/** * @file * * @ingroup libcsupport * * @brief This source file contains a definition of * C lib functions. */ /* FUNCTION <>---sort an array INDEX qsort SYNOPSIS #include void qsort(void *<[base]>, size_t <[nmemb]>, size_t <[size]>, int (*<[compar]>)(const void *, const void *) ); DESCRIPTION <> sorts an array (beginning at <[base]>) of <[nmemb]> objects. <[size]> describes the size of each element of the array. You must supply a pointer to a comparison function, using the argument shown as <[compar]>. (This permits sorting objects of unknown properties.) Define the comparison function to accept two arguments, each a pointer to an element of the array starting at <[base]>. The result of <<(*<[compar]>)>> must be negative if the first argument is less than the second, zero if the two arguments match, and positive if the first argument is greater than the second (where ``less than'' and ``greater than'' refer to whatever arbitrary ordering is appropriate). The array is sorted in place; that is, when <> returns, the array elements beginning at <[base]> have been reordered. RETURNS <> does not return a result. PORTABILITY <> is required by ANSI (without specifying the sorting algorithm). */ /*- * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <_ansi.h> #include #include #ifndef __GNUC__ #define inline #endif #if defined(I_AM_QSORT_R) typedef int cmp_t(void *, const void *, const void *); #elif defined(I_AM_GNU_QSORT_R) typedef int cmp_t(const void *, const void *, void *); #else typedef int cmp_t(const void *, const void *); #endif static inline char *med3 (char *, char *, char *, cmp_t *, void *); static inline void swapfunc (char *, char *, int, int); #define min(a, b) (a) < (b) ? a : b /* * Qsort routine from Bentley & McIlroy's "Engineering a Sort Function". */ #define swapcode(TYPE, parmi, parmj, n) { \ long i = (n) / sizeof (TYPE); \ TYPE *pi = (TYPE *) (parmi); \ TYPE *pj = (TYPE *) (parmj); \ do { \ TYPE t = *pi; \ *pi++ = *pj; \ *pj++ = t; \ } while (--i > 0); \ } #define SWAPINIT(a, es) swaptype = ((char *)a - (char *)0) % sizeof(long) || \ es % sizeof(long) ? 2 : es == sizeof(long)? 0 : 1; static inline void swapfunc (char *a, char *b, int n, int swaptype) { if(swaptype <= 1) swapcode(long, a, b, n) else swapcode(char, a, b, n) } #define swap(a, b) \ if (swaptype == 0) { \ long t = *(long *)(a); \ *(long *)(a) = *(long *)(b); \ *(long *)(b) = t; \ } else \ swapfunc(a, b, es, swaptype) #define vecswap(a, b, n) if ((n) > 0) swapfunc(a, b, n, swaptype) #if defined(I_AM_QSORT_R) #define CMP(t, x, y) (cmp((t), (x), (y))) #elif defined(I_AM_GNU_QSORT_R) #define CMP(t, x, y) (cmp((x), (y), (t))) #else #define CMP(t, x, y) (cmp((x), (y))) #endif static inline char * med3 (char *a, char *b, char *c, cmp_t *cmp, void *thunk #if !defined(I_AM_QSORT_R) && !defined(I_AM_GNU_QSORT_R) __unused #endif ) { return CMP(thunk, a, b) < 0 ? (CMP(thunk, b, c) < 0 ? b : (CMP(thunk, a, c) < 0 ? c : a )) :(CMP(thunk, b, c) > 0 ? b : (CMP(thunk, a, c) < 0 ? a : c )); } /* * Classical function call recursion wastes a lot of stack space. Each * recursion level requires a full stack frame comprising all local variables * and additional space as dictated by the processor calling convention. * * This implementation instead stores the variables that are unique for each * recursion level in a parameter stack array, and uses iteration to emulate * recursion. Function call recursion is not used until the array is full. * * To ensure the stack consumption isn't worsened by this design, the size of * the parameter stack array is chosen to be similar to the stack frame * excluding the array. Each function call recursion level can handle this * number of iterative recursion levels. */ #define PARAMETER_STACK_LEVELS 8u #if defined(I_AM_QSORT_R) void __bsd_qsort_r (void *a, size_t n, size_t es, void *thunk, cmp_t *cmp) #elif defined(I_AM_GNU_QSORT_R) void qsort_r (void *a, size_t n, size_t es, cmp_t *cmp, void *thunk) #else #define thunk NULL void qsort (void *a, size_t n, size_t es, cmp_t *cmp) #endif { char *pa, *pb, *pc, *pd, *pl, *pm, *pn; size_t d, r; int cmp_result; int