summaryrefslogtreecommitdiff
path: root/bsps/arm/stm32h7/hal/stm32h7xx_hal_adc.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/arm/stm32h7/hal/stm32h7xx_hal_adc.c')
-rw-r--r--bsps/arm/stm32h7/hal/stm32h7xx_hal_adc.c3713
1 files changed, 3713 insertions, 0 deletions
diff --git a/bsps/arm/stm32h7/hal/stm32h7xx_hal_adc.c b/bsps/arm/stm32h7/hal/stm32h7xx_hal_adc.c
new file mode 100644
index 0000000000..cce8bf9baa
--- /dev/null
+++ b/bsps/arm/stm32h7/hal/stm32h7xx_hal_adc.c
@@ -0,0 +1,3713 @@
+/**
+ ******************************************************************************
+ * @file stm32h7xx_hal_adc.c
+ * @author MCD Application Team
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Analog to Digital Convertor (ADC)
+ * peripheral:
+ * + Initialization and de-initialization functions
+ * ++ Initialization and Configuration of ADC
+ * + Operation functions
+ * ++ Start, stop, get result of conversions of regular
+ * group, using 3 possible modes: polling, interruption or DMA.
+ * + Control functions
+ * ++ Channels configuration on regular group
+ * ++ Analog Watchdog configuration
+ * + State functions
+ * ++ ADC state machine management
+ * ++ Interrupts and flags management
+ * Other functions (extended functions) are available in file
+ * "stm32h7xx_hal_adc_ex.c".
+ *
+ @verbatim
+ ==============================================================================
+ ##### ADC peripheral features #####
+ ==============================================================================
+ [..]
+ (+) 16-bit, 14-bit, 12-bit, 10-bit or 8-bit configurable resolution.
+
+ (+) Interrupt generation at the end of regular conversion and in case of
+ analog watchdog or overrun events.
+
+ (+) Single and continuous conversion modes.
+
+ (+) Scan mode for conversion of several channels sequentially.
+
+ (+) Data alignment with in-built data coherency.
+
+ (+) Programmable sampling time (channel wise)
+
+ (+) External trigger (timer or EXTI) with configurable polarity
+
+ (+) DMA request generation for transfer of conversions data of regular group.
+
+ (+) Configurable delay between conversions in Dual interleaved mode.
+
+ (+) ADC channels selectable single/differential input.
+
+ (+) ADC offset shared on 4 offset instances.
+ (+) ADC calibration
+
+ (+) ADC conversion of regular group.
+
+ (+) ADC supply requirements: 1.62 V to 3.6 V.
+
+ (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to
+ Vdda or to an external voltage reference).
+
+
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+
+ *** Configuration of top level parameters related to ADC ***
+ ============================================================
+ [..]
+
+ (#) Enable the ADC interface
+ (++) As prerequisite, ADC clock must be configured at RCC top level.
+
+ (++) Two clock settings are mandatory:
+ (+++) ADC clock (core clock, also possibly conversion clock).
+
+ (+++) ADC clock (conversions clock).
+ Two possible clock sources: synchronous clock derived from AHB clock
+ or asynchronous clock derived from system clock, the PLL2 or the PLL3 running up to 400MHz.
+
+ (+++) Example:
+ Into HAL_ADC_MspInit() (recommended code location) or with
+ other device clock parameters configuration:
+ (+++) __HAL_RCC_ADC_CLK_ENABLE(); (mandatory)
+
+ RCC_ADCCLKSOURCE_PLL2 enable: (optional: if asynchronous clock selected)
+ (+++) RCC_PeriphClkInitTypeDef RCC_PeriphClkInit;
+ (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
+ (+++) PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLL2;
+ (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
+
+ (++) ADC clock source and clock prescaler are configured at ADC level with
+ parameter "ClockPrescaler" using function HAL_ADC_Init().
+
+ (#) ADC pins configuration
+ (++) Enable the clock for the ADC GPIOs
+ using macro __HAL_RCC_GPIOx_CLK_ENABLE()
+ (++) Configure these ADC pins in analog mode
+ using function HAL_GPIO_Init()
+
+ (#) Optionally, in case of usage of ADC with interruptions:
+ (++) Configure the NVIC for ADC
+ using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
+ (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
+ into the function of corresponding ADC interruption vector
+ ADCx_IRQHandler().
+
+ (#) Optionally, in case of usage of DMA:
+ (++) Configure the DMA (DMA channel, mode normal or circular, ...)
+ using function HAL_DMA_Init().
+ (++) Configure the NVIC for DMA
+ using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
+ (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
+ into the function of corresponding DMA interruption vector
+ DMAx_Channelx_IRQHandler().
+
+ *** Configuration of ADC, group regular, channels parameters ***
+ ================================================================
+ [..]
+
+ (#) Configure the ADC parameters (resolution, data alignment, ...)
+ and regular group parameters (conversion trigger, sequencer, ...)
+ using function HAL_ADC_Init().
+
+ (#) Configure the channels for regular group parameters (channel number,
+ channel rank into sequencer, ..., into regular group)
+ using function HAL_ADC_ConfigChannel().
+
+ (#) Optionally, configure the analog watchdog parameters (channels
+ monitored, thresholds, ...)
+ using function HAL_ADC_AnalogWDGConfig().
+
+ *** Execution of ADC conversions ***
+ ====================================
+ [..]
+
+ (#) Optionally, perform an automatic ADC calibration to improve the
+ conversion accuracy
+ using function HAL_ADCEx_Calibration_Start().
+
+ (#) ADC driver can be used among three modes: polling, interruption,
+ transfer by DMA.
+
+ (++) ADC conversion by polling:
+ (+++) Activate the ADC peripheral and start conversions
+ using function HAL_ADC_Start()
+ (+++) Wait for ADC conversion completion
+ using function HAL_ADC_PollForConversion()
+ (+++) Retrieve conversion results
+ using function HAL_ADC_GetValue()
+ (+++) Stop conversion and disable the ADC peripheral
+ using function HAL_ADC_Stop()
+
+ (++) ADC conversion by interruption:
+ (+++) Activate the ADC peripheral and start conversions
+ using function HAL_ADC_Start_IT()
+ (+++) Wait for ADC conversion completion by call of function
+ HAL_ADC_ConvCpltCallback()
+ (this function must be implemented in user program)
+ (+++) Retrieve conversion results
+ using function HAL_ADC_GetValue()
+ (+++) Stop conversion and disable the ADC peripheral
+ using function HAL_ADC_Stop_IT()
+
+ (++) ADC conversion with transfer by DMA:
+ (+++) Activate the ADC peripheral and start conversions
+ using function HAL_ADC_Start_DMA()
+ (+++) Wait for ADC conversion completion by call of function
+ HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback()
+ (these functions must be implemented in user program)
+ (+++) Conversion results are automatically transferred by DMA into
+ destination variable address.
+ (+++) Stop conversion and disable the ADC peripheral
+ using function HAL_ADC_Stop_DMA()
+
+ [..]
+
+ (@) Callback functions must be implemented in user program:
+ (+@) HAL_ADC_ErrorCallback()
+ (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog)
+ (+@) HAL_ADC_ConvCpltCallback()
+ (+@) HAL_ADC_ConvHalfCpltCallback
+
+ *** Deinitialization of ADC ***
+ ============================================================
+ [..]
+
+ (#) Disable the ADC interface
+ (++) ADC clock can be hard reset and disabled at RCC top level.
+ (++) Hard reset of ADC peripherals
+ using macro __HAL_RCC_ADCx_FORCE_RESET(), __HAL_RCC_ADCx_RELEASE_RESET().
+ (++) ADC clock disable
+ using the equivalent macro/functions as configuration step.
+ (+++) Example:
+ Into HAL_ADC_MspDeInit() (recommended code location) or with
+ other device clock parameters configuration:
+ (+++) __HAL_RCC_ADC_CLK_DISABLE(); (if not used anymore)
+ RCC_ADCCLKSOURCE_CLKP restore: (optional)
+ (+++) RCC_PeriphClkInitTypeDef RCC_PeriphClkInit;
+ (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
+ (+++) PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_CLKP;
+ (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
+
+ (#) ADC pins configuration
+ (++) Disable the clock for the ADC GPIOs
+ using macro __HAL_RCC_GPIOx_CLK_DISABLE()
+
+ (#) Optionally, in case of usage of ADC with interruptions:
+ (++) Disable the NVIC for ADC
+ using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
+
+ (#) Optionally, in case of usage of DMA:
+ (++) Deinitialize the DMA
+ using function HAL_DMA_Init().
+ (++) Disable the NVIC for DMA
+ using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
+
+ [..]
+
+ *** Callback registration ***
+ =============================================
+ [..]
+
+ The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1,
+ allows the user to configure dynamically the driver callbacks.
+ Use Functions @ref HAL_ADC_RegisterCallback()
+ to register an interrupt callback.
+ [..]
+
+ Function @ref HAL_ADC_RegisterCallback() allows to register following callbacks:
+ (+) ConvCpltCallback : ADC conversion complete callback
+ (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback
+ (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback
+ (+) ErrorCallback : ADC error callback
+ (+) InjectedConvCpltCallback : ADC group injected conversion complete callback
+ (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback
+ (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback
+ (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback
+ (+) EndOfSamplingCallback : ADC end of sampling callback
+ (+) MspInitCallback : ADC Msp Init callback
+ (+) MspDeInitCallback : ADC Msp DeInit callback
+ This function takes as parameters the HAL peripheral handle, the Callback ID
+ and a pointer to the user callback function.
+ [..]
+
+ Use function @ref HAL_ADC_UnRegisterCallback to reset a callback to the default
+ weak function.
+ [..]
+
+ @ref HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle,
+ and the Callback ID.
+ This function allows to reset following callbacks:
+ (+) ConvCpltCallback : ADC conversion complete callback
+ (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback
+ (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback
+ (+) ErrorCallback : ADC error callback
+ (+) InjectedConvCpltCallback : ADC group injected conversion complete callback
+ (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback
+ (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback
+ (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback
+ (+) EndOfSamplingCallback : ADC end of sampling callback
+ (+) MspInitCallback : ADC Msp Init callback
+ (+) MspDeInitCallback : ADC Msp DeInit callback
+ [..]
+
+ By default, after the @ref HAL_ADC_Init() and when the state is @ref HAL_ADC_STATE_RESET
+ all callbacks are set to the corresponding weak functions:
+ examples @ref HAL_ADC_ConvCpltCallback(), @ref HAL_ADC_ErrorCallback().
+ Exception done for MspInit and MspDeInit functions that are
+ reset to the legacy weak functions in the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() only when
+ these callbacks are null (not registered beforehand).
+ [..]
+
+ If MspInit or MspDeInit are not null, the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit()
+ keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
+ [..]
+
+ Callbacks can be registered/unregistered in @ref HAL_ADC_STATE_READY state only.
+ Exception done MspInit/MspDeInit functions that can be registered/unregistered
+ in @ref HAL_ADC_STATE_READY or @ref HAL_ADC_STATE_RESET state,
+ thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
+ [..]
+
+ Then, the user first registers the MspInit/MspDeInit user callbacks
+ using @ref HAL_ADC_RegisterCallback() before calling @ref HAL_ADC_DeInit()
+ or @ref HAL_ADC_Init() function.
+ [..]
+
+ When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available and all callbacks
+ are set to the corresponding weak functions.
