/** ****************************************************************************** * @file stm32h7xx_hal_opamp_ex.c * @author MCD Application Team * @brief Extended OPAMP HAL module driver. * This file provides firmware functions to manage the following * functionalities of the operational amplifier(s)(OPAMP1, OPAMP2 etc) * peripheral: * + Extended Initialization and de-initialization functions * + Extended Peripheral Control functions * @verbatim ****************************************************************************** * @attention * *

© Copyright (c) 2017 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32h7xx_hal.h" /** @addtogroup STM32H7xx_HAL_Driver * @{ */ /** @defgroup OPAMPEx OPAMPEx * @brief OPAMP Extended HAL module driver * @{ */ #ifdef HAL_OPAMP_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Exported functions --------------------------------------------------------*/ /** @defgroup OPAMPEx_Exported_Functions OPAMP Extended Exported Functions * @{ */ /** @defgroup OPAMPEx_Exported_Functions_Group1 Extended Input and Output operation functions * @brief Extended operation functions * @verbatim =============================================================================== ##### Extended IO operation functions ##### =============================================================================== [..] (+) OPAMP Self calibration. @endverbatim * @{ */ /** * @brief Run the self calibration of 2 OPAMPs in parallel. * @note Trimming values (PMOS & NMOS) are updated and user trimming is * enabled is calibration is successful. * @note Calibration is performed in the mode specified in OPAMP init * structure (mode normal or low power). To perform calibration for * both modes, repeat this function twice after OPAMP init structure * accordingly updated. * @param hopamp1 handle * @param hopamp2 handle * @retval HAL status */ HAL_StatusTypeDef HAL_OPAMPEx_SelfCalibrateAll(OPAMP_HandleTypeDef *hopamp1, OPAMP_HandleTypeDef *hopamp2) { HAL_StatusTypeDef status = HAL_OK; uint32_t trimmingvaluen1; uint32_t trimmingvaluep1; uint32_t trimmingvaluen2; uint32_t trimmingvaluep2; /* Selection of register of trimming depending on power mode: OTR or HSOTR */ __IO uint32_t* tmp_opamp1_reg_trimming; __IO uint32_t* tmp_opamp2_reg_trimming; uint32_t delta; uint32_t opampmode1; uint32_t opampmode2; if((hopamp1 == NULL) || (hopamp2 == NULL)) { status = HAL_ERROR; } /* Check if OPAMP in calibration mode and calibration not yet enable */ else if(hopamp1->State != HAL_OPAMP_STATE_READY) { status = HAL_ERROR; } else if(hopamp2->State != HAL_OPAMP_STATE_READY) { status = HAL_ERROR; } else { /* Check the parameter */ assert_param(IS_OPAMP_ALL_INSTANCE(hopamp1->Instance)); assert_param(IS_OPAMP_ALL_INSTANCE(hopamp2->Instance)); assert_param(IS_OPAMP_POWERMODE(hopamp1->Init.PowerMode)); assert_param(IS_OPAMP_POWERMODE(hopamp2->Init.PowerMode)); /* Set Calibration mode */ /* Non-inverting input connected to calibration reference voltage. */ SET_BIT(hopamp1->Instance->CSR, OPAMP_CSR_FORCEVP); SET_BIT(hopamp2->Instance->CSR, OPAMP_CSR_FORCEVP); /* Save OPAMP mode */ opampmode1 = READ_BIT(hopamp1->Instance->CSR,OPAMP_CSR_VMSEL); opampmode2 = READ_BIT(hopamp2->Instance->CSR,OPAMP_CSR_VMSEL); /* Use of standalone mode */ MODIFY_REG(hopamp1->Instance->CSR, OPAMP_CSR_VMSEL, OPAMP_STANDALONE_MODE); MODIFY_REG(hopamp2->Instance->CSR, OPAMP_CSR_VMSEL, OPAMP_STANDALONE_MODE); /* user trimming values are used for offset calibration */ SET_BIT(hopamp1->Instance->CSR, OPAMP_CSR_USERTRIM); SET_BIT(hopamp2->Instance->CSR, OPAMP_CSR_USERTRIM); /* Select trimming settings