_RCC_APB2_FORCE_RESET();
   __HAL_RCC_APB2_RELEASE_RESET();

  __HAL_RCC_APB4_FORCE_RESET();
  __HAL_RCC_APB4_RELEASE_RESET();

  /* De-Init the low level hardware */
  HAL_MspDeInit();

  /* Return function status */
  return HAL_OK;
}
#endif /* __rtems__ */

#ifndef __rtems__
/**
  * @brief  Initializes the MSP.
  * @retval None
  */
__weak void HAL_MspInit(void)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_MspInit could be implemented in the user file
   */
}

/**
  * @brief  DeInitializes the MSP.
  * @retval None
  */
__weak void HAL_MspDeInit(void)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_MspDeInit could be implemented in the user file
   */
}

/**
  * @brief This function configures the source of the time base.
  *        The time source is configured  to have 1ms time base with a dedicated
  *        Tick interrupt priority.
  * @note This function is called  automatically at the beginning of program after
  *       reset by HAL_Init() or at any time when clock is reconfigured  by HAL_RCC_ClockConfig().
  * @note In the default implementation, SysTick timer is the source of time base.
  *       It is used to generate interrupts at regular time intervals.
  *       Care must be taken if HAL_Delay() is called from a peripheral ISR process,
  *       The the SysTick interrupt must have higher priority (numerically lower)
  *       than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
  *       The function is declared as __weak  to be overwritten  in case of other
  *       implementation  in user file.
  * @param TickPriority: Tick interrupt priority.
  * @retval HAL status
  */
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
  /* Check uwTickFreq for MisraC 2012 (even if uwTickFreq is a enum type that don't take the value zero)*/
  if((uint32_t)uwTickFreq == 0UL)
  {
    return HAL_ERROR;
  }

  /* Configure the SysTick to have interrupt in 1ms time basis*/
  if (HAL_SYSTICK_Config(SystemCoreClock / (1000UL / (uint32_t)uwTickFreq)) > 0U)
  {
    return HAL_ERROR;
  }

  /* Configure the SysTick IRQ priority */
  if (TickPriority < (1UL << __NVIC_PRIO_BITS))
  {
    HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
    uwTickPrio = TickPriority;
  }
  else
  {
    return HAL_ERROR;
  }

  /* Return function status */
  return HAL_OK;
}
#endif /* __rtems__ */

/**
  * @}
  */

/** @defgroup HAL_Group2 HAL Control functions
 *  @brief    HAL Control functions
 *
@verbatim
 ===============================================================================
                      ##### HAL Control functions #####
 ===============================================================================
    [..]  This section provides functions allowing to:
      (+) Provide a tick value in millisecond
      (+) Provide a blocking delay in millisecond
      (+) Suspend the time base source interrupt
      (+) Resume the time base source interrupt
      (+) Get the HAL API driver version
      (+) Get the device identifier
      (+) Get the device revision identifier
      (+) Enable/Disable Debug module during SLEEP mode
      (+) Enable/Disable Debug module during STOP mode
      (+) Enable/Disable Debug module during STANDBY mode

@endverbatim
  * @{
  */

#ifndef __rtems__
/**
  * @brief This function is called to increment  a global variable "uwTick"
  *        used as application time base.
  * @note In the default implementation, this variable is incremented each 1ms
  *       in Systick ISR.
 * @note This function is declared as __weak to be overwritten in case of other
  *      implementations in user file.
  * @retval None
  */
__weak void HAL_IncTick(void)
{
  uwTick += (uint32_t)uwTickFreq;
}

/**
  * @brief Provides a tick value in millisecond.
  * @note This function is declared as __weak to be overwritten in case of other
  *       implementations in user file.
  * @retval tick value
  */
__weak uint32_t HAL_GetTick(void)
{
  return uwTick;
}

/**
  * @brief This function returns a tick priority.
  * @retval tick priority
  */
uint32_t HAL_GetTickPrio(void)
{
  return uwTickPrio;
}