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32h7xx_hal.h"
+
+/** @addtogroup STM32H7xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup ADC ADC
+ * @brief ADC HAL module driver
+ * @{
+ */
+
+#ifdef HAL_ADC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/** @defgroup ADC_Private_Constants ADC Private Constants
+ * @{
+ */
+#define ADC_CFGR_FIELDS_1 ((uint32_t)(ADC_CFGR_RES |\
+ ADC_CFGR_CONT | ADC_CFGR_OVRMOD |\
+ ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM |\
+ ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL)) /*!< ADC_CFGR fields of parameters that can be updated
+ when no regular conversion is on-going */
+
+#define ADC_CFGR2_FIELDS ((uint32_t)(ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR |\
+ ADC_CFGR2_OVSS | ADC_CFGR2_TROVS |\
+ ADC_CFGR2_ROVSM)) /*!< ADC_CFGR2 fields of parameters that can be updated when no conversion
+ (neither regular nor injected) is on-going */
+
+/* Timeout values for ADC operations (enable settling time, */
+/* disable settling time, ...). */
+/* Values defined to be higher than worst cases: low clock frequency, */
+/* maximum prescalers. */
+#define ADC_ENABLE_TIMEOUT (2UL) /*!< ADC enable time-out value */
+#define ADC_DISABLE_TIMEOUT (2UL) /*!< ADC disable time-out value */
+
+/* Timeout to wait for current conversion on going to be completed. */
+/* Timeout fixed to worst case, for 1 channel. */
+/* - maximum sampling time (830.5 adc_clk) */
+/* - ADC resolution (Tsar 16 bits= 16.5 adc_clk) */
+/* - ADC clock with prescaler 256 */
+/* 823 * 256 = 210688 clock cycles max */
+/* Unit: cycles of CPU clock. */
+#define ADC_CONVERSION_TIME_MAX_CPU_CYCLES ((uint32_t) 210688) /*!< ADC conversion completion time-out value */
+
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup ADC_Exported_Functions ADC Exported Functions
+ * @{
+ */
+
+/** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief ADC Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Initialize and configure the ADC.
+ (+) De-initialize the ADC.
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initialize the ADC peripheral and regular group according to
+ * parameters specified in structure "ADC_InitTypeDef".
+ * @note As prerequisite, ADC clock must be configured at RCC top level
+ * (refer to description of RCC configuration for ADC
+ * in header of this file).
+ * @note Possibility to update parameters on the fly:
+ * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
+ * coming from ADC state reset. Following calls to this function can
+ * be used to reconfigure some parameters of ADC_InitTypeDef
+ * structure on the fly, without modifying MSP configuration. If ADC
+ * MSP has to be modified again, HAL_ADC_DeInit() must be called
+ * before HAL_ADC_Init().
+ * The setting of these parameters is conditioned to ADC state.
+ * For parameters constraints, see comments of structure
+ * "ADC_InitTypeDef".
+ * @note This function configures the ADC within 2 scopes: scope of entire
+ * ADC and scope of regular group. For parameters details, see comments
+ * of structure "ADC_InitTypeDef".
+ * @note Parameters related to common ADC registers (ADC clock mode) are set
+ * only if all ADCs are disabled.
+ * If this is not the case, these common parameters setting are
+ * bypassed without error reporting: it can be the intended behaviour in
+ * case of update of a parameter of ADC_InitTypeDef on the fly,
+ * without disabling the other ADCs.
+ * @param hadc ADC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc)
+{
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+ uint32_t tmpCFGR;
+ uint32_t tmp_adc_reg_is_conversion_on_going;
+ __IO uint32_t wait_loop_index = 0UL;
+ uint32_t tmp_adc_is_conversion_on_going_regular;
+ uint32_t tmp_adc_is_conversion_on_going_injected;
+
+ /* Check ADC handle */
+ if (hadc == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
+ assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
+ assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
+ assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
+ assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
+ assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));
+ assert_param(IS_ADC_CONVERSIONDATAMGT(hadc->Init.ConversionDataManagement));
+ assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
+ assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun));
+ assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait));
+ assert_param(IS_FUNCTIONAL_STATE(hadc->Init.OversamplingMode));
+
+ if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
+ {
+ assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
+ assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
+
+ if (hadc->Init.DiscontinuousConvMode == ENABLE)
+ {
+ assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion));
+ }
+ }
+
+ /* DISCEN and CONT bits cannot be set at the same time */
+ assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (hadc->Init.ContinuousConvMode == ENABLE)));
+
+ /* Actions performed only if ADC is coming from state reset: */
+ /* - Initialization of ADC MSP */
+ if (hadc->State == HAL_ADC_STATE_RESET)
+ {
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ /* Init the ADC Callback settings */
+ hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */
+ hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */
+ hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */
+ hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */
+ hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */
+ hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback; /* Legacy weak callback */
+ hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; /* Legacy weak callback */
+ hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; /* Legacy weak callback */
+ hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; /* Legacy weak callback */
+
+ if (hadc->MspInitCallback == NULL)
+ {
+ hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
+ }
+
+ /* Init the low level hardware */
+ hadc->MspInitCallback(hadc);
+#else
+ /* Init the low level hardware */
+ HAL_ADC_MspInit(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Set ADC error code to none */
+ ADC_CLEAR_ERRORCODE(hadc);
+
+ /* Initialize Lock */
+ hadc->Lock = HAL_UNLOCKED;
+ }
+
+ /* - Exit from deep-power-down mode and ADC voltage regulator enable */
+ if (LL_ADC_IsDeepPowerDownEnabled(hadc->Instance) != 0UL)
+ {
+ /* Disable ADC deep power down mode */
+ LL_ADC_DisableDeepPowerDown(hadc->Instance);
+
+ /* System was in deep power down mode, calibration must
+ be relaunched or a previously saved calibration factor
+ re-applied once the ADC voltage regulator is enabled */
+ }
+
+ if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL)
+ {
+ /* Enable ADC internal voltage regulator */
+ LL_ADC_EnableInternalRegulator(hadc->Instance);
+
+ /* Note: Variable divided by 2 to compensate partially */
+ /* CPU processing cycles, scaling in us split to not */
+ /* exceed 32 bits register capacity and handle low frequency. */
+ wait_loop_index = ((LL_ADC_DELAY_INTERNAL_REGUL_STAB_US / 10UL) * (SystemCoreClock / (100000UL * 2UL)));
+ while (wait_loop_index != 0UL)
+ {
+ wait_loop_index--;
+ }
+ }
+
+ /* Verification that ADC voltage regulator is correctly enabled, whether */
+ /* or not ADC is coming from state reset (if any potential problem of */
+ /* clocking, voltage regulator would not be enabled). */
+ if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL)
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC peripheral internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+
+ /* Configuration of ADC parameters if previous preliminary actions are */
+ /* correctly completed and if there is no conversion on going on regular */
+ /* group (ADC may already be enabled at this point if HAL_ADC_Init() is */
+ /* called to update a parameter on the fly). */
+ tmp_adc_reg_is_conversion_on_going = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
+
+ if (((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
+ && (tmp_adc_reg_is_conversion_on_going == 0UL)
+ )
+ {
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State,
+ HAL_ADC_STATE_REG_BUSY,
+ HAL_ADC_STATE_BUSY_INTERNAL);
+
+ /* Configuration of common ADC parameters */
+
+ /* Parameters update conditioned to ADC state: */
+ /* Parameters that can be updated only when ADC is disabled: */
+ /* - clock configuration */
+ if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
+ {
+ if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
+ {
+ /* Reset configuration of ADC common register CCR: */
+ /* */
+ /* - ADC clock mode and ACC prescaler (CKMODE and PRESC bits)are set */
+ /* according to adc->Init.ClockPrescaler. It selects the clock */
+ /* source and sets the clock division factor. */
+ /* */
+ /* Some parameters of this register are not reset, since they are set */
+ /* by other functions and must be kept in case of usage of this */
+ /* function on the fly (update of a parameter of ADC_InitTypeDef */
+ /* without needing to reconfigure all other ADC groups/channels */
+ /* parameters): */
+ /* - when multimode feature is available, multimode-related */
+ /* parameters: MDMA, DMACFG, DELAY, DUAL (set by API */
+ /* HAL_ADCEx_MultiModeConfigChannel() ) */
+ /* - internal measurement paths: Vbat, temperature sensor, Vref */
+ /* (set into HAL_ADC_ConfigChannel() or */
+ /* HAL_ADCEx_InjectedConfigChannel() ) */
+ LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(hadc->Instance), hadc->Init.ClockPrescaler);
+ }
+ }
+
+ /* Configuration of ADC: */
+ /* - resolution Init.Resolution */
+ /* - external trigger to start conversion Init.ExternalTrigConv */
+ /* - external trigger polarity Init.ExternalTrigConvEdge */
+ /* - continuous conversion mode Init.ContinuousConvMode */
+ /* - overrun Init.Overrun */
+ /* - discontinuous mode Init.DiscontinuousConvMode */
+ /* - discontinuous mode channel count Init.NbrOfDiscConversion */
+#if defined(ADC_VER_V5_3)
+ tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) |
+ hadc->Init.Overrun |
+ hadc->Init.Resolution |
+ ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode) );
+
+#else
+ if((HAL_GetREVID() > REV_ID_Y) && (ADC_RESOLUTION_8B == hadc->Init.Resolution))
+ {
+ /* for STM32H7 silicon rev.B and above , ADC_CFGR_RES value for 8bits resolution is : b111 */
+ tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) |
+ hadc->Init.Overrun |
+ hadc->Init.Resolution |(ADC_CFGR_RES_1|ADC_CFGR_RES_0) |
+ ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode) );
+ }
+ else
+ {
+ tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) |
+ hadc->Init.Overrun |
+ hadc->Init.Resolution |
+ ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode) );
+ }
+
+#endif /* ADC_VER_V5_3 */
+
+ if (hadc->Init.DiscontinuousConvMode == ENABLE)
+ {
+ tmpCFGR |= ADC_CFGR_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion);
+ }
+
+ /* Enable external trigger if trigger selection is different of software */
+ /* start. */
+ /* Note: This configuration keeps the hardware feature of parameter */
+ /* ExternalTrigConvEdge "trigger edge none" equivalent to */
+ /* software start. */
+ if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
+ {
+ tmpCFGR |= ((hadc->Init.ExternalTrigConv & ADC_CFGR_EXTSEL)
+ | hadc->Init.ExternalTrigConvEdge
+ );
+ }
+
+ /* Update Configuration Register CFGR */
+ MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_1, tmpCFGR);
+
+ /* Parameters update conditioned to ADC state: */
+ /* Parameters that can be updated when ADC is disabled or enabled without */
+ /* conversion on going on regular and injected groups: */
+ /* - Conversion data management Init.ConversionDataManagement */
+ /* - LowPowerAutoWait feature Init.LowPowerAutoWait */
+ /* - Oversampling parameters Init.Oversampling */
+ tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
+ tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
+ if ((tmp_adc_is_conversion_on_going_regular == 0UL)
+ && (tmp_adc_is_conversion_on_going_injected == 0UL)
+ )
+ {
+ tmpCFGR = (
+ ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) |
+ ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.ConversionDataManagement));
+
+ MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_2, tmpCFGR);
+
+ if (hadc->Init.OversamplingMode == ENABLE)
+ {
+ assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio));
+ assert_param(IS_ADC_RIGHT_BIT_SHIFT(hadc->Init.Oversampling.RightBitShift));
+ assert_param(IS_ADC_TRIGGERED_OVERSAMPLING_MODE(hadc->Init.Oversampling.TriggeredMode));
+ assert_param(IS_ADC_REGOVERSAMPLING_MODE(hadc->Init.Oversampling.OversamplingStopReset));
+
+ if ((hadc->Init.ExternalTrigConv == ADC_SOFTWARE_START)
+ || (hadc->Init.ExternalTrigConvEdge == ADC_EXTERNALTRIGCONVEDGE_NONE))
+ {
+ /* Multi trigger is not applicable to software-triggered conversions */
+ assert_param((hadc->Init.Oversampling.TriggeredMode == ADC_TRIGGEREDMODE_SINGLE_TRIGGER));
+ }
+
+ /* Configuration of Oversampler: */
+ /* - Oversampling Ratio */
+ /* - Right bit shift */
+ /* - Left bit shift */
+ /* - Triggered mode */
+ /* - Oversampling mode (continued/resumed) */
+ MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_FIELDS,
+ ADC_CFGR2_ROVSE |
+ ((hadc->Init.Oversampling.Ratio - 1UL) << ADC_CFGR2_OVSR_Pos) |
+ hadc->Init.Oversampling.RightBitShift |
+ hadc->Init.Oversampling.TriggeredMode |
+ hadc->Init.Oversampling.OversamplingStopReset);
+
+ }
+ else
+ {
+ /* Disable ADC oversampling scope on ADC group regular */
+ CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSE);
+ }
+
+ /* Set the LeftShift parameter: it is applied to the final result with or without oversampling */
+ MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_LSHIFT, hadc->Init.LeftBitShift);
+
+ /* Configure the BOOST Mode */
+ ADC_ConfigureBoostMode(hadc);
+ }
+
+ /* Configuration of regular group sequencer: */
+ /* - if scan mode is disabled, regular channels sequence length is set to */
+ /* 0x00: 1 channel converted (channel on regular rank 1) */
+ /* Parameter "NbrOfConversion" is discarded. */
+ /* Note: Scan mode is not present by hardware on this device, but */
+ /* emulated by software for alignment over all STM32 devices. */
+ /* - if scan mode is enabled, regular channels sequence length is set to */
+ /* parameter "NbrOfConversion". */
+
+ if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE)
+ {
+ /* Set number of ranks in regular group sequencer */
+ MODIFY_REG(hadc->Instance->SQR1, ADC_SQR1_L, (hadc->Init.NbrOfConversion - (uint8_t)1));
+ }
+ else
+ {
+ CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L);
+ }
+
+ /* Initialize the ADC state */
+ /* Clear HAL_ADC_STATE_BUSY_INTERNAL bit, set HAL_ADC_STATE_READY bit */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY);
+ }
+ else
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Deinitialize the ADC peripheral registers to their default reset
+ * values, with deinitialization of the ADC MSP.