swaptype, swap_cnt; size_t recursion_level = 0; struct { void *a; size_t n; } parameter_stack[PARAMETER_STACK_LEVELS]; SWAPINIT(a, es); loop: swap_cnt = 0; if (n < 7) { /* Short arrays are insertion sorted. */ for (pm = (char *) a + es; pm < (char *) a + n * es; pm += es) for (pl = pm; pl > (char *) a && CMP(thunk, pl - es, pl) > 0; pl -= es) swap(pl, pl - es); goto pop; } /* Select a pivot element, move it to the left. */ pm = (char *) a + (n / 2) * es; if (n > 7) { pl = a; pn = (char *) a + (n - 1) * es; if (n > 40) { d = (n / 8) * es; pl = med3(pl, pl + d, pl + 2 * d, cmp, thunk); pm = med3(pm - d, pm, pm + d, cmp, thunk); pn = med3(pn - 2 * d, pn - d, pn, cmp, thunk); } pm = med3(pl, pm, pn, cmp, thunk); } swap(a, pm); /* * Sort the array relative the pivot in four ranges as follows: * { elems == pivot, elems < pivot, elems > pivot, elems == pivot } */ pa = pb = (char *) a + es; pc = pd = (char *) a + (n - 1) * es; for (;;) { /* Scan left to right stopping at first element > pivot. */ while (pb <= pc && (cmp_result = CMP(thunk, pb, a)) <= 0) { /* Move elements == pivot to the left (to pa) */ if (cmp_result == 0) { swap_cnt = 1; swap(pa, pb); pa += es; } pb += es; } /* Scan right to left stopping at first element < pivot. */ while (pb <= pc && (cmp_result = CMP(thunk, pc, a)) >= 0) { /* Move elements == pivot to the right (to pd) */ if (cmp_result == 0) { swap_cnt = 1; swap(pc, pd); pd -= es; } pc -= es; } if (pb > pc) break; /* The scan has found two elements to swap with each other. */ swap(pb, pc); swap_cnt = 1; pb += es; pc -= es; } if (swap_cnt == 0) { /* Switch to insertion sort */ for (pm = (char *) a + es; pm < (char *) a + n * es; pm += es) for (pl = pm; pl > (char *) a && CMP(thunk, pl - es, pl) > 0; pl -= es) swap(pl, pl - es); goto pop; } /* * Rearrange the array in three parts sorted like this: * { elements < pivot, elements == pivot, elements > pivot } */ pn = (char *) a + n * es; r = min(pa - (char *)a, pb - pa); vecswap(a, pb - r, r); r = min(pd - pc, pn - pd - es); vecswap(pb, pn - r, r); d = pb - pa; /* d = Size of left part. */ r = pd - pc; /* r = Size of right part. */ pn -= r; /* pn = Base of right part. */ /* * Check which of the left and right parts are larger. * Set (a, n) to (base, size) of the larger part. * Set (pa, r) to (base, size) of the smaller part. */ if (r > d) { /* Right part is the larger part */ pa = a; a = pn; n = r; r = d; } else { /* Left part is the larger part, or both are equal. */ pa = pn; n = d; } /* * The left and right parts each need further sorting if they * contain two elements or more. If both need sorting we use * recursion to sort the smaller part and save the larger part * to be sorted by iteration after the recursion. * Using recursion only for the smaller part guarantees a * recursion depth that is bounded to be less than (log2(n)). */ if (r > es) { /* Smaller part > 1 element. Both parts need sorting. */ if (recursion_level < PARAMETER_STACK_LEVELS) { /* * The smaller part needs to be recursively sorted * before the larger part is sorted. To avoid function * call recursion the parameters for the larger part * are pushed on the parameter_stack array. The smaller * part is sorted using iteration and the larger part * will be sorted when the parameter_stack is popped * after the smaller part has been sorted. */ parameter_stack[recursion_level].a = a; parameter_stack[recursion_level].n = n / es; recursion_level++; a = pa; n = r / es; goto loop; } else { /* * The parameter_stack array is full. The smaller part * is sorted using function call recursion. The larger * part will be sorted after the function call returns. */ #if defined(I_AM_QSORT_R) __bsd_qsort_r(pa, r / es, es, thunk, cmp); #elif defined(I_AM_GNU_QSORT_R) qsort_r(pa, r / es, es, cmp, thunk); #else qsort(pa, r / es, es, cmp); #endif } } if (n > es) { /* The larger part needs sorting. Iterate to sort. */ n = n / es; goto loop; } /* Both left and right parts are one element or less - level done. */ pop: if (recursion_level != 0) { recursion_level--; a = parameter_stack[recursion_level].a; n = parameter_stack[recursion_level].n; goto loop; } }