/**
  * @brief Set new tick Freq.
  * @retval Status
  */
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
{
  HAL_StatusTypeDef status  = HAL_OK;
  HAL_TickFreqTypeDef prevTickFreq;

  assert_param(IS_TICKFREQ(Freq));

  if (uwTickFreq != Freq)
  {

    /* Back up uwTickFreq frequency */
    prevTickFreq = uwTickFreq;

    /* Update uwTickFreq global variable used by HAL_InitTick() */
    uwTickFreq = Freq;

    /* Apply the new tick Freq  */
    status = HAL_InitTick(uwTickPrio);
    if (status != HAL_OK)
    {
      /* Restore previous tick frequency */
      uwTickFreq = prevTickFreq;
    }
  }

  return status;
}

/**
  * @brief Return tick frequency.
  * @retval tick period in Hz
  */
HAL_TickFreqTypeDef HAL_GetTickFreq(void)
{
  return uwTickFreq;
}

/**
  * @brief This function provides minimum delay (in milliseconds) based
  *        on variable incremented.
  * @note In the default implementation , SysTick timer is the source of time base.
  *       It is used to generate interrupts at regular time intervals where uwTick
  *       is incremented.
  * @note This function is declared as __weak to be overwritten in case of other
  *       implementations in user file.
  * @param Delay  specifies the delay time length, in milliseconds.
  * @retval None
  */
__weak void HAL_Delay(uint32_t Delay)
{
  uint32_t tickstart = HAL_GetTick();
  uint32_t wait = Delay;

  /* Add a freq to guarantee minimum wait */
  if (wait < HAL_MAX_DELAY)
  {
    wait += (uint32_t)(uwTickFreq);
  }

  while ((HAL_GetTick() - tickstart) < wait)
  {
  }
}

/**
  * @brief Suspend Tick increment.
  * @note In the default implementation , SysTick timer is the source of time base. It is
  *       used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
  *       is called, the the SysTick interrupt will be disabled and so Tick increment
  *       is suspended.
  * @note This function is declared as __weak to be overwritten in case of other
  *       implementations in user file.
  * @retval None
  */
__weak void HAL_SuspendTick(void)
{
  /* Disable SysTick Interrupt */
  SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk;
}

/**
  * @brief Resume Tick increment.
  * @note In the default implementation , SysTick timer is the source of time base. It is
  *       used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
  *       is called, the the SysTick interrupt will be enabled and so Tick increment
  *       is resumed.
  * @note This function is declared as __weak to be overwritten in case of other
  *       implementations in user file.
  * @retval None
  */
__weak void HAL_ResumeTick(void)
{
  /* Enable SysTick Interrupt */
  SysTick->CTRL  |= SysTick_CTRL_TICKINT_Msk;
}
#endif /* __rtems__ */

/**
  * @brief  Returns the HAL revision
  * @retval version : 0xXYZR (8bits for each decimal, R for RC)
  */
uint32_t HAL_GetHalVersion(void)
{
 return __STM32H7xx_HAL_VERSION;
}

/**
  * @brief  Returns the device revision identifier.
  * @retval Device revision identifier
  */
uint32_t HAL_GetREVID(void)
{
   return((DBGMCU->IDCODE) >> 16);
}

/**
  * @brief  Returns the device identifier.
  * @retval Device identifier
  */
uint32_t HAL_GetDEVID(void)
{
   return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
}

/**
  * @brief  Return the first word of the unique device identifier (UID based on 96 bits)
  * @retval Device identifier
  */
uint32_t HAL_GetUIDw0(void)
{
  return(READ_REG(*((uint32_t *)UID_BASE)));
}

/**
  * @brief  Return the second word of the unique device identifier (UID based on 96 bits)
  * @retval Device identifier
  */
uint32_t HAL_GetUIDw1(void)
{
  return(READ_REG(*((uint32_t *)(UID_BASE + 4U))));
}

/**
  * @brief  Return the third word of the unique device identifier (UID based on 96 bits)
  * @retval Device identifier
  */
uint32_t HAL_GetUIDw2(void)
{
  return(READ_REG(*((uint32_t *)(UID_BASE + 8U))));
}