+ * @note For devices with several ADCs: reset of ADC common registers is done
+ * only if all ADCs sharing the same common group are disabled.
+ * (function "HAL_ADC_MspDeInit()" is also called under the same conditions:
+ * all ADC instances use the same core clock at RCC level, disabling
+ * the core clock reset all ADC instances).
+ * If this is not the case, reset of these common parameters reset is
+ * bypassed without error reporting: it can be the intended behavior in
+ * case of reset of a single ADC while the other ADCs sharing the same
+ * common group is still running.
+ * @note By default, HAL_ADC_DeInit() set ADC in mode deep power-down:
+ * this saves more power by reducing leakage currents
+ * and is particularly interesting before entering MCU low-power modes.
+ * @param hadc ADC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc)
+{
+ HAL_StatusTypeDef tmp_hal_status;
+
+ /* Check ADC handle */
+ if (hadc == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
+
+ /* Stop potential conversion on going */
+ tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
+
+ /* Disable ADC peripheral if conversions are effectively stopped */
+ /* Flush register JSQR: reset the queue sequencer when injected */
+ /* queue sequencer is enabled and ADC disabled. */
+ /* The software and hardware triggers of the injected sequence are both */
+ /* internally disabled just after the completion of the last valid */
+ /* injected sequence. */
+ SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQM);
+
+ /* Disable ADC peripheral if conversions are effectively stopped */
+ if (tmp_hal_status == HAL_OK)
+ {
+ /* Disable the ADC peripheral */
+ tmp_hal_status = ADC_Disable(hadc);
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status == HAL_OK)
+ {
+ /* Change ADC state */
+ hadc->State = HAL_ADC_STATE_READY;
+ }
+ }
+
+ /* Note: HAL ADC deInit is done independently of ADC conversion stop */
+ /* and disable return status. In case of status fail, attempt to */
+ /* perform deinitialization anyway and it is up user code in */
+ /* in HAL_ADC_MspDeInit() to reset the ADC peripheral using */
+ /* system RCC hard reset. */
+
+ /* ========== Reset ADC registers ========== */
+ /* Reset register IER */
+ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD3 | ADC_IT_AWD2 | ADC_IT_AWD1 |
+ ADC_IT_JQOVF | ADC_IT_OVR |
+ ADC_IT_JEOS | ADC_IT_JEOC |
+ ADC_IT_EOS | ADC_IT_EOC |
+ ADC_IT_EOSMP | ADC_IT_RDY));
+
+ /* Reset register ISR */
+ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD3 | ADC_FLAG_AWD2 | ADC_FLAG_AWD1 |
+ ADC_FLAG_JQOVF | ADC_FLAG_OVR |
+ ADC_FLAG_JEOS | ADC_FLAG_JEOC |
+ ADC_FLAG_EOS | ADC_FLAG_EOC |
+ ADC_FLAG_EOSMP | ADC_FLAG_RDY));
+
+ /* Reset register CR */
+ /* Bits ADC_CR_JADSTP, ADC_CR_ADSTP, ADC_CR_JADSTART, ADC_CR_ADSTART,
+ ADC_CR_ADCAL, ADC_CR_ADDIS and ADC_CR_ADEN are in access mode "read-set":
+ no direct reset applicable.
+ Update CR register to reset value where doable by software */
+ CLEAR_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN | ADC_CR_ADCALDIF);
+ SET_BIT(hadc->Instance->CR, ADC_CR_DEEPPWD);
+
+ /* Reset register CFGR */
+ CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_AWD1CH | ADC_CFGR_JAUTO | ADC_CFGR_JAWD1EN |
+ ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL | ADC_CFGR_JQM |
+ ADC_CFGR_JDISCEN | ADC_CFGR_DISCNUM | ADC_CFGR_DISCEN |
+ ADC_CFGR_AUTDLY | ADC_CFGR_CONT | ADC_CFGR_OVRMOD |
+ ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL |
+ ADC_CFGR_RES | ADC_CFGR_DMNGT);
+ SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS);
+
+ /* Reset register CFGR2 */
+ CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSM | ADC_CFGR2_TROVS | ADC_CFGR2_OVSS |
+ ADC_CFGR2_OVSR | ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSE);
+
+ /* Reset register SMPR1 */
+ CLEAR_BIT(hadc->Instance->SMPR1, ADC_SMPR1_FIELDS);
+
+ /* Reset register SMPR2 */
+ CLEAR_BIT(hadc->Instance->SMPR2, ADC_SMPR2_SMP18 | ADC_SMPR2_SMP17 | ADC_SMPR2_SMP16 |
+ ADC_SMPR2_SMP15 | ADC_SMPR2_SMP14 | ADC_SMPR2_SMP13 |
+ ADC_SMPR2_SMP12 | ADC_SMPR2_SMP11 | ADC_SMPR2_SMP10);
+
+ /* Reset register LTR1 and HTR1 */
+ CLEAR_BIT(hadc->Instance->LTR1, ADC_LTR_LT);
+ CLEAR_BIT(hadc->Instance->HTR1, ADC_HTR_HT);
+
+ /* Reset register LTR2 and HTR2*/
+ CLEAR_BIT(hadc->Instance->LTR2, ADC_LTR_LT);
+ CLEAR_BIT(hadc->Instance->HTR2, ADC_HTR_HT);
+
+ /* Reset register LTR3 and HTR3 */
+ CLEAR_BIT(hadc->Instance->LTR3, ADC_LTR_LT);
+ CLEAR_BIT(hadc->Instance->HTR3, ADC_HTR_HT);
+
+ /* Reset register SQR1 */
+ CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_SQ4 | ADC_SQR1_SQ3 | ADC_SQR1_SQ2 |
+ ADC_SQR1_SQ1 | ADC_SQR1_L);
+
+ /* Reset register SQR2 */
+ CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 |
+ ADC_SQR2_SQ6 | ADC_SQR2_SQ5);
+
+ /* Reset register SQR3 */
+ CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ14 | ADC_SQR3_SQ13 | ADC_SQR3_SQ12 |
+ ADC_SQR3_SQ11 | ADC_SQR3_SQ10);
+
+ /* Reset register SQR4 */
+ CLEAR_BIT(hadc->Instance->SQR4, ADC_SQR4_SQ16 | ADC_SQR4_SQ15);
+
+ /* Register JSQR was reset when the ADC was disabled */
+
+ /* Reset register DR */
+ /* bits in access mode read only, no direct reset applicable*/
+
+ /* Reset register OFR1 */
+ CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_SSATE | ADC_OFR1_OFFSET1_CH | ADC_OFR1_OFFSET1);
+ /* Reset register OFR2 */
+ CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_SSATE | ADC_OFR2_OFFSET2_CH | ADC_OFR2_OFFSET2);
+ /* Reset register OFR3 */
+ CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_SSATE | ADC_OFR3_OFFSET3_CH | ADC_OFR3_OFFSET3);
+ /* Reset register OFR4 */
+ CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_SSATE | ADC_OFR4_OFFSET4_CH | ADC_OFR4_OFFSET4);
+
+ /* Reset registers JDR1, JDR2, JDR3, JDR4 */
+ /* bits in access mode read only, no direct reset applicable*/
+
+ /* Reset register AWD2CR */
+ CLEAR_BIT(hadc->Instance->AWD2CR, ADC_AWD2CR_AWD2CH);
+
+ /* Reset register AWD3CR */
+ CLEAR_BIT(hadc->Instance->AWD3CR, ADC_AWD3CR_AWD3CH);
+
+ /* Reset register DIFSEL */
+ CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_DIFSEL);
+
+ /* Reset register CALFACT */
+ CLEAR_BIT(hadc->Instance->CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S);
+
+
+ /* ========== Reset common ADC registers ========== */
+
+ /* Software is allowed to change common parameters only when all the other
+ ADCs are disabled. */
+ if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
+ {
+ /* Reset configuration of ADC common register CCR:
+ - clock mode: CKMODE, PRESCEN
+ - multimode related parameters(when this feature is available): DELAY, DUAL
+ (set into HAL_ADCEx_MultiModeConfigChannel() API)
+ - internal measurement paths: Vbat, temperature sensor, Vref (set into
+ HAL_ADC_ConfigChannel() or HAL_ADCEx_InjectedConfigChannel() )
+ */
+ ADC_CLEAR_COMMON_CONTROL_REGISTER(hadc);
+ }
+
+ /* DeInit the low level hardware.
+
+ For example:
+ __HAL_RCC_ADC_FORCE_RESET();
+ __HAL_RCC_ADC_RELEASE_RESET();
+ __HAL_RCC_ADC_CLK_DISABLE();
+
+ Keep in mind that all ADCs use the same clock: disabling
+ the clock will reset all ADCs.
+
+ */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ if (hadc->MspDeInitCallback == NULL)
+ {
+ hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
+ }
+
+ /* DeInit the low level hardware: RCC clock, NVIC */
+ hadc->MspDeInitCallback(hadc);
+#else
+ /* DeInit the low level hardware: RCC clock, NVIC */
+ HAL_ADC_MspDeInit(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Set ADC error code to none */
+ ADC_CLEAR_ERRORCODE(hadc);
+
+ /* Reset injected channel configuration parameters */
+ hadc->InjectionConfig.ContextQueue = 0;
+ hadc->InjectionConfig.ChannelCount = 0;
+
+ /* Set ADC state */
+ hadc->State = HAL_ADC_STATE_RESET;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Initialize the ADC MSP.
+ * @param hadc ADC handle
+ * @retval None
+ */
+__weak void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_MspInit must be implemented in the user file.
+ */
+}
+
+/**
+ * @brief DeInitialize the ADC MSP.
+ * @param hadc ADC handle
+ * @note All ADC instances use the same core clock at RCC level, disabling
+ * the core clock reset all ADC instances).
+ * @retval None
+ */
+__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_MspDeInit must be implemented in the user file.
+ */
+}
+
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Register a User ADC Callback
+ * To be used instead of the weak predefined callback
+ * @param hadc Pointer to a ADC_HandleTypeDef structure that contains
+ * the configuration information for the specified ADC.
+ * @param CallbackID ID of the callback to be registered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID
+ * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID
+ * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID
+ * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID
+ * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID
+ * @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID
+ * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID
+ * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID
+ * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID
+ * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID
+ * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID
+ * @param pCallback pointer to the Callback function
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL)
+ {
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ return HAL_ERROR;
+ }
+
+ if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
+ {
+ switch (CallbackID)
+ {
+ case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
+ hadc->ConvCpltCallback = pCallback;
+ break;
+
+ case HAL_ADC_CONVERSION_HALF_CB_ID :
+ hadc->ConvHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
+ hadc->LevelOutOfWindowCallback = pCallback;
+ break;
+
+ case HAL_ADC_ERROR_CB_ID :
+ hadc->ErrorCallback = pCallback;
+ break;
+
+ case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
+ hadc->InjectedConvCpltCallback = pCallback;
+ break;
+
+ case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID :
+ hadc->InjectedQueueOverflowCallback = pCallback;
+ break;
+
+ case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID :
+ hadc->LevelOutOfWindow2Callback = pCallback;
+ break;
+
+ case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID :
+ hadc->LevelOutOfWindow3Callback = pCallback;
+ break;
+
+ case HAL_ADC_END_OF_SAMPLING_CB_ID :
+ hadc->EndOfSamplingCallback = pCallback;
+ break;
+
+ case HAL_ADC_MSPINIT_CB_ID :
+ hadc->MspInitCallback = pCallback;
+ break;
+
+ case HAL_ADC_MSPDEINIT_CB_ID :
+ hadc->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (HAL_ADC_STATE_RESET == hadc->State)
+ {
+ switch (CallbackID)
+ {
+ case HAL_ADC_MSPINIT_CB_ID :
+ hadc->MspInitCallback = pCallback;
+ break;
+
+ case HAL_ADC_MSPDEINIT_CB_ID :
+ hadc->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ return status;
+}
+
+/**
+ * @brief Unregister a ADC Callback
+ * ADC callback is redirected to the weak predefined callback
+ * @param hadc Pointer to a ADC_HandleTypeDef structure that contains
+ * the configuration information for the specified ADC.
