/** ****************************************************************************** * @file stm32h7xx_ll_utils.c * @author MCD Application Team * @brief UTILS LL module driver. ****************************************************************************** * @attention * *

© Copyright (c) 2017 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32h7xx_ll_utils.h" #include "stm32h7xx_ll_rcc.h" #include "stm32h7xx_ll_pwr.h" #ifdef USE_FULL_ASSERT #include "stm32_assert.h" #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ /** @addtogroup STM32H7xx_LL_Driver * @{ */ /** @addtogroup UTILS_LL * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /** @addtogroup UTILS_LL_Private_Constants * @{ */ #if (POWER_DOMAINS_NUMBER == 3U) #define UTILS_MAX_FREQUENCY_SCALE1 400000000U /*!< Maximum frequency for system clock at power scale1, in Hz */ #define UTILS_MAX_FREQUENCY_SCALE2 300000000U /*!< Maximum frequency for system clock at power scale2, in Hz */ #define UTILS_MAX_FREQUENCY_SCALE3 200000000U /*!< Maximum frequency for system clock at power scale3, in Hz */ #else #define UTILS_MAX_FREQUENCY_SCALE0 280000000U /*!< Maximum frequency for system clock at power scale0, in Hz */ #define UTILS_MAX_FREQUENCY_SCALE1 225000000U /*!< Maximum frequency for system clock at power scale1, in Hz */ #define UTILS_MAX_FREQUENCY_SCALE2 160000000U /*!< Maximum frequency for system clock at power scale2, in Hz */ #define UTILS_MAX_FREQUENCY_SCALE3 88000000U /*!< Maximum frequency for system clock at power scale3, in Hz */ #endif /*POWER_DOMAINS_NUMBER == 3U*/ /* Defines used for PLL range */ #define UTILS_PLLVCO_INPUT_MIN1 1000000U /*!< Frequency min for the low range PLLVCO input, in Hz */ #define UTILS_PLLVCO_INPUT_MAX1 2000000U /*!< Frequency max for the wide range PLLVCO input, in Hz */ #define UTILS_PLLVCO_INPUT_MIN2 2000000U /*!< Frequency min for the low range PLLVCO input, in Hz */ #define UTILS_PLLVCO_INPUT_MAX2 4000000U /*!< Frequency max for the wide range PLLVCO input, in Hz */ #define UTILS_PLLVCO_INPUT_MIN3 4000000U /*!< Frequency min for the low range PLLVCO input, in Hz */ #define UTILS_PLLVCO_INPUT_MAX3 8000000U /*!< Frequency max for the wide range PLLVCO input, in Hz */ #define UTILS_PLLVCO_INPUT_MIN4 8000000U /*!< Frequency min for the low range PLLVCO input, in Hz */ #define UTILS_PLLVCO_INPUT_MAX4 16000000U /*!< Frequency max for the wide range PLLVCO input, in Hz */ #if (POWER_DOMAINS_NUMBER == 3U) #define UTILS_PLLVCO_MEDIUM_OUTPUT_MIN 150000000U /*!< Frequency min for the medium range PLLVCO output, in Hz */ #define UTILS_PLLVCO_WIDE_OUTPUT_MIN 192000000U /*!< Frequency min for the wide range PLLVCO output, in Hz */ #define UTILS_PLLVCO_MEDIUM_OUTPUT_MAX 420000000U /*!< Frequency max for the medium range PLLVCO output, in Hz */ #define UTILS_PLLVCO_WIDE_OUTPUT_MAX 836000000U /*!< Frequency max for the wide range PLLVCO output, in Hz */ #else #define UTILS_PLLVCO_MEDIUM_OUTPUT_MIN 150000000U /*!< Frequency min for the medium range PLLVCO output, in Hz */ #define UTILS_PLLVCO_WIDE_OUTPUT_MIN 128000000U /*!< Frequency min for the wide range PLLVCO output, in Hz */ #define UTILS_PLLVCO_MEDIUM_OUTPUT_MAX 420000000U /*!< Frequency max for the medium range PLLVCO output, in Hz */ #define UTILS_PLLVCO_WIDE_OUTPUT_MAX 560000000U /*!< Frequency max for the wide range PLLVCO output, in Hz */ #endif /*POWER_DOMAINS_NUMBER == 3U*/ /* Defines used for HSE range */ #define UTILS_HSE_FREQUENCY_MIN 4000000U /*!< Frequency min for HSE frequency, in Hz */ #define UTILS_HSE_FREQUENCY_MAX 48000000U /*!< Frequency max for HSE frequency, in Hz */ /* Defines used for FLASH latency according to HCLK Frequency */ #if (POWER_DOMAINS_NUMBER == 2U) #define UTILS_SCALE0_LATENCY0_FREQ 44000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 0 */ #define UTILS_SCALE0_LATENCY1_FREQ 88000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 0 */ #define UTILS_SCALE0_LATENCY2_FREQ 132000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 0 */ #define UTILS_SCALE0_LATENCY3_FREQ 176000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 0 */ #define UTILS_SCALE0_LATENCY4_FREQ 220000000U /*!< HCLK frequency to set FLASH latency 4 in power scale 0 */ #define UTILS_SCALE0_LATENCY5_FREQ 264000000U /*!< HCLK frequency to set FLASH latency 5 in power scale 0 */ #define UTILS_SCALE0_LATENCY6_FREQ 280000000U /*!< HCLK frequency to set FLASH latency 6 in power scale 0 */ #define UTILS_SCALE1_LATENCY0_FREQ 42000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 1 */ #define UTILS_SCALE1_LATENCY1_FREQ 84000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 1 */ #define UTILS_SCALE1_LATENCY2_FREQ 126000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 1 */ #define UTILS_SCALE1_LATENCY3_FREQ 168000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 1 */ #define UTILS_SCALE1_LATENCY4_FREQ 210000000U /*!