/**
  * @brief Configure the internal voltage reference buffer voltage scale.
  * @param VoltageScaling  specifies the output voltage to achieve
  *          This parameter can be one of the following values:
  *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE0: VREF_OUT1 around 2.048 V.
  *                                                This requires VDDA equal to or higher than 2.4 V.
  *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE1: VREF_OUT2 around 2.5 V.
  *                                                This requires VDDA equal to or higher than 2.8 V.
  *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE2: VREF_OUT3 around 1.5 V.
  *                                                This requires VDDA equal to or higher than 1.8 V.
  *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE3: VREF_OUT4 around 1.8 V.
  *                                                This requires VDDA equal to or higher than 2.1 V.
  * @retval None
  */
void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling)
{
  /* Check the parameters */
  assert_param(IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(VoltageScaling));

  MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_VRS, VoltageScaling);
}

/**
  * @brief Configure the internal voltage reference buffer high impedance mode.
  * @param Mode  specifies the high impedance mode
  *          This parameter can be one of the following values:
  *            @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_DISABLE: VREF+ pin is internally connect to VREFINT output.
  *            @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_ENABLE: VREF+ pin is high impedance.
  * @retval None
  */
void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode)
{
  /* Check the parameters */
  assert_param(IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(Mode));

  MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_HIZ, Mode);
}

/**
  * @brief  Tune the Internal Voltage Reference buffer (VREFBUF).
  * @retval None
  */
void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue)
{
  /* Check the parameters */
  assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue));

  MODIFY_REG(VREFBUF->CCR, VREFBUF_CCR_TRIM, TrimmingValue);
}

/**
  * @brief  Enable the Internal Voltage Reference buffer (VREFBUF).
  * @retval HAL_OK/HAL_TIMEOUT
  */
HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void)
{
  uint32_t  tickstart;

  SET_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);

  /* Get Start Tick*/
  tickstart = HAL_GetTick();

  /* Wait for VRR bit  */
  while(READ_BIT(VREFBUF->CSR, VREFBUF_CSR_VRR) == 0UL)
  {
    if((HAL_GetTick() - tickstart) > VREFBUF_TIMEOUT_VALUE)
    {
      return HAL_TIMEOUT;
    }
  }

  return HAL_OK;
}

/**
  * @brief  Disable the Internal Voltage Reference buffer (VREFBUF).
  *
  * @retval None
  */
void HAL_SYSCFG_DisableVREFBUF(void)
{
  CLEAR_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
}

#if defined(SYSCFG_PMCR_EPIS_SEL)
/**
  * @brief  Ethernet PHY Interface Selection either MII or RMII
  * @param  SYSCFG_ETHInterface: Selects the Ethernet PHY interface
  *   This parameter can be one of the following values:
  *   @arg SYSCFG_ETH_MII : Select the Media Independent Interface
  *   @arg SYSCFG_ETH_RMII: Select the Reduced Media Independent Interface
  * @retval None
  */
void HAL_SYSCFG_ETHInterfaceSelect(uint32_t SYSCFG_ETHInterface)
{
  /* Check the parameter */
  assert_param(IS_SYSCFG_ETHERNET_CONFIG(SYSCFG_ETHInterface));

  MODIFY_REG(SYSCFG->PMCR, SYSCFG_PMCR_EPIS_SEL, (uint32_t)(SYSCFG_ETHInterface));
}
#endif /* SYSCFG_PMCR_EPIS_SEL */

/**
  * @brief  Analog Switch control for dual analog pads.
  * @param  SYSCFG_AnalogSwitch: Selects the analog pad
  *   This parameter can be one or a combination of the following values:
  *   @arg SYSCFG_SWITCH_PA0 : Select PA0 analog switch
  *   @arg SYSCFG_SWITCH_PA1:  Select PA1 analog switch
  *   @arg SYSCFG_SWITCH_PC2 : Select PC2 analog switch
  *   @arg SYSCFG_SWITCH_PC3:  Select PC3 analog switch
  * @param  SYSCFG_SwitchState: Open or Close the analog switch between dual pads (PXn and PXn_C)
  *   This parameter can be one or a combination of the following values:
  *   @arg SYSCFG_SWITCH_PA0_OPEN
  *   @arg SYSCFG_SWITCH_PA0_CLOSE
  *   @arg SYSCFG_SWITCH_PA1_OPEN
  *   @arg SYSCFG_SWITCH_PA1_CLOSE
  *   @arg SYSCFG_SWITCH_PC2_OPEN
  *   @arg SYSCFG_SWITCH_PC2_CLOSE
  *   @arg SYSCFG_SWITCH_PC3_OPEN
  *   @arg SYSCFG_SWITCH_PC3_CLOSE
  * @retval None
  */