+ * @param CallbackID ID of the callback to be unregistered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID
+ * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID
+ * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID
+ * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID
+ * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID
+ * @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID
+ * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID
+ * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID
+ * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID
+ * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID
+ * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
+ {
+ switch (CallbackID)
+ {
+ case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
+ hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback;
+ break;
+
+ case HAL_ADC_CONVERSION_HALF_CB_ID :
+ hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback;
+ break;
+
+ case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
+ hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback;
+ break;
+
+ case HAL_ADC_ERROR_CB_ID :
+ hadc->ErrorCallback = HAL_ADC_ErrorCallback;
+ break;
+
+ case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
+ hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback;
+ break;
+
+ case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID :
+ hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback;
+ break;
+
+ case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID :
+ hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback;
+ break;
+
+ case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID :
+ hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback;
+ break;
+
+ case HAL_ADC_END_OF_SAMPLING_CB_ID :
+ hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback;
+ break;
+
+ case HAL_ADC_MSPINIT_CB_ID :
+ hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
+ break;
+
+ case HAL_ADC_MSPDEINIT_CB_ID :
+ hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
+ break;
+
+ default :
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (HAL_ADC_STATE_RESET == hadc->State)
+ {
+ switch (CallbackID)
+ {
+ case HAL_ADC_MSPINIT_CB_ID :
+ hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
+ break;
+
+ case HAL_ADC_MSPDEINIT_CB_ID :
+ hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
+ break;
+
+ default :
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Update the error code */
+ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ return status;
+}
+
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Exported_Functions_Group2 ADC Input and Output operation functions
+ * @brief ADC IO operation functions
+ *
+@verbatim
+ ===============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Start conversion of regular group.
+ (+) Stop conversion of regular group.
+ (+) Poll for conversion complete on regular group.
+ (+) Poll for conversion event.
+ (+) Get result of regular channel conversion.
+ (+) Start conversion of regular group and enable interruptions.
+ (+) Stop conversion of regular group and disable interruptions.
+ (+) Handle ADC interrupt request
+ (+) Start conversion of regular group and enable DMA transfer.
+ (+) Stop conversion of regular group and disable ADC DMA transfer.
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enable ADC, start conversion of regular group.
+ * @note Interruptions enabled in this function: None.
+ * @note Case of multimode enabled (when multimode feature is available):
+ * if ADC is Slave, ADC is enabled but conversion is not started,
+ * if ADC is master, ADC is enabled and multimode conversion is started.
+ * @param hadc ADC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc)
+{
+ HAL_StatusTypeDef tmp_hal_status;
+ const ADC_TypeDef *tmpADC_Master;
+ uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Perform ADC enable and conversion start if no conversion is on going */
+ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
+ {
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Enable the ADC peripheral */
+ tmp_hal_status = ADC_Enable(hadc);
+
+ /* Start conversion if ADC is effectively enabled */
+ if (tmp_hal_status == HAL_OK)
+ {
+ /* Set ADC state */
+ /* - Clear state bitfield related to regular group conversion results */
+ /* - Set state bitfield related to regular operation */
+ ADC_STATE_CLR_SET(hadc->State,
+ HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
+ HAL_ADC_STATE_REG_BUSY);
+
+ /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
+ - if ADC instance is master or if multimode feature is not available
+ - if multimode setting is disabled (ADC instance slave in independent mode) */
+ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
+ || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
+ )
+ {
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+ }
+
+ /* Set ADC error code */
+ /* Check if a conversion is on going on ADC group injected */
+ if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
+ {
+ /* Reset ADC error code fields related to regular conversions only */
+ CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
+ }
+ else
+ {
+ /* Reset all ADC error code fields */
+ ADC_CLEAR_ERRORCODE(hadc);
+ }
+
+ /* Clear ADC group regular conversion flag and overrun flag */
+ /* (To ensure of no unknown state from potential previous ADC operations) */
+ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
+
+ /* Process unlocked */
+ /* Unlock before starting ADC conversions: in case of potential */
+ /* interruption, to let the process to ADC IRQ Handler. */
+ __HAL_UNLOCK(hadc);
+
+ /* Enable conversion of regular group. */
+ /* If software start has been selected, conversion starts immediately. */
+ /* If external trigger has been selected, conversion will start at next */
+ /* trigger event. */
+ /* Case of multimode enabled (when multimode feature is available): */
+ /* - if ADC is slave and dual regular conversions are enabled, ADC is */
+ /* enabled only (conversion is not started), */
+ /* - if ADC is master, ADC is enabled and conversion is started. */
+ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
+ || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
+ )
+ {
+ /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */
+ if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL)
+ {
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+ }
+
+ /* Start ADC group regular conversion */
+ LL_ADC_REG_StartConversion(hadc->Instance);
+ }
+ else
+ {
+ /* ADC instance is a multimode slave instance with multimode regular conversions enabled */
+ SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+ /* if Master ADC JAUTO bit is set, update Slave State in setting
+ HAL_ADC_STATE_INJ_BUSY bit and in resetting HAL_ADC_STATE_INJ_EOC bit */
+ tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
+ if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL)
+ {
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+ }
+
+ }
+ }
+ else
+ {
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+ }
+ }
+ else
+ {
+ tmp_hal_status = HAL_BUSY;
+ }
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Stop ADC conversion of regular group (and injected channels in
+ * case of auto_injection mode), disable ADC peripheral.
+ * @note: ADC peripheral disable is forcing stop of potential
+ * conversion on injected group. If injected group is under use, it
+ * should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
+ * @param hadc ADC handle
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc)
+{
+ HAL_StatusTypeDef tmp_hal_status;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* 1. Stop potential conversion on going, on ADC groups regular and injected */
+ tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
+
+ /* Disable ADC peripheral if conversions are effectively stopped */
+ if (tmp_hal_status == HAL_OK)
+ {
+ /* 2. Disable the ADC peripheral */
+ tmp_hal_status = ADC_Disable(hadc);
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status == HAL_OK)
+ {
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State,
+ HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
+ HAL_ADC_STATE_READY);
+ }
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Wait for regular group conversion to be completed.
+ * @note ADC conversion flags EOS (end of sequence) and EOC (end of
+ * conversion) are cleared by this function, with an exception:
+ * if low power feature "LowPowerAutoWait" is enabled, flags are
+ * not cleared to not interfere with this feature until data register
+ * is read using function HAL_ADC_GetValue().
+ * @note This function cannot be used in a particular setup: ADC configured
+ * in DMA mode and polling for end of each conversion (ADC init
+ * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV).
+ * In this case, DMA resets the flag EOC and polling cannot be
+ * performed on each conversion. Nevertheless, polling can still
+ * be performed on the complete sequence (ADC init
+ * parameter "EOCSelection" set to ADC_EOC_SEQ_CONV).
+ * @param hadc ADC handle
+ * @param Timeout Timeout value in millisecond.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout)
+{
+ uint32_t tickstart;
+ uint32_t tmp_Flag_End;
+ uint32_t tmp_cfgr;
+ const ADC_TypeDef *tmpADC_Master;
+ uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* If end of conversion selected to end of sequence conversions */
+ if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV)
+ {
+ tmp_Flag_End = ADC_FLAG_EOS;
+ }
+ /* If end of conversion selected to end of unitary conversion */
+ else /* ADC_EOC_SINGLE_CONV */
+ {
+ /* Verification that ADC configuration is compliant with polling for */
+ /* each conversion: */
+ /* Particular case is ADC configured in DMA mode and ADC sequencer with */
+ /* several ranks and polling for end of each conversion. */
+ /* For code simplicity sake, this particular case is generalized to */
+ /* ADC configured in DMA mode and and polling for end of each conversion. */
+ if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
+ )
+ {
+ /* Check DMNGT bit in handle ADC CFGR register */
+ if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0) != 0UL)
+ {
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+ return HAL_ERROR;
+ }
+ else
+ {
+ tmp_Flag_End = (ADC_FLAG_EOC);
+ }
+ }
+ else
+ {
+ /* Check ADC DMA mode in multimode on ADC group regular */
+ if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC)
+ {
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+ return HAL_ERROR;
+ }
+ else
+ {
+ tmp_Flag_End = (ADC_FLAG_EOC);
+ }
+ }
+ }
+
+ /* Get tick count */
+ tickstart = HAL_GetTick();
+
+ /* Wait until End of unitary conversion or sequence conversions flag is raised */
+ while ((hadc->Instance->ISR & tmp_Flag_End) == 0UL)
+ {
+ /* Check if timeout is disabled (set to infinite wait) */
+ if (Timeout != HAL_MAX_DELAY)
+ {
+ if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL))
+ {
+ /* Update ADC state machine to timeout */
+ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Update ADC state machine */
+ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
+
+ /* Determine whether any further conversion upcoming on group regular */
+ /* by external trigger, continuous mode or scan sequence on going. */
+ if ((LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
+ && (hadc->Init.ContinuousConvMode == DISABLE)
+ )
+ {
+ /* Check whether end of sequence is reached */
+ if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS))
+ {
+ /* Set ADC state */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
+
+ if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
+ {
+ SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+ }
+ }
+ }
+
+ /* Get relevant register CFGR in ADC instance of ADC master or slave */
+ /* in function of multimode state (for devices with multimode */
+ /* available). */
+ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
+ || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
+ )
+ {
+ /* Retrieve handle ADC CFGR register */
+ tmp_cfgr = READ_REG(hadc->Instance->CFGR);
+ }
+ else
+ {
+ /* Retrieve Master ADC CFGR register */
+ tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
+ tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
+ }
+
+ /* Clear polled flag */
+ if (tmp_Flag_End == ADC_FLAG_EOS)
+ {
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOS);
+ }
+ else
+ {
+ /* Clear end of conversion EOC flag of regular group if low power feature */
+ /* "LowPowerAutoWait " is disabled, to not interfere with this feature */
+ /* until data register is read using function HAL_ADC_GetValue(). */
+ if (READ_BIT(tmp_cfgr, ADC_CFGR_AUTDLY) == 0UL)
+ {
+ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS));
+ }
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Poll for ADC event.
+ * @param hadc ADC handle
+ * @param EventType the ADC event type.
+ * This parameter can be one of the following values:
+ * @arg @ref ADC_EOSMP_EVENT ADC End of Sampling event
+ * @arg @ref ADC_AWD1_EVENT ADC Analog watchdog 1 event (main analog watchdog, present on all STM32 devices)
+ * @arg @ref ADC_AWD2_EVENT ADC Analog watchdog 2 event (additional analog watchdog, not present on all STM32 families)
+ * @arg @ref ADC_AWD3_EVENT ADC Analog watchdog 3 event (additional analog watchdog, not present on all STM32 families)
+ * @arg @ref ADC_OVR_EVENT ADC Overrun event
+ * @arg @ref ADC_JQOVF_EVENT ADC Injected context queue overflow event
+ * @param Timeout Timeout value in millisecond.
+ * @note The relevant flag is cleared if found to be set, except for ADC_FLAG_OVR.
+ * Indeed, the latter is reset only if hadc->Init.Overrun field is set
+ * to ADC_OVR_DATA_OVERWRITTEN. Otherwise, data register may be potentially overwritten
+ * by a new converted data as soon as OVR is cleared.