< HCLK frequency to set FLASH latency 4 in power scale 1 */ #define UTILS_SCALE1_LATENCY5_FREQ 225000000U /*!< HCLK frequency to set FLASH latency 5 in power scale 1 */ #define UTILS_SCALE2_LATENCY0_FREQ 34000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 2 */ #define UTILS_SCALE2_LATENCY1_FREQ 68000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 2 */ #define UTILS_SCALE2_LATENCY2_FREQ 102000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 2 */ #define UTILS_SCALE2_LATENCY3_FREQ 136000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 2 */ #define UTILS_SCALE2_LATENCY4_FREQ 160000000U /*!< HCLK frequency to set FLASH latency 4 in power scale 2 */ #define UTILS_SCALE3_LATENCY0_FREQ 22000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 3 */ #define UTILS_SCALE3_LATENCY1_FREQ 44000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 3 */ #define UTILS_SCALE3_LATENCY2_FREQ 66000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 3 */ #define UTILS_SCALE3_LATENCY3_FREQ 88000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 3 */ #else #define UTILS_SCALE1_LATENCY0_FREQ 70000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 1 */ #define UTILS_SCALE1_LATENCY1_FREQ 140000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 1 */ #define UTILS_SCALE1_LATENCY2_FREQ 210000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 1 */ #define UTILS_SCALE2_LATENCY0_FREQ 55000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 2 */ #define UTILS_SCALE2_LATENCY1_FREQ 110000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 2 */ #define UTILS_SCALE2_LATENCY2_FREQ 165000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 2 */ #define UTILS_SCALE2_LATENCY3_FREQ 220000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 2 */ #define UTILS_SCALE3_LATENCY0_FREQ 45000000U /*!< HCLK frequency to set FLASH latency 0 in power scale 3 */ #define UTILS_SCALE3_LATENCY1_FREQ 90000000U /*!< HCLK frequency to set FLASH latency 1 in power scale 3 */ #define UTILS_SCALE3_LATENCY2_FREQ 135000000U /*!< HCLK frequency to set FLASH latency 2 in power scale 3 */ #define UTILS_SCALE3_LATENCY3_FREQ 180000000U /*!< HCLK frequency to set FLASH latency 3 in power scale 3 */ #define UTILS_SCALE3_LATENCY4_FREQ 225000000U /*!< HCLK frequency to set FLASH latency 4 in power scale 3 */ #endif /*POWER_DOMAINS_NUMBER == 2U*/ /** * @} */ /* Private macros ------------------------------------------------------------*/ /** @addtogroup UTILS_LL_Private_Macros * @{ */ #define IS_LL_UTILS_SYSCLK_DIV(__VALUE__) (((__VALUE__) == LL_RCC_SYSCLK_DIV_1) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_2) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_4) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_8) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_16) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_64) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_128) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_256) \ || ((__VALUE__) == LL_RCC_SYSCLK_DIV_512)) #define IS_LL_UTILS_AHB_DIV(__VALUE__) (((__VALUE__) == LL_RCC_AHB_DIV_1) \ || ((__VALUE__) == LL_RCC_AHB_DIV_2) \ || ((__VALUE__) == LL_RCC_AHB_DIV_4) \ || ((__VALUE__) == LL_RCC_AHB_DIV_8) \ || ((__VALUE__) == LL_RCC_AHB_DIV_16) \ || ((__VALUE__) == LL_RCC_AHB_DIV_64) \ || ((__VALUE__) == LL_RCC_AHB_DIV_128) \ || ((__VALUE__) == LL_RCC_AHB_DIV_256) \ || ((__VALUE__) == LL_RCC_AHB_DIV_512)) #define IS_LL_UTILS_APB1_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB1_DIV_1) \ || ((__VALUE__) == LL_RCC_APB1_DIV_2) \ || ((__VALUE__) == LL_RCC_APB1_DIV_4) \ || ((__VALUE__) == LL_RCC_APB1_DIV_8) \ || ((__VALUE__) == LL_RCC_APB1_DIV_16)) #define IS_LL_UTILS_APB2_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB2_DIV_1) \ || ((__VALUE__) == LL_RCC_APB2_DIV_2) \ || ((__VALUE__) == LL_RCC_APB2_DIV_4) \ || ((__VALUE__) == LL_RCC_APB2_DIV_8) \ || ((__VALUE__) == LL_RCC_APB2_DIV_16)) #define IS_LL_UTILS_APB3_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB3_DIV_1) \ || ((__VALUE__) == LL_RCC_APB3_DIV_2) \ || ((__VALUE__) == LL_RCC_APB3_DIV_4) \ || ((__VALUE__) == LL_RCC_APB3_DIV_8) \ || ((__VALUE__) == LL_RCC_APB3_DIV_16)) #define IS_LL_UTILS_APB4_DIV(__VALUE__) (((__VALUE__) == LL_RCC_APB4_DIV_1) \ || ((__VALUE__) == LL_RCC_APB4_DIV_2) \ || ((__VALUE__) == LL_RCC_APB4_DIV_4) \ || ((__VALUE__) == LL_RCC_APB4_DIV_8) \ || ((__VALUE__) == LL_RCC_APB4_DIV_16)) #define IS_LL_UTILS_PLLM_VALUE(__VALUE__) ((1U <= (__VALUE__)) && ((__VALUE__) <= 63U)) #if (POWER_DOMAINS_NUMBER == 3U) #define IS_LL_UTILS_PLLN_VALUE(__VALUE__) ((4U <= (__VALUE__)) && ((__VALUE__) <= 512U)) #else #define IS_LL_UTILS_PLLN_VALUE(__VALUE__) ((8U <= (__VALUE__)) && ((__VALUE__) <= 420U)) #endif /*POWER_DOMAINS_NUMBER == 3U*/ #define IS_LL_UTILS_PLLP_VALUE(__VALUE__) ((1U <= (__VALUE__)) && ((__VALUE__) <= 128U)) #define IS_LL_UTILS_FRACN_VALUE(__VALUE__) ((__VALUE__) <= 0x1FFFU) #define IS_LL_UTILS_PLLVCO_INPUT(__VALUE__, __RANGE__) ( \ (((__RANGE__) == LL_RCC_PLLINPUTRANGE_1_2) && (UTILS_PLLVCO_INPUT_MIN1 <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX1)) || \ (((__RANGE__) == LL_RCC_PLLINPUTRANGE_2_4) && (UTILS_PLLVCO_INPUT_MIN2 <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX2)) || \ (((__RANGE__) == LL_RCC_PLLINPUTRANGE_4_8) && (UTILS_PLLVCO_INPUT_MIN3 <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX3)) || \ (((__RANGE__) == LL_RCC_PLLINPUTRANGE_8_16) && (UTILS_PLLVCO_INPUT_MIN4 <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_INPUT_MAX4))) #define IS_LL_UTILS_PLLVCO_OUTPUT(__VALUE__, __RANGE__) ( \ (((__RANGE__) == LL_RCC_PLLVCORANGE_MEDIUM) && (UTILS_PLLVCO_MEDIUM_OUTPUT_MIN <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_MEDIUM_OUTPUT_MAX)) || \ (((__RANGE__) == LL_RCC_PLLVCORANGE_WIDE) && (UTILS_PLLVCO_WIDE_OUTPUT_MIN <= (__VALUE__)) && ((__VALUE__) <= UTILS_PLLVCO_WIDE_OUTPUT_MAX))) #define IS_LL_UTILS_CHECK_VCO_RANGES(__RANGEIN__, __RANGEOUT__) ( \ (((__RANGEIN__) == LL_RCC_PLLINPUTRANGE_1_2) && ((__RANGEOUT__) == LL_RCC_PLLVCORANGE_MEDIUM)) || \ (((__RANGEIN__) != LL_RCC_PLLINPUTRANGE_1_2) && ((__RANGEOUT__) == LL_RCC_PLLVCORANGE_WIDE))) #if (POWER_DOMAINS_NUMBER == 3U) #define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE1) : \ (LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2) : \ ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE3)) #else #define IS_LL_UTILS_PLL_FREQUENCY(__VALUE__) ((LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE0) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE0) : \ (LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE1) : \ (LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) ? ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE2) : \ ((__VALUE__) <= UTILS_MAX_FREQUENCY_SCALE3)) #endif /*POWER_DOMAINS_NUMBER == 3U*/ #define IS_LL_UTILS_HSE_BYPASS(__STATE__) (((__STATE__) == LL_UTILS_HSEBYPASS_ON) \ || ((__STATE__) == LL_UTILS_HSEBYPASS_OFF)) #define IS_LL_UTILS_HSE_FREQUENCY(__FREQUENCY__) (((__FREQUENCY__) >= UTILS_HSE_FREQUENCY_MIN) && ((__FREQUENCY__) <= UTILS_HSE_FREQUENCY_MAX)) /** * @} */ /* Private function prototypes -----------------------------------------------*/ /** @defgroup UTILS_LL_Private_Functions UTILS Private functions * @{ */ static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct); static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct); static ErrorStatus UTILS_IsPLLsReady(void); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @addtogroup UTILS_LL_Exported_Functions * @{ */ /** @addtogroup UTILS_LL_EF_DELAY * @{ */ #if defined (DUAL_CORE) /** * @brief This function configures the Cortex-M SysTick source to have 1ms time base. * @note When a RTOS is used, it is recommended to avoid changing the Systick * configuration by calling this function, for a delay use rather osDelay RTOS service. * @param CPU_Frequency Core frequency in Hz * @note CPU_Frequency can be calculated thanks to RCC helper macro or function * @ref LL_RCC_GetSystemClocksFreq * LL_RCC_GetSystemClocksFreq() is used to calculate the CM7 clock frequency * and __LL_RCC_CALC_HCLK_FREQ is used to caluclate the CM4 clock frequency. * @retval None */ #else /** * @brief This function configures the Cortex-M SysTick source to have 1ms time base. * @note When a RTOS is used, it is recommended to avoid changing the Systick * configuration by calling this function, for a delay use rather osDelay RTOS service. * @param CPU_Frequency Core frequency in Hz * @note CPU_Frequency can be calculated thanks to RCC helper macro or function * @ref LL_RCC_GetSystemClocksFreq * @retval None */ #endif /* DUAL_CORE */ void LL_Init1msTick(uint32_t CPU_Frequency) { /* Use frequency provided in argument */ LL_InitTick(CPU_Frequency, 1000U); } /** * @brief This function provides accurate delay (in milliseconds) based * on SysTick counter flag * @note When a RTOS is used, it is recommended to avoid using blocking delay * and use rather osDelay service. * @note To respect 1ms timebase, user should call @ref LL_Init1msTick function which * will configure Systick to 1ms * @param Delay specifies the delay time length, in milliseconds. * @retval None */ void LL_mDelay(uint32_t Delay) { uint32_t count = Delay; __IO