void HAL_SYSCFG_AnalogSwitchConfig(uint32_t SYSCFG_AnalogSwitch , uint32_t SYSCFG_SwitchState )
{
  /* Check the parameter */
  assert_param(IS_SYSCFG_ANALOG_SWITCH(SYSCFG_AnalogSwitch));
  assert_param(IS_SYSCFG_SWITCH_STATE(SYSCFG_SwitchState));

  MODIFY_REG(SYSCFG->PMCR, (uint32_t) SYSCFG_AnalogSwitch, (uint32_t)(SYSCFG_SwitchState));
}

#if defined(SYSCFG_PMCR_BOOSTEN)
/**
  * @brief  Enables the booster to reduce the total harmonic distortion of the analog
  *         switch when the supply voltage is lower than 2.7 V.
  * @note   Activating the booster allows to guaranty the analog switch AC performance
  *         when the supply voltage is below 2.7 V: in this case, the analog switch
  *         performance is the same on the full voltage range
  * @retval None
  */
void HAL_SYSCFG_EnableBOOST(void)
{
 SET_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ;
}

/**
  * @brief  Disables the booster
  * @note   Activating the booster allows to guaranty the analog switch AC performance
  *         when the supply voltage is below 2.7 V: in this case, the analog switch
  *         performance is the same on the full voltage range
  * @retval None
  */
void HAL_SYSCFG_DisableBOOST(void)
{
 CLEAR_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ;
}
#endif /* SYSCFG_PMCR_BOOSTEN */

#if defined (SYSCFG_UR2_BOOT_ADD0) ||  defined (SYSCFG_UR2_BCM7_ADD0)
/**
  * @brief  BootCM7 address 0 configuration
  * @param  BootRegister :Specifies the Boot Address register (Address0 or Address1)
  *   This parameter can be one of the following values:
  *   @arg SYSCFG_BOOT_ADDR0 : Select the boot address0
  *   @arg SYSCFG_BOOT_ADDR1:  Select the boot address1
  * @param  BootAddress :Specifies the CM7 Boot Address to be loaded in Address0 or Address1
  * @retval None
  */
void HAL_SYSCFG_CM7BootAddConfig(uint32_t BootRegister, uint32_t BootAddress)
{
  /* Check the parameters */
  assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister));
  assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress));
  if ( BootRegister == SYSCFG_BOOT_ADDR0 )
  {
    /* Configure CM7 BOOT ADD0 */
#if defined(DUAL_CORE)
    MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BCM7_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BCM7_ADD0_Pos));
#else
    MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BOOT_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BOOT_ADD0_Pos));
#endif /*DUAL_CORE*/
  }
  else
  {
    /* Configure CM7 BOOT ADD1 */
#if defined(DUAL_CORE)
    MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM7_ADD1, (BootAddress >> 16));
#else
    MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BOOT_ADD1, (BootAddress >> 16));
#endif /*DUAL_CORE*/
  }
}
#endif /* SYSCFG_UR2_BOOT_ADD0 || SYSCFG_UR2_BCM7_ADD0 */