+ * To reset OVR flag once the preserved data is retrieved, the user can resort
+ * to macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout)
+{
+ uint32_t tickstart;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_EVENT_TYPE(EventType));
+
+ /* Get tick count */
+ tickstart = HAL_GetTick();
+
+ /* Check selected event flag */
+ while (__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL)
+ {
+ /* Check if timeout is disabled (set to infinite wait) */
+ if (Timeout != HAL_MAX_DELAY)
+ {
+ if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL))
+ {
+ /* Update ADC state machine to timeout */
+ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ switch (EventType)
+ {
+ /* End Of Sampling event */
+ case ADC_EOSMP_EVENT:
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP);
+
+ /* Clear the End Of Sampling flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP);
+
+ break;
+
+ /* Analog watchdog (level out of window) event */
+ /* Note: In case of several analog watchdog enabled, if needed to know */
+ /* which one triggered and on which ADCx, test ADC state of analog watchdog */
+ /* flags HAL_ADC_STATE_AWD1/2/3 using function "HAL_ADC_GetState()". */
+ /* For example: */
+ /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " */
+ /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD2) != 0UL) " */
+ /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD3) != 0UL) " */
+
+ /* Check analog watchdog 1 flag */
+ case ADC_AWD_EVENT:
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
+
+ /* Clear ADC analog watchdog flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);
+
+ break;
+
+ /* Check analog watchdog 2 flag */
+ case ADC_AWD2_EVENT:
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);
+
+ /* Clear ADC analog watchdog flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);
+
+ break;
+
+ /* Check analog watchdog 3 flag */
+ case ADC_AWD3_EVENT:
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);
+
+ /* Clear ADC analog watchdog flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);
+
+ break;
+
+ /* Injected context queue overflow event */
+ case ADC_JQOVF_EVENT:
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);
+
+ /* Set ADC error code to Injected context queue overflow */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
+
+ /* Clear ADC Injected context queue overflow flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);
+
+ break;
+
+ /* Overrun event */
+ default: /* Case ADC_OVR_EVENT */
+ /* If overrun is set to overwrite previous data, overrun event is not */
+ /* considered as an error. */
+ /* (cf ref manual "Managing conversions without using the DMA and without */
+ /* overrun ") */
+ if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
+ {
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
+
+ /* Set ADC error code to overrun */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
+ }
+ else
+ {
+ /* Clear ADC Overrun flag only if Overrun is set to ADC_OVR_DATA_OVERWRITTEN
+ otherwise, data register is potentially overwritten by new converted data as soon
+ as OVR is cleared. */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
+ }
+ break;
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Enable ADC, start conversion of regular group with interruption.
+ * @note Interruptions enabled in this function according to initialization
+ * setting : EOC (end of conversion), EOS (end of sequence),
+ * OVR overrun.
+ * Each of these interruptions has its dedicated callback function.
+ * @note Case of multimode enabled (when multimode feature is available):
+ * HAL_ADC_Start_IT() must be called for ADC Slave first, then for
+ * ADC Master.
+ * For ADC Slave, ADC is enabled only (conversion is not started).
+ * For ADC Master, ADC is enabled and multimode conversion is started.
+ * @note To guarantee a proper reset of all interruptions once all the needed
+ * conversions are obtained, HAL_ADC_Stop_IT() must be called to ensure
+ * a correct stop of the IT-based conversions.
+ * @note By default, HAL_ADC_Start_IT() does not enable the End Of Sampling
+ * interruption. If required (e.g. in case of oversampling with trigger
+ * mode), the user must:
+ * 1. first clear the EOSMP flag if set with macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP)
+ * 2. then enable the EOSMP interrupt with macro __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOSMP)
+ * before calling HAL_ADC_Start_IT().
+ * @param hadc ADC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc)
+{
+ HAL_StatusTypeDef tmp_hal_status;
+ const ADC_TypeDef *tmpADC_Master;
+ uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Perform ADC enable and conversion start if no conversion is on going */
+ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
+ {
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Enable the ADC peripheral */
+ tmp_hal_status = ADC_Enable(hadc);
+
+ /* Start conversion if ADC is effectively enabled */
+ if (tmp_hal_status == HAL_OK)
+ {
+ /* Set ADC state */
+ /* - Clear state bitfield related to regular group conversion results */
+ /* - Set state bitfield related to regular operation */
+ ADC_STATE_CLR_SET(hadc->State,
+ HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
+ HAL_ADC_STATE_REG_BUSY);
+
+ /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
+ - if ADC instance is master or if multimode feature is not available
+ - if multimode setting is disabled (ADC instance slave in independent mode) */
+ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
+ || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
+ )
+ {
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+ }
+
+ /* Set ADC error code */
+ /* Check if a conversion is on going on ADC group injected */
+ if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL)
+ {
+ /* Reset ADC error code fields related to regular conversions only */
+ CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
+ }
+ else
+ {
+ /* Reset all ADC error code fields */
+ ADC_CLEAR_ERRORCODE(hadc);
+ }
+
+ /* Clear ADC group regular conversion flag and overrun flag */
+ /* (To ensure of no unknown state from potential previous ADC operations) */
+ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
+
+ /* Process unlocked */
+ /* Unlock before starting ADC conversions: in case of potential */
+ /* interruption, to let the process to ADC IRQ Handler. */
+ __HAL_UNLOCK(hadc);
+
+ /* Disable all interruptions before enabling the desired ones */
+ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
+
+ /* Enable ADC end of conversion interrupt */
+ switch (hadc->Init.EOCSelection)
+ {
+ case ADC_EOC_SEQ_CONV:
+ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOS);
+ break;
+ /* case ADC_EOC_SINGLE_CONV */
+ default:
+ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC);
+ break;
+ }
+
+ /* Enable ADC overrun interrupt */
+ /* If hadc->Init.Overrun is set to ADC_OVR_DATA_PRESERVED, only then is
+ ADC_IT_OVR enabled; otherwise data overwrite is considered as normal
+ behavior and no CPU time is lost for a non-processed interruption */
+ if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
+ {
+ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
+ }
+
+ /* Enable conversion of regular group. */
+ /* If software start has been selected, conversion starts immediately. */
+ /* If external trigger has been selected, conversion will start at next */
+ /* trigger event. */
+ /* Case of multimode enabled (when multimode feature is available): */
+ /* - if ADC is slave and dual regular conversions are enabled, ADC is */
+ /* enabled only (conversion is not started), */
+ /* - if ADC is master, ADC is enabled and conversion is started. */
+ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
+ || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
+ )
+ {
+ /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */
+ if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL)
+ {
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+
+ /* Enable as well injected interruptions in case
+ HAL_ADCEx_InjectedStart_IT() has not been called beforehand. This
+ allows to start regular and injected conversions when JAUTO is
+ set with a single call to HAL_ADC_Start_IT() */
+ switch (hadc->Init.EOCSelection)
+ {
+ case ADC_EOC_SEQ_CONV:
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
+ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
+ break;
+ /* case ADC_EOC_SINGLE_CONV */
+ default:
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);
+ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
+ break;
+ }
+ }
+
+ /* Start ADC group regular conversion */
+ LL_ADC_REG_StartConversion(hadc->Instance);
+ }
+ else
+ {
+ /* ADC instance is a multimode slave instance with multimode regular conversions enabled */
+ SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+ /* if Master ADC JAUTO bit is set, Slave injected interruptions
+ are enabled nevertheless (for same reason as above) */
+ tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
+ if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL)
+ {
+ /* First, update Slave State in setting HAL_ADC_STATE_INJ_BUSY bit
+ and in resetting HAL_ADC_STATE_INJ_EOC bit */
+ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
+ /* Next, set Slave injected interruptions */
+ switch (hadc->Init.EOCSelection)
+ {
+ case ADC_EOC_SEQ_CONV:
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
+ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
+ break;
+ /* case ADC_EOC_SINGLE_CONV */
+ default:
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);
+ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
+ break;
+ }
+ }
+ }
+ }
+ else
+ {
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+ }
+
+ }
+ else
+ {
+ tmp_hal_status = HAL_BUSY;
+ }
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Stop ADC conversion of regular group (and injected group in
+ * case of auto_injection mode), disable interrution of
+ * end-of-conversion, disable ADC peripheral.
+ * @param hadc ADC handle
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc)
+{
+ HAL_StatusTypeDef tmp_hal_status;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* 1. Stop potential conversion on going, on ADC groups regular and injected */
+ tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
+
+ /* Disable ADC peripheral if conversions are effectively stopped */
+ if (tmp_hal_status == HAL_OK)
+ {
+ /* Disable ADC end of conversion interrupt for regular group */
+ /* Disable ADC overrun interrupt */
+ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
+
+ /* 2. Disable the ADC peripheral */
+ tmp_hal_status = ADC_Disable(hadc);
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status == HAL_OK)
+ {
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State,
+ HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
+ HAL_ADC_STATE_READY);
+ }
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Enable ADC, start conversion of regular group and transfer result through DMA.
+ * @note Interruptions enabled in this function:
+ * overrun (if applicable), DMA half transfer, DMA transfer complete.
+ * Each of these interruptions has its dedicated callback function.
+ * @note Case of multimode enabled (when multimode feature is available): HAL_ADC_Start_DMA()
+ * is designed for single-ADC mode only. For multimode, the dedicated
+ * HAL_ADCEx_MultiModeStart_DMA() function must be used.
+ * @param hadc ADC handle
+ * @param pData Destination Buffer address.
+ * @param Length Number of data to be transferred from ADC peripheral to memory
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length)
+{
+ HAL_StatusTypeDef tmp_hal_status;
+ uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Perform ADC enable and conversion start if no conversion is on going */
+ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
+ {
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Ensure that multimode regular conversions are not enabled. */
+ /* Otherwise, dedicated API HAL_ADCEx_MultiModeStart_DMA() must be used. */
+ if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
+ )
+ {
+ /* Enable the ADC peripheral */
+ tmp_hal_status = ADC_Enable(hadc);
+
+ /* Start conversion if ADC is effectively enabled */
+ if (tmp_hal_status == HAL_OK)
+ {
+ /* Set ADC state */
+ /* - Clear state bitfield related to regular group conversion results */
+ /* - Set state bitfield related to regular operation */
+ ADC_STATE_CLR_SET(hadc->State,
+ HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
+ HAL_ADC_STATE_REG_BUSY);
+
+ /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
+ - if ADC instance is master or if multimode feature is not available
+ - if multimode setting is disabled (ADC instance slave in independent mode) */
+ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
+ || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
+ )
+ {
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
+ }
+
+ /* Check if a conversion is on going on ADC group injected */
+ if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL)
+ {
+ /* Reset ADC error code fields related to regular conversions only */
+ CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
+ }
+ else
+ {
+ /* Reset all ADC error code fields */
+ ADC_CLEAR_ERRORCODE(hadc);
+ }
+
+ /* Set the DMA transfer complete callback */
+ hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
+
+ /* Set the DMA half transfer complete callback */
+ hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
+
+ /* Set the DMA error callback */
+ hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
+
+
+ /* Manage ADC and DMA start: ADC overrun interruption, DMA start, */
+ /* ADC start (in case of SW start): */
+
+ /* Clear regular group conversion flag and overrun flag */
+ /* (To ensure of no unknown state from potential previous ADC */
+ /* operations) */
+ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
+
+ /* Process unlocked */
+ /* Unlock before starting ADC conversions: in case of potential */
+ /* interruption, to let the process to ADC IRQ Handler. */
+ __HAL_UNLOCK(hadc);
+
+ /* With DMA, overrun event is always considered as an error even if
+ hadc->Init.Overrun is set to ADC_OVR_DATA_OVERWRITTEN. Therefore,
+ ADC_IT_OVR is enabled. */
+ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
+
+ /* Enable ADC DMA mode*/
+ LL_ADC_REG_SetDataTransferMode(hadc->Instance, (uint32_t)hadc->Init.ConversionDataManagement);
+
+ /* Start the DMA channel */
+ tmp_hal_status = HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
+
+ /* Enable conversion of regular group. */
+ /* If software start has been selected, conversion starts immediately. */
+ /* If external trigger has been selected, conversion will start at next */
+ /* trigger event. */
+ /* Start ADC group regular conversion */
+ LL_ADC_REG_StartConversion(hadc->Instance);
+ }
+ else
+ {
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+ }
+
+ }
+ else
+ {
+ tmp_hal_status = HAL_ERROR;
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+ }
+ }
+ else
+ {
+ tmp_hal_status = HAL_BUSY;
+ }
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Stop ADC conversion of regular group (and injected group in
+ * case of auto_injection mode), disable ADC DMA transfer, disable
+ * ADC peripheral.