depending on power mode */ if (hopamp1->Init.PowerMode == OPAMP_POWERMODE_NORMAL) { tmp_opamp1_reg_trimming = &OPAMP1->OTR; } else { tmp_opamp1_reg_trimming = &OPAMP1->HSOTR; } if (hopamp2->Init.PowerMode == OPAMP_POWERMODE_NORMAL) { tmp_opamp2_reg_trimming = &OPAMP2->OTR; } else { tmp_opamp2_reg_trimming = &OPAMP2->HSOTR; } /* Enable calibration */ SET_BIT (hopamp1->Instance->CSR, OPAMP_CSR_CALON); SET_BIT (hopamp2->Instance->CSR, OPAMP_CSR_CALON); /* 1st calibration - N */ /* Select 90U% VREF */ MODIFY_REG(hopamp1->Instance->CSR, OPAMP_CSR_CALSEL, OPAMP_VREF_90VDDA); MODIFY_REG(hopamp2->Instance->CSR, OPAMP_CSR_CALSEL, OPAMP_VREF_90VDDA); /* Enable the selected opamp */ SET_BIT (hopamp1->Instance->CSR, OPAMP_CSR_OPAMPxEN); SET_BIT (hopamp2->Instance->CSR, OPAMP_CSR_OPAMPxEN); /* Init trimming counter */ /* Medium value */ trimmingvaluen1 = 16U; trimmingvaluen2 = 16U; delta = 8U; while (delta != 0U) { /* Set candidate trimming */ /* OPAMP_POWERMODE_NORMAL */ MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen1); MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen2); /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */ /* Offset trim time: during calibration, minimum time needed between */ /* two steps to have 1 mV accuracy */ HAL_Delay(OPAMP_TRIMMING_DELAY); if (READ_BIT(hopamp1->Instance->CSR, OPAMP_CSR_CALOUT)!= 0U) { /* OPAMP_CSR_CALOUT is Low try higher trimming */ trimmingvaluen1 += delta; } else { /* OPAMP_CSR_CALOUT is High try lower trimming */ trimmingvaluen1 -= delta; } if (READ_BIT(hopamp2->Instance->CSR, OPAMP_CSR_CALOUT)!= 0U) { /* OPAMP_CSR_CALOUT is Low try higher trimming */ trimmingvaluen2 += delta; } else { /* OPAMP_CSR_CALOUT is High try lower trimming */ trimmingvaluen2 -= delta; } /* Divide range by 2 to continue dichotomy sweep */ delta >>= 1U; } /* Still need to check if right calibration is current value or one step below */ /* Indeed the first value that causes the OUTCAL bit to change from 0 to 1 */ /* Set candidate trimming */ MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen1); MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen2); /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */ /* Offset trim time: during calibration, minimum time needed between */ /* two steps to have 1 mV accuracy */ HAL_Delay(OPAMP_TRIMMING_DELAY); if ((READ_BIT(hopamp1->Instance->CSR, OPAMP_CSR_CALOUT)) != 0U) { /* Trimming value is actually one value more */ trimmingvaluen1++; MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen1); } if ((READ_BIT(hopamp2->Instance->CSR, OPAMP_CSR_CALOUT)) != 0U) { /* Trimming value is actually one value more */ trimmingvaluen2++; MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OTR_TRIMOFFSETN, trimmingvaluen2); } /* 2nd calibration - P */ /* Select 10U% VREF */ MODIFY_REG(hopamp1->Instance->CSR, OPAMP_CSR_CALSEL, OPAMP_VREF_10VDDA); MODIFY_REG(hopamp2->Instance->CSR, OPAMP_CSR_CALSEL, OPAMP_VREF_10VDDA); /* Init trimming counter */ /* Medium value */ trimmingvaluep1 = 16U; trimmingvaluep2 = 16U; delta = 8U; while (delta != 0U) { /* Set candidate trimming */ /* OPAMP_POWERMODE_NORMAL */ MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep1<Instance->CSR, OPAMP_CSR_CALOUT)!= 0U) { /* OPAMP_CSR_CALOUT is Low try higher trimming */ trimmingvaluep1 += delta; } else { /* OPAMP_CSR_CALOUT is HIGH try lower trimming */ trimmingvaluep1 -= delta; } if (READ_BIT(hopamp2->Instance->CSR, OPAMP_CSR_CALOUT)!