#if defined(DUAL_CORE)
/**
  * @brief  BootCM4 address 0 configuration
  * @param  BootRegister :Specifies the Boot Address register (Address0 or Address1)
  *   This parameter can be one of the following values:
  *   @arg SYSCFG_BOOT_ADDR0 : Select the boot address0
  *   @arg SYSCFG_BOOT_ADDR1:  Select the boot address1
  * @param  BootAddress :Specifies the CM4 Boot Address to be loaded in Address0 or Address1
  * @retval None
  */
void HAL_SYSCFG_CM4BootAddConfig(uint32_t BootRegister, uint32_t BootAddress)
{
  /* Check the parameters */
  assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister));
  assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress));

  if ( BootRegister == SYSCFG_BOOT_ADDR0 )
  {
    /* Configure CM4 BOOT ADD0 */
    MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM4_ADD0, ((BootAddress >> 16)<< SYSCFG_UR3_BCM4_ADD0_Pos));
  }

  else
  {
    /* Configure CM4 BOOT ADD1 */
    MODIFY_REG(SYSCFG->UR4, SYSCFG_UR4_BCM4_ADD1, (BootAddress >> 16));
  }
}

/**
  * @brief  Enables the Cortex-M7 boot
  * @retval None
  */
void HAL_SYSCFG_EnableCM7BOOT(void)
{
 SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7);
}

/**
  * @brief  Disables the Cortex-M7 boot
  * @note   Disabling the boot will gate the CPU clock
  * @retval None
  */
void HAL_SYSCFG_DisableCM7BOOT(void)
{
 CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7) ;
}

/**
  * @brief  Enables the Cortex-M4 boot
  * @retval None
  */
void HAL_SYSCFG_EnableCM4BOOT(void)
{
 SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4);
}

/**
  * @brief  Disables the Cortex-M4 boot
  * @note   Disabling the boot will gate the CPU clock
  * @retval None
  */
void HAL_SYSCFG_DisableCM4BOOT(void)
{
  CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4);
}
#endif /*DUAL_CORE*/
/**
  * @brief  Enables the I/O Compensation Cell.
  * @note   The I/O compensation cell can be used only when the device supply
  *         voltage ranges from 2.4 to 3.6 V.
  * @retval None
  */
void HAL_EnableCompensationCell(void)
{
  SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN) ;
}

/**
  * @brief  Power-down the I/O Compensation Cell.
  * @note   The I/O compensation cell can be used only when the device supply
  *         voltage ranges from 2.4 to 3.6 V.
  * @retval None
  */
void HAL_DisableCompensationCell(void)
{
  CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN);
}


/**
  * @brief  To Enable optimize the I/O speed when the product voltage is low.
  * @note   This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
  *         used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
  *         higher than 2.5 V might be destructive.
  * @retval None
  */
void HAL_SYSCFG_EnableIOSpeedOptimize(void)
{
#if defined(SYSCFG_CCCSR_HSLV)
  SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV);
#else
  SET_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2  | SYSCFG_CCCSR_HSLV3));
#endif   /* SYSCFG_CCCSR_HSLV */
}

/**
  * @brief  To Disable optimize the I/O speed when the product voltage is low.
  * @note   This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
  *         used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
  *         higher than 2.5 V might be destructive.
  * @retval None
  */
void HAL_SYSCFG_DisableIOSpeedOptimize(void)
{
#if defined(SYSCFG_CCCSR_HSLV)
  CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV);
#else
  CLEAR_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2  | SYSCFG_CCCSR_HSLV3));
#endif   /* SYSCFG_CCCSR_HSLV */
}

/**
  * @brief  Code selection for the I/O Compensation cell
  * @param  SYSCFG_CompCode: Selects the code to be applied for the I/O compensation cell
  *   This parameter can be one of the following values:
  *   @arg SYSCFG_CELL_CODE : Select Code from the cell (available in the SYSCFG_CCVR)
  *   @arg SYSCFG_REGISTER_CODE: Select Code from the SYSCFG compensation cell code register (SYSCFG_CCCR)
  * @retval None
  */
void HAL_SYSCFG_CompensationCodeSelect(uint32_t SYSCFG_CompCode)
{
  /* Check the parameter */
  assert_param(IS_SYSCFG_CODE_SELECT(SYSCFG_CompCode));
  MODIFY_REG(SYSCFG->CCCSR, SYSCFG_CCCSR_CS, (uint32_t)(SYSCFG_CompCode));
}