uint32_t tmp = SysTick->CTRL; /* Clear the COUNTFLAG first */ /* Add this code to indicate that local variable is not used */ ((void)tmp); /* Add a period to guaranty minimum wait */ if(count < LL_MAX_DELAY) { count++; } while (count != 0U) { if((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0U) { count--; } } } /** * @} */ /** @addtogroup UTILS_EF_SYSTEM * @brief System Configuration functions * @verbatim =============================================================================== ##### System Configuration functions ##### =============================================================================== [..] System, AHB and APB buses clocks configuration #if (POWER_DOMAINS_NUMBER == 3U) (+) The maximum frequency of the SYSCLK is 400 MHz and HCLK is 200 MHz. (+) The maximum frequency of the PCLK1, PCLK2, PCLK3 and PCLK4 is 100 MHz. @endverbatim @internal Depending on the device voltage range, the maximum frequency should be adapted accordingly: (++) +----------------------------------------------------------------------------+ (++) | Wait states | HCLK clock frequency (MHz) | (++) | |-----------------------------------------------------------| (++) | (Latency) | voltage range 1 | voltage range 2 | voltage range 3 | (++) | | 1.15V - 1.26V | 1.05V - 1.15V | 0.95V - 1.05V | (++) |----------------|-------------------|-------------------|-------------------| (++) |0WS(1CPU cycle) | 0 < HCLK <= 70 | 0 < HCLK <= 55 | 0 < HCLK <= 45 | (++) |----------------|-------------------|-------------------|-------------------| (++) |1WS(2CPU cycle) | 70 < HCLK <= 140 | 55 < HCLK <= 110 | 45 < HCLK <= 90 | (++) |----------------|-------------------|-------------------|-------------------| (++) |2WS(3CPU cycle) | 140 < HCLK <= 210 | 110 < HCLK <= 165 | 90 < HCLK <= 135 | (++) |----------------|-------------------|-------------------|-------------------| (++) |3WS(4CPU cycle) | -- | 165 < HCLK <= 220 | 135 < HCLK <= 180 | (++) |----------------|-------------------|-------------------|-------------------| (++) |4WS(5CPU cycle) | -- | -- | 180 < HCLK <= 225 | (++) +----------------------------------------------------------------------------+ #else (+) The maximum frequency of the SYSCLK is 280 MHz and HCLK is 280 MHz. (+) The maximum frequency of the PCLK1, PCLK2, PCLK3 and PCLK4 is 140 MHz. @endverbatim @internal Depending on the device voltage range, the maximum frequency should be adapted accordingly: (++) +------------------------------------------------------------------------------------------------+ (++) | Wait states | HCLK clock frequency (MHz) | (++) | |-------------------------------------------------------------------------------| (++) | (Latency) | voltage range 0 | voltage range 1 | voltage range 2 | voltage range 3 | (++) | | 1.26V - 1.35V | 1.15V - 1.26V | 1.05V - 1.15V | 0.95V - 1.05V | (++) |----------------|-------------------|-------------------|-------------------|-------------------| (++) |0WS(1CPU cycle) | 0 < HCLK <= 44 | 0 < HCLK <= 42 | 0 < HCLK <= 34 | 0 < HCLK <= 22 | (++) |----------------|-------------------|-------------------|-------------------|-------------------| (++) |1WS(2CPU cycle) | 44 < HCLK <= 88 | 42 < HCLK <= 84 | 34 < HCLK <= 68 | 22 < HCLK <= 44 | (++) |----------------|-------------------|-------------------|-------------------|-------------------| (++) |2WS(3CPU cycle) | 88 < HCLK <= 132 | 84 < HCLK <= 126 | 68 < HCLK <= 102 | 44 < HCLK <= 66 | (++) |----------------|-------------------|-------------------|-------------------|-------------------| (++) |3WS(4CPU cycle) | 132 < HCLK <= 176 | 126 < HCLK <= 168 | 102 < HCLK <= 136 | 66 < HCLK <= 88 | (++) |----------------|-------------------|-------------------|-------------------|-------------------| (++) |4WS(5CPU cycle) | 176 < HCLK <= 220 | 168 < HCLK <= 210 | 136 < HCLK <= 160 | -- | (++) +------------------------------------------------------------------------------------------------+ (++) |5WS(6CPU cycle) | 220 < HCLK <= 264 | 210 < HCLK <= 225 | -- | -- | (++) +------------------------------------------------------------------------------------------------+ (++) |6WS(7CPU cycle) | 264 < HCLK <= 280 | -- | -- | -- | (++) +------------------------------------------------------------------------------------------------+ (++) |7WS(8CPU cycle) | -- | -- | -- | -- | (++) +------------------------------------------------------------------------------------------------+ #endif @endinternal * @{ */ #if defined (DUAL_CORE) /** * @brief This function sets directly SystemCoreClock CMSIS variable. * @note Variable can be calculated also through SystemCoreClockUpdate function. * @param CPU_Frequency Core frequency in Hz * @note CPU_Frequency can be calculated thanks to RCC helper macro or function * @ref LL_RCC_GetSystemClocksFreq * LL_RCC_GetSystemClocksFreq() is used to calculate the CM7 clock frequency * and __LL_RCC_CALC_HCLK_FREQ is used to caluclate the CM4 clock frequency. * @retval None */ #else /** * @brief This function sets directly SystemCoreClock CMSIS variable. * @note Variable can be calculated also through SystemCoreClockUpdate function. * @param CPU_Frequency Core frequency in Hz * @note CPU_Frequency can be calculated thanks to RCC helper macro or function * @ref LL_RCC_GetSystemClocksFreq * @retval None */ #endif /* DUAL_CORE */ void LL_SetSystemCoreClock(uint32_t CPU_Frequency) { /* HCLK clock frequency */ SystemCoreClock = CPU_Frequency; } /** * @brief This function configures system clock at maximum frequency with HSI as clock source of the PLL * @note The application need to ensure that PLL is disabled. * @note Function is based on the following formula: * - PLL output frequency = (((HSI frequency / PLLM) * PLLN) / PLLP) * - PLLM: ensure that the VCO input frequency ranges from 1 to 16 MHz (PLLVCO_input = HSI frequency / PLLM) * - PLLN: ensure that the VCO output frequency is between 150 and 836 MHz or 128 to 560 MHz(*) (PLLVCO_output = PLLVCO_input * PLLN) * - PLLP: ensure that max frequency at 400000000 Hz or 280000000 Hz is reach (PLLVCO_output / PLLP) * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains * the configuration information for the PLL. * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains * the configuration information for the BUS prescalers. * @retval An ErrorStatus enumeration value: * - SUCCESS: Max frequency configuration done * - ERROR: Max frequency configuration not done * * (*) : For stm32h7a3xx, stm32h7b3xx and stm32h7b0xx family lines. * */ ErrorStatus LL_PLL_ConfigSystemClock_HSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) { ErrorStatus status; #ifdef USE_FULL_ASSERT uint32_t vcoinput_freq, vcooutput_freq; #endif uint32_t pllfreq, hsi_clk; /* Check the parameters */ assert_param(IS_LL_UTILS_PLLM_VALUE(UTILS_PLLInitStruct->PLLM)); assert_param(IS_LL_UTILS_PLLN_VALUE(UTILS_PLLInitStruct->PLLN)); assert_param(IS_LL_UTILS_PLLP_VALUE(UTILS_PLLInitStruct->PLLP)); assert_param(IS_LL_UTILS_FRACN_VALUE(UTILS_PLLInitStruct->FRACN)); hsi_clk = (HSI_VALUE >> (LL_RCC_HSI_GetDivider() >> RCC_CR_HSIDIV_Pos)); /* Check VCO Input frequency */ #ifdef USE_FULL_ASSERT vcoinput_freq = hsi_clk / UTILS_PLLInitStruct->PLLM; #endif assert_param(IS_LL_UTILS_PLLVCO_INPUT(vcoinput_freq, UTILS_PLLInitStruct->VCO_Input)); /* Check VCO Output frequency */ #ifdef USE_FULL_ASSERT vcooutput_freq = LL_RCC_CalcPLLClockFreq(hsi_clk, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN, UTILS_PLLInitStruct->FRACN, 1UL); #endif assert_param(IS_LL_UTILS_PLLVCO_OUTPUT(vcooutput_freq, UTILS_PLLInitStruct->VCO_Output)); /* Check VCO Input ranges */ assert_param(IS_LL_UTILS_CHECK_VCO_RANGES(UTILS_PLLInitStruct->VCO_Input, UTILS_PLLInitStruct->VCO_Output)); /* Check if one of the PLL is enabled */ if(UTILS_IsPLLsReady() == SUCCESS) { /* Calculate the new PLL output frequency */ pllfreq = UTILS_GetPLLOutputFrequency(hsi_clk, UTILS_PLLInitStruct); /* Enable HSI if not enabled */ if(LL_RCC_HSI_IsReady() != 1U) { LL_RCC_HSI_Enable(); while (LL_RCC_HSI_IsReady() != 1U) { /* Wait for HSI ready */ } } /* Configure PLL */ LL_RCC_PLL1P_Enable(); LL_RCC_PLL1FRACN_Enable(); LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSI); LL_RCC_PLL1_SetVCOInputRange(UTILS_PLLInitStruct->VCO_Input); LL_RCC_PLL1_SetVCOOutputRange(UTILS_PLLInitStruct->VCO_Output); LL_RCC_PLL1_SetM(UTILS_PLLInitStruct->PLLM); LL_RCC_PLL1_SetN(UTILS_PLLInitStruct->PLLN); LL_RCC_PLL1_SetP(UTILS_PLLInitStruct->PLLP); LL_RCC_PLL1_SetFRACN(UTILS_PLLInitStruct->FRACN); /* Enable PLL and switch system clock to PLL */ status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct); } else { /* Current PLL configuration cannot be modified */ status = ERROR; } return status; } /** * @brief This function configures system clock with HSE as clock source of the PLL * @note The application need to ensure that PLL is disabled. * @note Function is based on the following formula: * - PLL output frequency = (((HSE frequency / PLLM) * PLLN) / PLLP) * - PLLM: ensure that the VCO input frequency ranges from 0.95 to 2.10 MHz (PLLVCO_input = HSE frequency / PLLM) * - PLLN: ensure that the VCO output frequency is between 150 and 836 MHz or 128 to 560 MHz(*) (PLLVCO_output = PLLVCO_input * PLLN) * - PLLP: ensure that max frequency at 400000000 Hz or 280000000 Hz(*) is reached (PLLVCO_output / PLLP) * @param HSEFrequency Value between Min_Data = 4000000 