+ * @note: ADC peripheral disable is forcing stop of potential
+ * conversion on ADC group injected. If ADC group injected is under use, it
+ * should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
+ * @note Case of multimode enabled (when multimode feature is available):
+ * HAL_ADC_Stop_DMA() function is dedicated to single-ADC mode only.
+ * For multimode, the dedicated HAL_ADCEx_MultiModeStop_DMA() API must be used.
+ * @param hadc ADC handle
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc)
+{
+ HAL_StatusTypeDef tmp_hal_status;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* 1. Stop potential ADC group regular conversion on going */
+ tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
+
+ /* Disable ADC peripheral if conversions are effectively stopped */
+ if (tmp_hal_status == HAL_OK)
+ {
+ /* Disable ADC DMA (ADC DMA configuration of continous requests is kept) */
+ MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0 |ADC_CFGR_DMNGT_1, 0UL);
+
+ /* Disable the DMA channel (in case of DMA in circular mode or stop */
+ /* while DMA transfer is on going) */
+ if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY)
+ {
+ tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
+
+ /* Check if DMA channel effectively disabled */
+ if (tmp_hal_status != HAL_OK)
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
+ }
+ }
+
+ /* Disable ADC overrun interrupt */
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
+
+ /* 2. Disable the ADC peripheral */
+ /* Update "tmp_hal_status" only if DMA channel disabling passed, */
+ /* to keep in memory a potential failing status. */
+ if (tmp_hal_status == HAL_OK)
+ {
+ tmp_hal_status = ADC_Disable(hadc);
+ }
+ else
+ {
+ (void)ADC_Disable(hadc);
+ }
+
+ /* Check if ADC is effectively disabled */
+ if (tmp_hal_status == HAL_OK)
+ {
+ /* Set ADC state */
+ ADC_STATE_CLR_SET(hadc->State,
+ HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
+ HAL_ADC_STATE_READY);
+ }
+
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Get ADC regular group conversion result.
+ * @note Reading register DR automatically clears ADC flag EOC
+ * (ADC group regular end of unitary conversion).
+ * @note This function does not clear ADC flag EOS
+ * (ADC group regular end of sequence conversion).
+ * Occurrence of flag EOS rising:
+ * - If sequencer is composed of 1 rank, flag EOS is equivalent
+ * to flag EOC.
+ * - If sequencer is composed of several ranks, during the scan
+ * sequence flag EOC only is raised, at the end of the scan sequence
+ * both flags EOC and EOS are raised.
+ * To clear this flag, either use function:
+ * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
+ * model polling: @ref HAL_ADC_PollForConversion()
+ * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS).
+ * @param hadc ADC handle
+ * @retval ADC group regular conversion data
+ */
+uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef *hadc)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Note: EOC flag is not cleared here by software because automatically */
+ /* cleared by hardware when reading register DR. */
+
+ /* Return ADC converted value */
+ return hadc->Instance->DR;
+}
+
+/**
+ * @brief Handle ADC interrupt request.
+ * @param hadc ADC handle
+ * @retval None
+ */
+void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc)
+{
+ uint32_t overrun_error = 0UL; /* flag set if overrun occurrence has to be considered as an error */
+ uint32_t tmp_isr = hadc->Instance->ISR;
+ uint32_t tmp_ier = hadc->Instance->IER;
+ uint32_t tmp_adc_inj_is_trigger_source_sw_start;
+ uint32_t tmp_adc_reg_is_trigger_source_sw_start;
+ uint32_t tmp_cfgr;
+ const ADC_TypeDef *tmpADC_Master;
+ uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
+
+ /* ========== Check End of Sampling flag for ADC group regular ========== */
+ if (((tmp_isr & ADC_FLAG_EOSMP) == ADC_FLAG_EOSMP) && ((tmp_ier & ADC_IT_EOSMP) == ADC_IT_EOSMP))
+ {
+ /* Update state machine on end of sampling status if not in error state */
+ if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
+ {
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP);
+ }
+
+ /* End Of Sampling callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->EndOfSamplingCallback(hadc);
+#else
+ HAL_ADCEx_EndOfSamplingCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Clear regular group conversion flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP);
+ }
+
+ /* ====== Check ADC group regular end of unitary conversion sequence conversions ===== */
+ if ((((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) ||
+ (((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS)))
+ {
+ /* Update state machine on conversion status if not in error state */
+ if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
+ {
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
+ }
+
+ /* Determine whether any further conversion upcoming on group regular */
+ /* by external trigger, continuous mode or scan sequence on going */
+ /* to disable interruption. */
+ if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
+ {
+ /* Get relevant register CFGR in ADC instance of ADC master or slave */
+ /* in function of multimode state (for devices with multimode */
+ /* available). */
+ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
+ || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
+ )
+ {
+ /* check CONT bit directly in handle ADC CFGR register */
+ tmp_cfgr = READ_REG(hadc->Instance->CFGR);
+ }
+ else
+ {
+ /* else need to check Master ADC CONT bit */
+ tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
+ tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
+ }
+
+ /* Carry on if continuous mode is disabled */
+ if (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) != ADC_CFGR_CONT)
+ {
+ /* If End of Sequence is reached, disable interrupts */
+ if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS))
+ {
+ /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */
+ /* ADSTART==0 (no conversion on going) */
+ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
+ {
+ /* Disable ADC end of sequence conversion interrupt */
+ /* Note: Overrun interrupt was enabled with EOC interrupt in */
+ /* HAL_Start_IT(), but is not disabled here because can be used */
+ /* by overrun IRQ process below. */
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
+
+ /* Set ADC state */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
+
+ if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
+ {
+ SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+ }
+ }
+ else
+ {
+ /* Change ADC state to error state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC peripheral internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+ }
+ }
+ }
+ }
+
+ /* Conversion complete callback */
+ /* Note: Into callback function "HAL_ADC_ConvCpltCallback()", */
+ /* to determine if conversion has been triggered from EOC or EOS, */
+ /* possibility to use: */
+ /* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->ConvCpltCallback(hadc);
+#else
+ HAL_ADC_ConvCpltCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Clear regular group conversion flag */
+ /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */
+ /* conversion flags clear induces the release of the preserved data.*/
+ /* Therefore, if the preserved data value is needed, it must be */
+ /* read preliminarily into HAL_ADC_ConvCpltCallback(). */
+ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS));
+ }
+
+ /* ====== Check ADC group injected end of unitary conversion sequence conversions ===== */
+ if ((((tmp_isr & ADC_FLAG_JEOC) == ADC_FLAG_JEOC) && ((tmp_ier & ADC_IT_JEOC) == ADC_IT_JEOC)) ||
+ (((tmp_isr & ADC_FLAG_JEOS) == ADC_FLAG_JEOS) && ((tmp_ier & ADC_IT_JEOS) == ADC_IT_JEOS)))
+ {
+ /* Update state machine on conversion status if not in error state */
+ if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
+ {
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
+ }
+
+ /* Retrieve ADC configuration */
+ tmp_adc_inj_is_trigger_source_sw_start = LL_ADC_INJ_IsTriggerSourceSWStart(hadc->Instance);
+ tmp_adc_reg_is_trigger_source_sw_start = LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance);
+ /* Get relevant register CFGR in ADC instance of ADC master or slave */
+ /* in function of multimode state (for devices with multimode */
+ /* available). */
+ if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
+ || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT)
+ || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL)
+ )
+ {
+ tmp_cfgr = READ_REG(hadc->Instance->CFGR);
+ }
+ else
+ {
+ tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
+ tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
+ }
+
+ /* Disable interruption if no further conversion upcoming by injected */
+ /* external trigger or by automatic injected conversion with regular */
+ /* group having no further conversion upcoming (same conditions as */
+ /* regular group interruption disabling above), */
+ /* and if injected scan sequence is completed. */
+ if ((tmp_adc_inj_is_trigger_source_sw_start != 0UL) ||
+ ((READ_BIT(tmp_cfgr, ADC_CFGR_JAUTO) == 0UL) &&
+ ((tmp_adc_reg_is_trigger_source_sw_start != 0UL) &&
+ (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) == 0UL))))
+ {
+ /* If End of Sequence is reached, disable interrupts */
+ if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS))
+ {
+ /* Particular case if injected contexts queue is enabled: */
+ /* when the last context has been fully processed, JSQR is reset */
+ /* by the hardware. Even if no injected conversion is planned to come */
+ /* (queue empty, triggers are ignored), it can start again */
+ /* immediately after setting a new context (JADSTART is still set). */
+ /* Therefore, state of HAL ADC injected group is kept to busy. */
+ if (READ_BIT(tmp_cfgr, ADC_CFGR_JQM) == 0UL)
+ {
+ /* Allowed to modify bits ADC_IT_JEOC/ADC_IT_JEOS only if bit */
+ /* JADSTART==0 (no conversion on going) */
+ if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL)
+ {
+ /* Disable ADC end of sequence conversion interrupt */
+ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC | ADC_IT_JEOS);
+
+ /* Set ADC state */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
+
+ if ((hadc->State & HAL_ADC_STATE_REG_BUSY) == 0UL)
+ {
+ SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+ }
+ }
+ else
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC peripheral internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+ }
+ }
+ }
+ }
+
+ /* Injected Conversion complete callback */
+ /* Note: HAL_ADCEx_InjectedConvCpltCallback can resort to
+ if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOS)) or
+ if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOC)) to determine whether
+ interruption has been triggered by end of conversion or end of
+ sequence. */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->InjectedConvCpltCallback(hadc);
+#else
+ HAL_ADCEx_InjectedConvCpltCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Clear injected group conversion flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC | ADC_FLAG_JEOS);
+ }
+
+ /* ========== Check Analog watchdog 1 flag ========== */
+ if (((tmp_isr & ADC_FLAG_AWD1) == ADC_FLAG_AWD1) && ((tmp_ier & ADC_IT_AWD1) == ADC_IT_AWD1))
+ {
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
+
+ /* Level out of window 1 callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->LevelOutOfWindowCallback(hadc);
+#else
+ HAL_ADC_LevelOutOfWindowCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Clear ADC analog watchdog flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);
+ }
+
+ /* ========== Check analog watchdog 2 flag ========== */
+ if (((tmp_isr & ADC_FLAG_AWD2) == ADC_FLAG_AWD2) && ((tmp_ier & ADC_IT_AWD2) == ADC_IT_AWD2))
+ {
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);
+
+ /* Level out of window 2 callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->LevelOutOfWindow2Callback(hadc);
+#else
+ HAL_ADCEx_LevelOutOfWindow2Callback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Clear ADC analog watchdog flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);
+ }
+
+ /* ========== Check analog watchdog 3 flag ========== */
+ if (((tmp_isr & ADC_FLAG_AWD3) == ADC_FLAG_AWD3) && ((tmp_ier & ADC_IT_AWD3) == ADC_IT_AWD3))
+ {
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);
+
+ /* Level out of window 3 callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->LevelOutOfWindow3Callback(hadc);
+#else
+ HAL_ADCEx_LevelOutOfWindow3Callback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+
+ /* Clear ADC analog watchdog flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);
+ }
+
+ /* ========== Check Overrun flag ========== */
+ if (((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR))
+ {
+ /* If overrun is set to overwrite previous data (default setting), */
+ /* overrun event is not considered as an error. */
+ /* (cf ref manual "Managing conversions without using the DMA and without */
+ /* overrun ") */
+ /* Exception for usage with DMA overrun event always considered as an */
+ /* error. */
+ if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
+ {
+ overrun_error = 1UL;
+ }
+ else
+ {
+ /* Check DMA configuration */
+ if (tmp_multimode_config != LL_ADC_MULTI_INDEPENDENT)
+ {
+ /* Multimode (when feature is available) is enabled,
+ Common Control Register MDMA bits must be checked. */
+ if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC)
+ {
+ overrun_error = 1UL;
+ }
+ }
+ else
+ {
+ /* Multimode not set or feature not available or ADC independent */
+ if ((hadc->Instance->CFGR & ADC_CFGR_DMNGT) != 0UL)
+ {
+ overrun_error = 1UL;
+ }
+ }
+ }
+
+ if (overrun_error == 1UL)
+ {
+ /* Change ADC state to error state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
+
+ /* Set ADC error code to overrun */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
+
+ /* Error callback */
+ /* Note: In case of overrun, ADC conversion data is preserved until */
+ /* flag OVR is reset. */
+ /* Therefore, old ADC conversion data can be retrieved in */
+ /* function "HAL_ADC_ErrorCallback()". */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->ErrorCallback(hadc);
+#else
+ HAL_ADC_ErrorCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+ }
+
+ /* Clear ADC overrun flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
+ }
+
+ /* ========== Check Injected context queue overflow flag ========== */
+ if (((tmp_isr & ADC_FLAG_JQOVF) == ADC_FLAG_JQOVF) && ((tmp_ier & ADC_IT_JQOVF) == ADC_IT_JQOVF))
+ {
+ /* Change ADC state to overrun state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);
+
+ /* Set ADC error code to Injected context queue overflow */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
+
+ /* Clear the Injected context queue overflow flag */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);
+
+ /* Injected context queue overflow callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->InjectedQueueOverflowCallback(hadc);
+#else
+ HAL_ADCEx_InjectedQueueOverflowCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+ }
+
+}
+
+/**
+ * @brief Conversion complete callback in non-blocking mode.