/**
  * @brief  Code selection for the I/O Compensation cell
  * @param  SYSCFG_PMOSCode: PMOS compensation code
  *         This code is applied to the I/O compensation cell when the CS bit of the
  *          SYSCFG_CMPCR is set
  * @param  SYSCFG_NMOSCode: NMOS compensation code
  *         This code is applied to the I/O compensation cell when the CS bit of the
  *          SYSCFG_CMPCR is set
  * @retval None
  */
void HAL_SYSCFG_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode )
{
  /* Check the parameter */
  assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode));
  assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode));
  MODIFY_REG(SYSCFG->CCCR, SYSCFG_CCCR_NCC|SYSCFG_CCCR_PCC, (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) );
}

#if defined(SYSCFG_CCCR_NCC_MMC)
/**
  * @brief  Code selection for the I/O Compensation cell
  * @param  SYSCFG_PMOSCode: VDDMMC PMOS compensation code
  *         This code is applied to the I/O compensation cell when the CS bit of the
  *          SYSCFG_CMPCR is set
  * @param  SYSCFG_NMOSCode: VDDMMC NMOS compensation code
  *         This code is applied to the I/O compensation cell when the CS bit of the
  *          SYSCFG_CMPCR is set
  * @retval None
  */
void HAL_SYSCFG_VDDMMC_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode )
{
  /* Check the parameter */
  assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode));
  assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode));
  MODIFY_REG(SYSCFG->CCCR, (SYSCFG_CCCR_NCC_MMC | SYSCFG_CCCR_PCC_MMC), (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) );
}
#endif /* SYSCFG_CCCR_NCC_MMC */

/**
  * @brief  Enable the Debug Module during Domain1/CDomain SLEEP mode
  * @retval None
  */
void HAL_EnableDBGSleepMode(void)
{
  SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1);
}

/**
  * @brief  Disable the Debug Module during Domain1/CDomain SLEEP mode
  * @retval None
  */
void HAL_DisableDBGSleepMode(void)
{
  CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1);
}


/**
  * @brief  Enable the Debug Module during Domain1/CDomain STOP mode
  * @retval None
  */
void HAL_EnableDBGStopMode(void)
{
  SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1);
}

/**
  * @brief  Disable the Debug Module during Domain1/CDomain STOP mode
  * @retval None
  */
void HAL_DisableDBGStopMode(void)
{
  CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1);
}

/**
  * @brief  Enable the Debug Module during Domain1/CDomain STANDBY mode
  * @retval None
  */
void HAL_EnableDBGStandbyMode(void)
{
  SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1);
}

/**
  * @brief  Disable the Debug Module during Domain1/CDomain STANDBY mode
  * @retval None
  */
void HAL_DisableDBGStandbyMode(void)
{
  CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1);
}

#if defined(DUAL_CORE)
/**
  * @brief  Enable the Debug Module during Domain1 SLEEP mode
  * @retval None
  */
void HAL_EnableDomain2DBGSleepMode(void)
{
  SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2);
}

/**
  * @brief  Disable the Debug Module during Domain2 SLEEP mode
  * @retval None
  */
void HAL_DisableDomain2DBGSleepMode(void)
{
  CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2);
}

/**
  * @brief  Enable the Debug Module during Domain2 STOP mode
  * @retval None
  */
void HAL_EnableDomain2DBGStopMode(void)
{
  SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2);
}

/**
  * @brief  Disable the Debug Module during Domain2 STOP mode
  * @retval None
  */
void HAL_DisableDomain2DBGStopMode(void)
{
  CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2);
}

/**
  * @brief  Enable the Debug Module during Domain2 STANDBY mode
  * @retval None
  */
void HAL_EnableDomain2DBGStandbyMode(void)
{
  SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2);
}

/**
  * @brief  Disable the Debug Module during Domain2 STANDBY mode
  * @retval None
  */
void HAL_DisableDomain2DBGStandbyMode(void)
{
  CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2);
}
#endif /*DUAL_CORE*/