and Max_Data = 48000000 * @param HSEBypass This parameter can be one of the following values: * @arg @ref LL_UTILS_HSEBYPASS_ON * @arg @ref LL_UTILS_HSEBYPASS_OFF * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains * the configuration information for the PLL. * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains * the configuration information for the BUS prescalers. * @retval An ErrorStatus enumeration value: * - SUCCESS: Max frequency configuration done * - ERROR: Max frequency configuration not done * * (*) : For stm32h7a3xx, stm32h7b3xx and stm32h7b0xx family lines. * */ ErrorStatus LL_PLL_ConfigSystemClock_HSE(uint32_t HSEFrequency, uint32_t HSEBypass, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) { ErrorStatus status; #ifdef USE_FULL_ASSERT uint32_t vcoinput_freq, vcooutput_freq; #endif uint32_t pllfreq; /* Check the parameters */ assert_param(IS_LL_UTILS_PLLM_VALUE(UTILS_PLLInitStruct->PLLM)); assert_param(IS_LL_UTILS_PLLN_VALUE(UTILS_PLLInitStruct->PLLN)); assert_param(IS_LL_UTILS_PLLP_VALUE(UTILS_PLLInitStruct->PLLP)); assert_param(IS_LL_UTILS_FRACN_VALUE(UTILS_PLLInitStruct->FRACN)); assert_param(IS_LL_UTILS_HSE_FREQUENCY(HSEFrequency)); assert_param(IS_LL_UTILS_HSE_BYPASS(HSEBypass)); /* Check VCO Input frequency */ #ifdef USE_FULL_ASSERT vcoinput_freq = HSEFrequency / UTILS_PLLInitStruct->PLLM; #endif assert_param(IS_LL_UTILS_PLLVCO_INPUT(vcoinput_freq, UTILS_PLLInitStruct->VCO_Input)); /* Check VCO output frequency */ #ifdef USE_FULL_ASSERT vcooutput_freq = LL_RCC_CalcPLLClockFreq(HSEFrequency, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN, UTILS_PLLInitStruct->FRACN, 1U); #endif assert_param(IS_LL_UTILS_PLLVCO_OUTPUT(vcooutput_freq, UTILS_PLLInitStruct->VCO_Output)); /* Check VCO Input/output ranges compatibility */ assert_param(IS_LL_UTILS_CHECK_VCO_RANGES(UTILS_PLLInitStruct->VCO_Input, UTILS_PLLInitStruct->VCO_Output)); /* Check if one of the PLL is enabled */ if(UTILS_IsPLLsReady() == SUCCESS) { /* Calculate the new PLL output frequency */ pllfreq = UTILS_GetPLLOutputFrequency(HSEFrequency, UTILS_PLLInitStruct); /* Enable HSE if not enabled */ if(LL_RCC_HSE_IsReady() != 1U) { /* Check if need to enable HSE bypass feature or not */ if(HSEBypass == LL_UTILS_HSEBYPASS_ON) { LL_RCC_HSE_EnableBypass(); } else { LL_RCC_HSE_DisableBypass(); } /* Enable HSE */ LL_RCC_HSE_Enable(); while (LL_RCC_HSE_IsReady() != 1U) { /* Wait for HSE ready */ } } /* Configure PLL */ LL_RCC_PLL1P_Enable(); LL_RCC_PLL1FRACN_Enable(); LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSE); LL_RCC_PLL1_SetVCOInputRange(UTILS_PLLInitStruct->VCO_Input); LL_RCC_PLL1_SetVCOOutputRange(UTILS_PLLInitStruct->VCO_Output); LL_RCC_PLL1_SetM(UTILS_PLLInitStruct->PLLM); LL_RCC_PLL1_SetN(UTILS_PLLInitStruct->PLLN); LL_RCC_PLL1_SetP(UTILS_PLLInitStruct->PLLP); LL_RCC_PLL1_SetFRACN(UTILS_PLLInitStruct->FRACN); /* Enable PLL and switch system clock to PLL */ status = UTILS_EnablePLLAndSwitchSystem(pllfreq, UTILS_ClkInitStruct); } else { /* Current PLL configuration cannot be modified */ status = ERROR; } return status; } /** * @} */ /** * @brief Update number of Flash wait states in line with new frequency and current voltage range. * @param HCLK_Frequency HCLK frequency * @retval An ErrorStatus enumeration value: * - SUCCESS: Latency has been modified * - ERROR: Latency cannot be modified */ ErrorStatus LL_SetFlashLatency(uint32_t HCLK_Frequency) { ErrorStatus status = SUCCESS; uint32_t timeout; uint32_t getlatency; uint32_t latency = LL_FLASH_LATENCY_0; /* default value 0WS */ /* Frequency cannot be equal to 0 */ if (HCLK_Frequency == 0U) { status = ERROR; } else { #if (POWER_DOMAINS_NUMBER == 2U) if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE0) { if((HCLK_Frequency > UTILS_SCALE0_LATENCY5_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY6_FREQ)) { /* 264 < HCLK <= 280 => 6WS (7 CPU cycles) */ latency = LL_FLASH_LATENCY_6; } else if((HCLK_Frequency > UTILS_SCALE0_LATENCY4_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY5_FREQ)) { /* 220 < HCLK <= 264 => 5WS (6 CPU cycles) */ latency = LL_FLASH_LATENCY_5; } else if((HCLK_Frequency > UTILS_SCALE0_LATENCY3_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY4_FREQ)) { /* 176 < HCLK <= 220 => 4WS (5 CPU cycles) */ latency = LL_FLASH_LATENCY_4; } else if((HCLK_Frequency > UTILS_SCALE0_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY3_FREQ)) { /* 132 < HCLK <= 176 => 3WS (4 CPU cycles) */ latency = LL_FLASH_LATENCY_3; } else if((HCLK_Frequency > UTILS_SCALE0_LATENCY1_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY2_FREQ)) { /* 88 < HCLK <= 132 => 2WS (3 CPU cycles) */ latency = LL_FLASH_LATENCY_2; } else if((HCLK_Frequency > UTILS_SCALE0_LATENCY0_FREQ) && (HCLK_Frequency <= UTILS_SCALE0_LATENCY1_FREQ)) { /* 44 < HCLK <= 88 => 1WS (2 CPU cycles) */ latency = LL_FLASH_LATENCY_1; } else if(HCLK_Frequency <= UTILS_SCALE0_LATENCY0_FREQ) { /* HCLK <= 44 => 0WS (1 CPU cycles) : Do nothing keep latency to default LL_FLASH_LATENCY_0 */ } else { status = ERROR; } } else if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) { if((HCLK_Frequency > UTILS_SCALE1_LATENCY4_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY5_FREQ)) { /* 210 < HCLK <= 225 => 5WS (6 CPU cycles) */ latency = LL_FLASH_LATENCY_5; } else if((HCLK_Frequency > UTILS_SCALE1_LATENCY3_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY4_FREQ)) { /* 168 < HCLK <= 210 => 4WS (5 CPU cycles) */ latency = LL_FLASH_LATENCY_4; } else if((HCLK_Frequency > UTILS_SCALE1_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY3_FREQ)) { /* 126 < HCLK <= 168 => 3WS (4 CPU cycles) */ latency = LL_FLASH_LATENCY_3; } else if((HCLK_Frequency > UTILS_SCALE1_LATENCY1_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY2_FREQ)) #else if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE1) { if((HCLK_Frequency > UTILS_SCALE1_LATENCY1_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY2_FREQ)) #endif /*POWER_DOMAINS_NUMBER == 2U*/ { /* 140 < HCLK <= 210 => 2WS (3 CPU cycles) */ latency = LL_FLASH_LATENCY_2; } else if((HCLK_Frequency > UTILS_SCALE1_LATENCY0_FREQ) && (HCLK_Frequency <= UTILS_SCALE1_LATENCY1_FREQ)) { /* 70 < HCLK <= 140 => 1WS (2 CPU cycles) */ latency = LL_FLASH_LATENCY_1; } else if(HCLK_Frequency <= UTILS_SCALE1_LATENCY0_FREQ) { /* HCLK <= 70 => 0WS (1 CPU cycles) : Do nothing keep latency to default LL_FLASH_LATENCY_0 */ } else { status = ERROR; } } else if(LL_PWR_GetRegulVoltageScaling() == LL_PWR_REGU_VOLTAGE_SCALE2) { #if (POWER_DOMAINS_NUMBER == 2U) if((HCLK_Frequency > UTILS_SCALE2_LATENCY3_FREQ) && (HCLK_Frequency <= UTILS_SCALE2_LATENCY4_FREQ)) { /* 136 < HCLK <= 160 => 4WS (5 CPU cycles) */ latency = LL_FLASH_LATENCY_4; } else if((HCLK_Frequency > UTILS_SCALE2_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE2_LATENCY3_FREQ)) #else if((HCLK_Frequency > UTILS_SCALE2_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE2_LATENCY3_FREQ)) #endif /*POWER_DOMAINS_NUMBER == 2U*/ { /* 165 < HCLK <= 220 => 3WS (4 CPU cycles) */ latency = LL_FLASH_LATENCY_3; } else if((HCLK_Frequency > UTILS_SCALE2_LATENCY1_FREQ) && (HCLK_Frequency <= UTILS_SCALE2_LATENCY2_FREQ)) { /* 110 < HCLK <= 165 => 2WS (3 CPU cycles) */ latency = LL_FLASH_LATENCY_2; } else if((HCLK_Frequency > UTILS_SCALE2_LATENCY0_FREQ) && (HCLK_Frequency <= UTILS_SCALE2_LATENCY1_FREQ)) { /* 55 < HCLK <= 110 => 1WS (2 CPU cycles) */ latency = LL_FLASH_LATENCY_1; } else if(HCLK_Frequency <= UTILS_SCALE2_LATENCY0_FREQ) { /* HCLK <= 55 => 0WS (1 CPU cycles) : Do nothing keep latency to default LL_FLASH_LATENCY_0 */ } else { status = ERROR; } } else /* Scale 3 */ { #if (POWER_DOMAINS_NUMBER == 3U) if((HCLK_Frequency > UTILS_SCALE3_LATENCY3_FREQ) && (HCLK_Frequency <= UTILS_SCALE3_LATENCY4_FREQ)) { /* 180 < HCLK <= 225 => 4WS (5 CPU cycles) */ latency = LL_FLASH_LATENCY_4; } else if((HCLK_Frequency > UTILS_SCALE3_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE3_LATENCY3_FREQ)) #else if((HCLK_Frequency > UTILS_SCALE3_LATENCY2_FREQ) && (HCLK_Frequency <= UTILS_SCALE3_LATENCY3_FREQ)) #endif /*POWER_DOMAINS_NUMBER == 3U*/ { /* 135 < HCLK <= 180 => 3WS (4 CPU cycles) */ latency = LL_FLASH_LATENCY_3; } else if((HCLK_Frequency > UTILS_SCALE3_LATENCY1_FREQ) && (HCLK_Frequency <= UTILS_SCALE3_LATENCY2_FREQ)) { /* 90 < HCLK <= 135 => 2WS (3 CPU cycles) */ latency = LL_FLASH_LATENCY_2; } else if((HCLK_Frequency > UTILS_SCALE3_LATENCY0_FREQ) && (HCLK_Frequency <= UTILS_SCALE3_LATENCY1_FREQ)) { /* 45 < HCLK <= 90 => 1WS (2 CPU cycles) */ latency = LL_FLASH_LATENCY_1; } else if(HCLK_Frequency <= UTILS_SCALE3_LATENCY0_FREQ) { /* HCLK <= 45 => 0WS (1 CPU cycles) : Do nothing keep latency to default LL_FLASH_LATENCY_0 */ } else { status = ERROR; } } if(status == SUCCESS) { LL_FLASH_SetLatency(latency); /* Check that the new number of wait states is taken into account to access the Flash memory by reading the FLASH_ACR register */ timeout = 2; do { /* Wait for Flash latency to be updated */ getlatency = LL_FLASH_GetLatency(); timeout--; } while ((getlatency != latency) && (timeout > 0U)); if(getlatency != latency) { status = ERROR; } } } return status; } /** * @} */ /** @addtogroup UTILS_LL_Private_Functions * @{ */ /** * @brief Function to check that PLL can be modified * @param PLL_InputFrequency PLL input frequency (in Hz) * @param UTILS_PLLInitStruct pointer to a @ref LL_UTILS_PLLInitTypeDef