+ * @param hadc ADC handle
+ * @retval None
+ */
+__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_ConvCpltCallback must be implemented in the user file.
+ */
+}
+
+/**
+ * @brief Conversion DMA half-transfer callback in non-blocking mode.
+ * @param hadc ADC handle
+ * @retval None
+ */
+__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file.
+ */
+}
+
+/**
+ * @brief Analog watchdog 1 callback in non-blocking mode.
+ * @param hadc ADC handle
+ * @retval None
+ */
+__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file.
+ */
+}
+
+/**
+ * @brief ADC error callback in non-blocking mode
+ * (ADC conversion with interruption or transfer by DMA).
+ * @note In case of error due to overrun when using ADC with DMA transfer
+ * (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"):
+ * - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()".
+ * - If needed, restart a new ADC conversion using function
+ * "HAL_ADC_Start_DMA()"
+ * (this function is also clearing overrun flag)
+ * @param hadc ADC handle
+ * @retval None
+ */
+__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hadc);
+
+ /* NOTE : This function should not be modified. When the callback is needed,
+ function HAL_ADC_ErrorCallback must be implemented in the user file.
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
+ * @brief Peripheral Control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to:
+ (+) Configure channels on regular group
+ (+) Configure the analog watchdog
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configure a channel to be assigned to ADC group regular.
+ * @note In case of usage of internal measurement channels:
+ * Vbat/VrefInt/TempSensor.
+ * These internal paths can be disabled using function
+ * HAL_ADC_DeInit().
+ * @note Possibility to update parameters on the fly:
+ * This function initializes channel into ADC group regular,
+ * following calls to this function can be used to reconfigure
+ * some parameters of structure "ADC_ChannelConfTypeDef" on the fly,
+ * without resetting the ADC.
+ * The setting of these parameters is conditioned to ADC state:
+ * Refer to comments of structure "ADC_ChannelConfTypeDef".
+ * @param hadc ADC handle
+ * @param sConfig Structure of ADC channel assigned to ADC group regular.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, ADC_ChannelConfTypeDef *sConfig)
+{
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+ uint32_t tmpOffsetShifted;
+ uint32_t tmp_config_internal_channel;
+ __IO uint32_t wait_loop_index = 0;
+ uint32_t tmp_adc_is_conversion_on_going_regular;
+ uint32_t tmp_adc_is_conversion_on_going_injected;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
+ assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
+ assert_param(IS_ADC_SINGLE_DIFFERENTIAL(sConfig->SingleDiff));
+ assert_param(IS_ADC_OFFSET_NUMBER(sConfig->OffsetNumber));
+ /* Check offset range according to oversampling setting */
+ if (hadc->Init.OversamplingMode == ENABLE)
+ {
+ assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset/(hadc->Init.Oversampling.Ratio+1U)));
+ }
+ else
+ {
+ assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset));
+ }
+
+ /* if ROVSE is set, the value of the OFFSETy_EN bit in ADCx_OFRy register is
+ ignored (considered as reset) */
+ assert_param(!((sConfig->OffsetNumber != ADC_OFFSET_NONE) && (hadc->Init.OversamplingMode == ENABLE)));
+
+ /* Verification of channel number */
+ if (sConfig->SingleDiff != ADC_DIFFERENTIAL_ENDED)
+ {
+ assert_param(IS_ADC_CHANNEL(sConfig->Channel));
+ }
+ else
+ {
+ if (hadc->Instance == ADC1)
+ {
+ assert_param(IS_ADC1_DIFF_CHANNEL(sConfig->Channel));
+ }
+ if (hadc->Instance == ADC2)
+ {
+ assert_param(IS_ADC2_DIFF_CHANNEL(sConfig->Channel));
+ }
+#if defined(ADC3)
+ /* ADC3 is not available on some STM32H7 products */
+ if (hadc->Instance == ADC3)
+ {
+ assert_param(IS_ADC3_DIFF_CHANNEL(sConfig->Channel));
+ }
+#endif
+ }
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Parameters update conditioned to ADC state: */
+ /* Parameters that can be updated when ADC is disabled or enabled without */
+ /* conversion on going on regular group: */
+ /* - Channel number */
+ /* - Channel rank */
+ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
+ {
+ /* ADC channels preselection */
+ hadc->Instance->PCSEL |= (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) & 0x1FUL));
+
+ /* Set ADC group regular sequence: channel on the selected scan sequence rank */
+ LL_ADC_REG_SetSequencerRanks(hadc->Instance, sConfig->Rank, sConfig->Channel);
+
+ /* Parameters update conditioned to ADC state: */
+ /* Parameters that can be updated when ADC is disabled or enabled without */
+ /* conversion on going on regular group: */
+ /* - Channel sampling time */
+ /* - Channel offset */
+ tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
+ tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
+ if ((tmp_adc_is_conversion_on_going_regular == 0UL)
+ && (tmp_adc_is_conversion_on_going_injected == 0UL)
+ )
+ {
+ /* Set sampling time of the selected ADC channel */
+ LL_ADC_SetChannelSamplingTime(hadc->Instance, sConfig->Channel, sConfig->SamplingTime);
+
+ /* Configure the offset: offset enable/disable, channel, offset value */
+
+ /* Shift the offset with respect to the selected ADC resolution. */
+ /* Offset has to be left-aligned on bit 11, the LSB (right bits) are set to 0 */
+ tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, (uint32_t)sConfig->Offset);
+
+ if (sConfig->OffsetNumber != ADC_OFFSET_NONE)
+ {
+ /* Set ADC selected offset number */
+ LL_ADC_SetOffset(hadc->Instance, sConfig->OffsetNumber, sConfig->Channel, tmpOffsetShifted);
+
+ assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetSignedSaturation));
+ /* Set ADC selected offset signed saturation */
+ LL_ADC_SetOffsetSignedSaturation(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetSignedSaturation == ENABLE) ? LL_ADC_OFFSET_SIGNED_SATURATION_ENABLE : LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE);
+
+ assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetRightShift));
+ /* Set ADC selected offset right shift */
+ LL_ADC_SetDataRightShift(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetRightShift == ENABLE) ? LL_ADC_OFFSET_RSHIFT_ENABLE : LL_ADC_OFFSET_RSHIFT_DISABLE);
+
+ }
+ else
+ {
+ /* Scan OFR1, OFR2, OFR3, OFR4 to check if the selected channel is enabled.
+ If this is the case, offset OFRx is disabled since
+ sConfig->OffsetNumber = ADC_OFFSET_NONE. */
+ if (((hadc->Instance->OFR1) & ADC_OFR1_OFFSET1_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
+ {
+ CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_SSATE);
+ }
+ if (((hadc->Instance->OFR2) & ADC_OFR2_OFFSET2_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
+ {
+ CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_SSATE);
+ }
+ if (((hadc->Instance->OFR3) & ADC_OFR3_OFFSET3_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
+ {
+ CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_SSATE);
+ }
+ if (((hadc->Instance->OFR4) & ADC_OFR4_OFFSET4_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
+ {
+ CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_SSATE);
+ }
+ }
+ }
+
+ /* Parameters update conditioned to ADC state: */
+ /* Parameters that can be updated only when ADC is disabled: */
+ /* - Single or differential mode */
+ /* - Internal measurement channels: Vbat/VrefInt/TempSensor */
+ if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
+ {
+ /* Set mode single-ended or differential input of the selected ADC channel */
+ LL_ADC_SetChannelSingleDiff(hadc->Instance, sConfig->Channel, sConfig->SingleDiff);
+
+ /* Configuration of differential mode */
+ if (sConfig->SingleDiff == ADC_DIFFERENTIAL_ENDED)
+ {
+ /* Set sampling time of the selected ADC channel */
+ /* Note: ADC channel number masked with value "0x1F" to ensure shift value within 32 bits range */
+ LL_ADC_SetChannelSamplingTime(hadc->Instance,
+ (uint32_t)(__LL_ADC_DECIMAL_NB_TO_CHANNEL((__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) + 1UL) & 0x1FUL)),
+ sConfig->SamplingTime);
+ }
+
+ /* Management of internal measurement channels: Vbat/VrefInt/TempSensor. */
+ /* If internal channel selected, enable dedicated internal buffers and */
+ /* paths. */
+ /* Note: these internal measurement paths can be disabled using */
+ /* HAL_ADC_DeInit(). */
+
+ if(__LL_ADC_IS_CHANNEL_INTERNAL(sConfig->Channel))
+ {
+ /* Configuration of common ADC parameters */
+
+ tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
+
+ /* Software is allowed to change common parameters only when all ADCs */
+ /* of the common group are disabled. */
+ if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
+ {
+ /* If the requested internal measurement path has already been enabled, */
+ /* bypass the configuration processing. */
+ if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_TEMPSENSOR) == 0UL))
+ {
+ if (ADC_TEMPERATURE_SENSOR_INSTANCE(hadc))
+ {
+ LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_TEMPSENSOR | tmp_config_internal_channel);
+
+ /* Delay for temperature sensor stabilization time */
+ /* Wait loop initialization and execution */
+ /* Note: Variable divided by 2 to compensate partially */
+ /* CPU processing cycles, scaling in us split to not */
+ /* exceed 32 bits register capacity and handle low frequency. */
+ wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * (SystemCoreClock / (100000UL * 2UL)));
+ while(wait_loop_index != 0UL)
+ {
+ wait_loop_index--;
+ }
+ }
+ }
+ else if ((sConfig->Channel == ADC_CHANNEL_VBAT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VBAT) == 0UL))
+ {
+ if (ADC_BATTERY_VOLTAGE_INSTANCE(hadc))
+ {
+ LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VBAT | tmp_config_internal_channel);
+ }
+ }
+ else if ((sConfig->Channel == ADC_CHANNEL_VREFINT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VREFINT) == 0UL))
+ {
+ if (ADC_VREFINT_INSTANCE(hadc))
+ {
+ LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VREFINT | tmp_config_internal_channel);
+ }
+ }
+ else
+ {
+ /* nothing to do */
+ }
+ }
+ /* If the requested internal measurement path has already been */
+ /* enabled and other ADC of the common group are enabled, internal */
+ /* measurement paths cannot be enabled. */
+ else
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+ }
+ }
+ }
+
+ /* If a conversion is on going on regular group, no update on regular */
+ /* channel could be done on neither of the channel configuration structure */
+ /* parameters. */
+ else
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+/**
+ * @brief Configure the analog watchdog.
+ * @note Possibility to update parameters on the fly:
+ * This function initializes the selected analog watchdog, successive
+ * calls to this function can be used to reconfigure some parameters
+ * of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting
+ * the ADC.
+ * The setting of these parameters is conditioned to ADC state.
+ * For parameters constraints, see comments of structure
+ * "ADC_AnalogWDGConfTypeDef".
+ * @note On this STM32 serie, analog watchdog thresholds cannot be modified
+ * while ADC conversion is on going.