= 0U) { /* OPAMP_CSR_CALOUT is Low try higher trimming */ trimmingvaluep2 += delta; } else { /* OPAMP_CSR_CALOUT is High try lower trimming */ trimmingvaluep2 -= delta; } /* Divide range by 2 to continue dichotomy sweep */ delta >>= 1U; } /* Still need to check if right calibration is current value or one step below */ /* Indeed the first value that causes the OUTCAL bit to change from 1 to 0 */ /* Set candidate trimming */ MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep1<Instance->CSR, OPAMP_CSR_CALOUT)!= 0U) { /* Trimming value is actually one value more */ trimmingvaluep1++; MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep1<Instance->CSR, OPAMP_CSR_CALOUT)!= 0U) { /* Trimming value is actually one value more */ trimmingvaluep2++; MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OTR_TRIMOFFSETP, (trimmingvaluep2<Instance->CSR, OPAMP_CSR_CALON); CLEAR_BIT (hopamp2->Instance->CSR, OPAMP_CSR_CALON); /* Disable the OPAMPs */ CLEAR_BIT (hopamp1->Instance->CSR, OPAMP_CSR_OPAMPxEN); CLEAR_BIT (hopamp2->Instance->CSR, OPAMP_CSR_OPAMPxEN); /* Self calibration is successful */ /* Store calibration (user trimming) results in init structure. */ /* Set user trimming mode */ hopamp1->Init.UserTrimming = OPAMP_TRIMMING_USER; hopamp2->Init.UserTrimming = OPAMP_TRIMMING_USER; /* Affect calibration parameters depending on mode normal/high speed */ if (hopamp1->Init.PowerMode != OPAMP_POWERMODE_HIGHSPEED) { /* Write calibration result N */ hopamp1->Init.TrimmingValueN = trimmingvaluen1; /* Write calibration result P */ hopamp1->Init.TrimmingValueP = trimmingvaluep1; } else { /* Write calibration result N */ hopamp1->Init.TrimmingValueNHighSpeed = trimmingvaluen1; /* Write calibration result P */ hopamp1->Init.TrimmingValuePHighSpeed = trimmingvaluep1; } if (hopamp2->Init.PowerMode != OPAMP_POWERMODE_HIGHSPEED) { /* Write calibration result N */ hopamp2->Init.TrimmingValueN = trimmingvaluen2; /* Write calibration result P */ hopamp2->Init.TrimmingValueP = trimmingvaluep2; } else { /* Write calibration result N */ hopamp2->Init.TrimmingValueNHighSpeed = trimmingvaluen2; /* Write calibration result P */ hopamp2->Init.TrimmingValuePHighSpeed = trimmingvaluep2; } /* Update OPAMP state */ hopamp1->State = HAL_OPAMP_STATE_READY; hopamp2->State = HAL_OPAMP_STATE_READY; /* Restore OPAMP mode after calibration */ MODIFY_REG(hopamp1->Instance->CSR, OPAMP_CSR_VMSEL, opampmode1); MODIFY_REG(hopamp2->Instance->CSR, OPAMP_CSR_VMSEL, opampmode2); } return status; } /** * @} */ /** @defgroup OPAMPEx_Exported_Functions_Group2 Peripheral Control functions * @brief Peripheral Control functions * @verbatim =============================================================================== ##### Peripheral Control functions ##### =============================================================================== [..] (+) OPAMP unlock. @endverbatim * @{ */ /** * @brief Unlock the selected OPAMP configuration. * @note This function must be called only when OPAMP is in state "locked". * @param hopamp: OPAMP handle * @retval HAL status */ HAL_StatusTypeDef HAL_OPAMPEx_Unlock(OPAMP_HandleTypeDef* hopamp) { HAL_StatusTypeDef status = HAL_OK; /* Check the OPAMP handle allocation */ /* Check if OPAMP locked */ if(hopamp == NULL) { status = HAL_ERROR; } /* Check the OPAMP handle allocation */ /* Check if OPAMP locked */ else if(hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) { /* Check the parameter */ assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance)); /* OPAMP state changed to locked */ hopamp->State = HAL_OPAMP_STATE_BUSY; } else { status = HAL_ERROR; } return status; } /** * @} */ /** * @} */ /** * @} */ /** * @} */ #endif /* HAL_OPAMP_MODULE_ENABLED */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/