structure that contains * the configuration information for the PLL. * @retval PLL output frequency (in Hz) */ static uint32_t UTILS_GetPLLOutputFrequency(uint32_t PLL_InputFrequency, LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct) { uint32_t pllfreq; /* Check the parameters */ assert_param(IS_LL_UTILS_PLLM_VALUE(UTILS_PLLInitStruct->PLLM)); assert_param(IS_LL_UTILS_PLLN_VALUE(UTILS_PLLInitStruct->PLLN)); assert_param(IS_LL_UTILS_PLLP_VALUE(UTILS_PLLInitStruct->PLLP)); assert_param(IS_LL_UTILS_FRACN_VALUE(UTILS_PLLInitStruct->FRACN)); pllfreq = LL_RCC_CalcPLLClockFreq(PLL_InputFrequency, UTILS_PLLInitStruct->PLLM, UTILS_PLLInitStruct->PLLN, UTILS_PLLInitStruct->FRACN, UTILS_PLLInitStruct->PLLP); return pllfreq; } /** * @brief Check that all PLLs are ready therefore configuration can be done * @retval An ErrorStatus enumeration value: * - SUCCESS: All PLLs are ready so configuration can be done * - ERROR: One PLL at least is busy */ static ErrorStatus UTILS_IsPLLsReady(void) { ErrorStatus status = SUCCESS; /* Check if one of the PLL1 is busy */ if(LL_RCC_PLL1_IsReady() != 0U) { /* PLL1 configuration cannot be done */ status = ERROR; } /* Check if one of the PLL2 is busy */ if(LL_RCC_PLL2_IsReady() != 0U) { /* PLL2 configuration cannot be done */ status = ERROR; } /* Check if one of the PLL3 is busy */ if(LL_RCC_PLL3_IsReady() != 0U) { /* PLL3 configuration cannot be done */ status = ERROR; } return status; } /** * @brief Function to enable PLL and switch system clock to PLL * @param SYSCLK_Frequency SYSCLK frequency * @param UTILS_ClkInitStruct pointer to a @ref LL_UTILS_ClkInitTypeDef structure that contains * the configuration information for the BUS prescalers. * @retval An ErrorStatus enumeration value: * - SUCCESS: No problem to switch system to PLL * - ERROR: Problem to switch system to PLL */ static ErrorStatus UTILS_EnablePLLAndSwitchSystem(uint32_t SYSCLK_Frequency, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct) { ErrorStatus status = SUCCESS; uint32_t new_hclk_frequency; assert_param(IS_LL_UTILS_SYSCLK_DIV(UTILS_ClkInitStruct->SYSCLKDivider)); assert_param(IS_LL_UTILS_AHB_DIV(UTILS_ClkInitStruct->AHBCLKDivider)); assert_param(IS_LL_UTILS_APB1_DIV(UTILS_ClkInitStruct->APB1CLKDivider)); assert_param(IS_LL_UTILS_APB2_DIV(UTILS_ClkInitStruct->APB2CLKDivider)); assert_param(IS_LL_UTILS_APB3_DIV(UTILS_ClkInitStruct->APB3CLKDivider)); assert_param(IS_LL_UTILS_APB4_DIV(UTILS_ClkInitStruct->APB4CLKDivider)); /* Calculate the new HCLK frequency */ new_hclk_frequency = LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, UTILS_ClkInitStruct->AHBCLKDivider); /* Increasing the number of wait states because of higher CPU frequency */ if (SystemD2Clock < new_hclk_frequency) { /* Set FLASH latency to highest latency */ status = LL_SetFlashLatency(new_hclk_frequency); } /* Update system clock configuration */ if(status == SUCCESS) { /* Enable PLL */ LL_RCC_PLL1_Enable(); while (LL_RCC_PLL1_IsReady() != 1U) { /* Wait for PLL ready */ } /* Set All APBxPrescaler to the Highest Divider */ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_16); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_16); LL_RCC_SetAPB3Prescaler(LL_RCC_APB3_DIV_16); LL_RCC_SetAPB4Prescaler(LL_RCC_APB4_DIV_16); /* Set SYS prescaler*/ LL_RCC_SetSysPrescaler(UTILS_ClkInitStruct->SYSCLKDivider); /* Set AHB prescaler*/ LL_RCC_SetAHBPrescaler(UTILS_ClkInitStruct->AHBCLKDivider); /* Sysclk activation on the main PLL */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) { /* Wait for system clock switch to PLL */ } /* Set APBn prescaler*/ LL_RCC_SetAPB1Prescaler(UTILS_ClkInitStruct->APB1CLKDivider); LL_RCC_SetAPB2Prescaler(UTILS_ClkInitStruct->APB2CLKDivider); LL_RCC_SetAPB3Prescaler(UTILS_ClkInitStruct->APB3CLKDivider); LL_RCC_SetAPB4Prescaler(UTILS_ClkInitStruct->APB4CLKDivider); /* Decreasing the number of wait states because of lower CPU frequency */ if (SystemD2Clock > new_hclk_frequency) { /* Set FLASH latency to lowest latency */ status = LL_SetFlashLatency(new_hclk_frequency); } /* Update the SystemD2Clock global variable */ #if defined(RCC_D1CFGR_HPRE) SystemD2Clock = (SYSCLK_Frequency >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE)>> RCC_D1CFGR_HPRE_Pos]) & 0x1FU)); #else SystemD2Clock = (SYSCLK_Frequency >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)>> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU)); #endif /* Update SystemCoreClock variable */ #if defined(DUAL_CORE) && defined(CORE_CM4) LL_SetSystemCoreClock(SystemD2Clock); #else LL_SetSystemCoreClock(SYSCLK_Frequency); #endif /* DUAL_CORE && CORE_CM4 */ } return status; } /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/