/**
  * @brief  Enable the Debug Module during Domain3/SRDomain STOP mode
  * @retval None
  */
void HAL_EnableDomain3DBGStopMode(void)
{
  SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3);
}
/**
  * @brief  Disable the Debug Module during Domain3/SRDomain STOP mode
  * @retval None
  */
void HAL_DisableDomain3DBGStopMode(void)
{
  CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3);
}

/**
  * @brief  Enable the Debug Module during Domain3/SRDomain STANDBY mode
  * @retval None
  */
void HAL_EnableDomain3DBGStandbyMode(void)
{
  SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3);
}

/**
  * @brief  Disable the Debug Module during Domain3/SRDomain STANDBY mode
  * @retval None
  */
void HAL_DisableDomain3DBGStandbyMode(void)
{
  CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3);
}

/**
  * @brief  Set the FMC Memory Mapping Swapping config.
  * @param  BankMapConfig: Defines the FMC Bank mapping configuration. This parameter can be
            FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2
  * @retval HAL state
  */
void HAL_SetFMCMemorySwappingConfig(uint32_t BankMapConfig)
{
  /* Check the parameter */
  assert_param(IS_FMC_SWAPBMAP_MODE(BankMapConfig));
  MODIFY_REG(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP, BankMapConfig);
}

/**
  * @brief  Get FMC Bank mapping mode.
  * @retval The FMC Bank mapping mode. This parameter can be
            FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2
*/
uint32_t HAL_GetFMCMemorySwappingConfig(void)
{
  return READ_BIT(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP);
}

/**
  * @brief  Configure the EXTI input event line edge
  * @note    No edge configuration for direct lines but for configurable lines:(EXTI_LINE0..EXTI_LINE21),
  *          EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86.
  * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
  *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
  * @param   EXTI_Edge: Specifies  EXTI line Edge used.
  *          This parameter can be one of the following values :
  *   @arg EXTI_RISING_EDGE : Configurable line, with Rising edge trigger detection
  *   @arg EXTI_FALLING_EDGE: Configurable line, with Falling edge trigger detection
  * @retval None
  */
void HAL_EXTI_EdgeConfig(uint32_t EXTI_Line , uint32_t EXTI_Edge )
{
  /* Check the parameter */
  assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line));
  assert_param(IS_EXTI_EDGE_LINE(EXTI_Edge));

  /* Clear Rising Falling edge configuration */
  CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
  CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));

  if( (EXTI_Edge & EXTI_RISING_EDGE) == EXTI_RISING_EDGE)
  {
   SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
  }
  if( (EXTI_Edge & EXTI_FALLING_EDGE) == EXTI_FALLING_EDGE)
  {
   SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
  }
}

/**
  * @brief  Generates a Software interrupt on selected EXTI line.
  * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
  *          (EXTI_LINE0..EXTI_LINE21),EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86.
  * @retval None
  */
void HAL_EXTI_GenerateSWInterrupt(uint32_t EXTI_Line)
{
  /* Check the parameters */
  assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line));

  SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->SWIER1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}


/**
  * @brief  Clears the EXTI's line pending flags for Domain D1
  * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
  *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
  * @retval None
  */
void HAL_EXTI_D1_ClearFlag(uint32_t EXTI_Line)
{
  /* Check the parameters */
 assert_param(IS_EXTI_D1_LINE(EXTI_Line));
 WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));

}

#if defined(DUAL_CORE)
/**
  * @brief  Clears the EXTI's line pending flags for Domain D2
  * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
  *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
  * @retval None
  */
void HAL_EXTI_D2_ClearFlag(uint32_t EXTI_Line)
{
  /* Check the parameters */
 assert_param(IS_EXTI_D2_LINE(EXTI_Line));
 WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
}

#endif /*DUAL_CORE*/
/**
  * @brief  Configure the EXTI input event line for Domain D1
  * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
  *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
  * @param   EXTI_Mode: Specifies which EXTI line is used as interrupt or an event.
  *          This parameter can be one or a combination of the following values :
  *   @arg EXTI_MODE_IT :  Interrupt Mode selected
  *   @arg EXTI_MODE_EVT : Event Mode selected
  * @param   EXTI_LineCmd controls (Enable/Disable) the EXTI line.

  * @retval None
  */
void HAL_EXTI_D1_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode,  uint32_t EXTI_LineCmd )
{
  /* Check the parameter */
  assert_param(IS_EXTI_D1_LINE(EXTI_Line));
  assert_param(IS_EXTI_MODE_LINE(EXTI_Mode));

  if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT)
  {
     if( EXTI_LineCmd == 0UL)
     {
       /* Clear EXTI line configuration */
        CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
     }
     else
     {
        SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
     }
  }

  if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT)
  {
    if( EXTI_LineCmd == 0UL)
    {
      /* Clear EXTI line configuration */
      CLEAR_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
    }
    else
    {
      SET_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
    }
  }
}

#if defined(DUAL_CORE)
/**
  * @brief  Configure the EXTI input event line for Domain D2
  * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
  *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
  * @param   EXTI_Mode: Specifies which EXTI line is used as interrupt or an event.
  *          This parameter can be one or a combination of the following values :
  *   @arg EXTI_MODE_IT :  Interrupt Mode selected
  *   @arg EXTI_MODE_EVT : Event Mode selected
  * @param   EXTI_LineCmd controls (Enable/Disable) the EXTI line.

  * @retval None
  */
void HAL_EXTI_D2_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode,  uint32_t EXTI_LineCmd )
{
  /* Check the parameter */
  assert_param(IS_EXTI_D2_LINE(EXTI_Line));
  assert_param(IS_EXTI_MODE_LINE(EXTI_Mode));

  if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT)
  {
    if( EXTI_LineCmd == 0UL)
    {
    /* Clear EXTI line configuration */
     CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
    }
    else
    {
     SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
    }
  }

  if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT)
  {
    if( EXTI_LineCmd == 0UL)
    {
      /* Clear EXTI line configuration */
      CLEAR_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
    }
    else
    {
      SET_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
    }
  }
}
#endif /*DUAL_CORE*/

/**
  * @brief  Configure the EXTI input event line for Domain D3
  * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
  *         (EXTI_LINE0...EXTI_LINE15),(EXTI_LINE19...EXTI_LINE21),EXTI_LINE25, EXTI_LINE34,
  *          EXTI_LINE35,EXTI_LINE41,(EXTI_LINE48...EXTI_LINE53)
  * @param   EXTI_LineCmd controls (Enable/Disable) the EXTI line.
  * @param   EXTI_ClearSrc: Specifies the clear source of D3 pending event.
  *          This parameter can be one of the following values :
  *   @arg BDMA_CH6_CLEAR : BDMA ch6 event selected as D3 domain pendclear source
  *   @arg BDMA_CH7_CLEAR : BDMA ch7 event selected as D3 domain pendclear source
  *   @arg LPTIM4_OUT_CLEAR : LPTIM4 out selected as D3 domain pendclear source
  *   @arg LPTIM5_OUT_CLEAR : LPTIM5 out selected as D3 domain pendclear source
  * @retval None
  */
void HAL_EXTI_D3_EventInputConfig(uint32_t EXTI_Line, uint32_t EXTI_LineCmd , uint32_t EXTI_ClearSrc  )
{
  __IO uint32_t *pRegv;

  /* Check the parameter */
  assert_param(IS_EXTI_D3_LINE(EXTI_Line));
  assert_param(IS_EXTI_D3_CLEAR(EXTI_ClearSrc));

  if( EXTI_LineCmd == 0UL)
  {
    /* Clear EXTI line configuration */
    CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) + ((EXTI_Line >> 5 ) * 0x20UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
  }
  else
  {
    SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) +((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
  }

  if(((EXTI_Line>>4)%2UL) == 0UL)
  {
    pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1L)) + ((EXTI_Line >> 5 ) * 0x20UL));
  }
  else
  {
    pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1H)) + ((EXTI_Line >> 5 ) * 0x20UL));
  }
  MODIFY_REG(*pRegv, (uint32_t)(3UL << ((EXTI_Line*2UL) & 0x1FUL)), (uint32_t)(EXTI_ClearSrc << ((EXTI_Line*2UL) & 0x1FUL)));

}



/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/