+ * @param hadc ADC handle
+ * @param AnalogWDGConfig Structure of ADC analog watchdog configuration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, ADC_AnalogWDGConfTypeDef *AnalogWDGConfig)
+{
+ HAL_StatusTypeDef tmp_hal_status = HAL_OK;
+ uint32_t tmpAWDHighThresholdShifted;
+ uint32_t tmpAWDLowThresholdShifted;
+ uint32_t tmp_adc_is_conversion_on_going_regular;
+ uint32_t tmp_adc_is_conversion_on_going_injected;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_ANALOG_WATCHDOG_NUMBER(AnalogWDGConfig->WatchdogNumber));
+ assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode));
+ assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
+
+ if ((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) ||
+ (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC) ||
+ (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC))
+ {
+ assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
+ }
+
+ /* Verify thresholds range */
+ if (hadc->Init.OversamplingMode == ENABLE)
+ {
+ /* Case of oversampling enabled: thresholds are compared to oversampling
+ intermediate computation (after ratio, before shift application) */
+ assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold / (hadc->Init.Oversampling.Ratio + 1UL)));
+ assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold / (hadc->Init.Oversampling.Ratio + 1UL)));
+ }
+ else
+ {
+ /* Verify if thresholds are within the selected ADC resolution */
+ assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold));
+ assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold));
+ }
+
+ /* Process locked */
+ __HAL_LOCK(hadc);
+
+ /* Parameters update conditioned to ADC state: */
+ /* Parameters that can be updated when ADC is disabled or enabled without */
+ /* conversion on going on ADC groups regular and injected: */
+ /* - Analog watchdog channels */
+ /* - Analog watchdog thresholds */
+ tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
+ tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
+ if ((tmp_adc_is_conversion_on_going_regular == 0UL)
+ && (tmp_adc_is_conversion_on_going_injected == 0UL)
+ )
+ {
+ /* Analog watchdog configuration */
+ if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1)
+ {
+ /* Configuration of analog watchdog: */
+ /* - Set the analog watchdog enable mode: one or overall group of */
+ /* channels, on groups regular and-or injected. */
+ switch (AnalogWDGConfig->WatchdogMode)
+ {
+ case ADC_ANALOGWATCHDOG_SINGLE_REG:
+ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel,
+ LL_ADC_GROUP_REGULAR));
+ break;
+
+ case ADC_ANALOGWATCHDOG_SINGLE_INJEC:
+ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel,
+ LL_ADC_GROUP_INJECTED));
+ break;
+
+ case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC:
+ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel,
+ LL_ADC_GROUP_REGULAR_INJECTED));
+ break;
+
+ case ADC_ANALOGWATCHDOG_ALL_REG:
+ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG);
+ break;
+
+ case ADC_ANALOGWATCHDOG_ALL_INJEC:
+ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_INJ);
+ break;
+
+ case ADC_ANALOGWATCHDOG_ALL_REGINJEC:
+ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG_INJ);
+ break;
+
+ default: /* ADC_ANALOGWATCHDOG_NONE */
+ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_DISABLE);
+ break;
+ }
+
+ /* Shift the offset in function of the selected ADC resolution: */
+ /* Thresholds have to be left-aligned on bit 11, the LSB (right bits) */
+ /* are set to 0 */
+ tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
+ tmpAWDLowThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
+
+ /* Set the high and low thresholds */
+ MODIFY_REG(hadc->Instance->LTR1, ADC_LTR_LT , tmpAWDLowThresholdShifted);
+ MODIFY_REG(hadc->Instance->HTR1, ADC_HTR_HT , tmpAWDHighThresholdShifted);
+
+ /* Update state, clear previous result related to AWD1 */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD1);
+
+ /* Clear flag ADC analog watchdog */
+ /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */
+ /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */
+ /* (in case left enabled by previous ADC operations). */
+ LL_ADC_ClearFlag_AWD1(hadc->Instance);
+
+ /* Configure ADC analog watchdog interrupt */
+ if (AnalogWDGConfig->ITMode == ENABLE)
+ {
+ LL_ADC_EnableIT_AWD1(hadc->Instance);
+ }
+ else
+ {
+ LL_ADC_DisableIT_AWD1(hadc->Instance);
+ }
+ }
+ /* Case of ADC_ANALOGWATCHDOG_2 or ADC_ANALOGWATCHDOG_3 */
+ else
+ {
+ switch (AnalogWDGConfig->WatchdogMode)
+ {
+ case ADC_ANALOGWATCHDOG_SINGLE_REG:
+ case ADC_ANALOGWATCHDOG_SINGLE_INJEC:
+ case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC:
+ /* Update AWD by bitfield to keep the possibility to monitor */
+ /* several channels by successive calls of this function. */
+ if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
+ {
+ SET_BIT(hadc->Instance->AWD2CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
+ }
+ else
+ {
+ SET_BIT(hadc->Instance->AWD3CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
+ }
+ break;
+
+ case ADC_ANALOGWATCHDOG_ALL_REG:
+ case ADC_ANALOGWATCHDOG_ALL_INJEC:
+ case ADC_ANALOGWATCHDOG_ALL_REGINJEC:
+ /* Update AWD by bitfield to keep the possibility to monitor */
+ /* several channels by successive calls of this function. */
+ if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
+ {
+ SET_BIT(hadc->Instance->AWD2CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
+ }
+ else
+ {
+ SET_BIT(hadc->Instance->AWD3CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
+ }
+ break;
+
+ default: /* ADC_ANALOGWATCHDOG_NONE */
+ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_DISABLE);
+ break;
+ }
+
+ /* Shift the thresholds in function of the selected ADC resolution */
+ /* have to be left-aligned on bit 15, the LSB (right bits) are set to 0 */
+ tmpAWDHighThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
+ tmpAWDLowThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
+
+ if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
+ {
+ /* Set ADC analog watchdog thresholds value of both thresholds high and low */
+ MODIFY_REG(hadc->Instance->LTR2, ADC_LTR_LT , tmpAWDLowThresholdShifted);
+ MODIFY_REG(hadc->Instance->HTR2, ADC_HTR_HT , tmpAWDHighThresholdShifted);
+ }
+ else
+ {
+ /* Set ADC analog watchdog thresholds value of both thresholds high and low */
+ MODIFY_REG(hadc->Instance->LTR3, ADC_LTR_LT , tmpAWDLowThresholdShifted);
+ MODIFY_REG(hadc->Instance->HTR3, ADC_HTR_HT , tmpAWDHighThresholdShifted);
+ }
+
+ if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
+ {
+ /* Update state, clear previous result related to AWD2 */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD2);
+
+ /* Clear flag ADC analog watchdog */
+ /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */
+ /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */
+ /* (in case left enabled by previous ADC operations). */
+ LL_ADC_ClearFlag_AWD2(hadc->Instance);
+
+ /* Configure ADC analog watchdog interrupt */
+ if (AnalogWDGConfig->ITMode == ENABLE)
+ {
+ LL_ADC_EnableIT_AWD2(hadc->Instance);
+ }
+ else
+ {
+ LL_ADC_DisableIT_AWD2(hadc->Instance);
+ }
+ }
+ /* (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_3) */
+ else
+ {
+ /* Update state, clear previous result related to AWD3 */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD3);
+
+ /* Clear flag ADC analog watchdog */
+ /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */
+ /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */
+ /* (in case left enabled by previous ADC operations). */
+ LL_ADC_ClearFlag_AWD3(hadc->Instance);
+
+ /* Configure ADC analog watchdog interrupt */
+ if (AnalogWDGConfig->ITMode == ENABLE)
+ {
+ LL_ADC_EnableIT_AWD3(hadc->Instance);
+ }
+ else
+ {
+ LL_ADC_DisableIT_AWD3(hadc->Instance);
+ }
+ }
+ }
+
+ }
+ /* If a conversion is on going on ADC group regular or injected, no update */
+ /* could be done on neither of the AWD configuration structure parameters. */
+ else
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
+
+ tmp_hal_status = HAL_ERROR;
+ }
+ /* Process unlocked */
+ __HAL_UNLOCK(hadc);
+
+ /* Return function status */
+ return tmp_hal_status;
+}
+
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions
+ * @brief ADC Peripheral State functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral state and errors functions #####
+ ===============================================================================
+ [..]
+ This subsection provides functions to get in run-time the status of the
+ peripheral.
+ (+) Check the ADC state
+ (+) Check the ADC error code
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Return the ADC handle state.
+ * @note ADC state machine is managed by bitfields, ADC status must be
+ * compared with states bits.
+ * For example:
+ * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_REG_BUSY) != 0UL) "
+ * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) "
+ * @param hadc ADC handle
+ * @retval ADC handle state (bitfield on 32 bits)
+ */
+uint32_t HAL_ADC_GetState(ADC_HandleTypeDef *hadc)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ /* Return ADC handle state */
+ return hadc->State;
+}
+
+/**
+ * @brief Return the ADC error code.
+ * @param hadc ADC handle
+ * @retval ADC error code (bitfield on 32 bits)
+ */
+uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+
+ return hadc->ErrorCode;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Private_Functions ADC Private Functions
+ * @{
+ */
+
+/**
+ * @brief Stop ADC conversion.
+ * @param hadc ADC handle
+ * @param ConversionGroup ADC group regular and/or injected.
+ * This parameter can be one of the following values:
+ * @arg @ref ADC_REGULAR_GROUP ADC regular conversion type.
+ * @arg @ref ADC_INJECTED_GROUP ADC injected conversion type.
+ * @arg @ref ADC_REGULAR_INJECTED_GROUP ADC regular and injected conversion type.
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef *hadc, uint32_t ConversionGroup)
+{
+ uint32_t tickstart;
+ uint32_t Conversion_Timeout_CPU_cycles = 0UL;
+ uint32_t conversion_group_reassigned = ConversionGroup;
+ uint32_t tmp_ADC_CR_ADSTART_JADSTART;
+ uint32_t tmp_adc_is_conversion_on_going_regular;
+ uint32_t tmp_adc_is_conversion_on_going_injected;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
+ assert_param(IS_ADC_CONVERSION_GROUP(ConversionGroup));
+
+ /* Verification if ADC is not already stopped (on regular and injected */
+ /* groups) to bypass this function if not needed. */
+ tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
+ tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
+ if ((tmp_adc_is_conversion_on_going_regular != 0UL)
+ || (tmp_adc_is_conversion_on_going_injected != 0UL)
+ )
+ {
+ /* Particular case of continuous auto-injection mode combined with */
+ /* auto-delay mode. */
+ /* In auto-injection mode, regular group stop ADC_CR_ADSTP is used (not */
+ /* injected group stop ADC_CR_JADSTP). */
+ /* Procedure to be followed: Wait until JEOS=1, clear JEOS, set ADSTP=1 */
+ /* (see reference manual). */
+ if (((hadc->Instance->CFGR & ADC_CFGR_JAUTO) != 0UL)
+ && (hadc->Init.ContinuousConvMode == ENABLE)
+ && (hadc->Init.LowPowerAutoWait == ENABLE)
+ )
+ {
+ /* Use stop of regular group */
+ conversion_group_reassigned = ADC_REGULAR_GROUP;
+
+ /* Wait until JEOS=1 (maximum Timeout: 4 injected conversions) */
+ while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS) == 0UL)
+ {
+ if (Conversion_Timeout_CPU_cycles >= (ADC_CONVERSION_TIME_MAX_CPU_CYCLES * 4UL))
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC peripheral internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+
+ return HAL_ERROR;
+ }
+ Conversion_Timeout_CPU_cycles ++;
+ }
+
+ /* Clear JEOS */
+ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOS);
+ }
+
+ /* Stop potential conversion on going on ADC group regular */
+ if (conversion_group_reassigned != ADC_INJECTED_GROUP)
+ {
+ /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */
+ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL)
+ {
+ if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL)
+ {
+ /* Stop ADC group regular conversion */
+ LL_ADC_REG_StopConversion(hadc->Instance);
+ }
+ }
+ }
+
+ /* Stop potential conversion on going on ADC group injected */
+ if (conversion_group_reassigned != ADC_REGULAR_GROUP)
+ {
+ /* Software is allowed to set JADSTP only when JADSTART=1 and ADDIS=0 */
+ if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) != 0UL)
+ {
+ if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL)
+ {
+ /* Stop ADC group injected conversion */
+ LL_ADC_INJ_StopConversion(hadc->Instance);
+ }
+ }
+ }
+
+ /* Selection of start and stop bits with respect to the regular or injected group */
+ switch (conversion_group_reassigned)
+ {
+ case ADC_REGULAR_INJECTED_GROUP:
+ tmp_ADC_CR_ADSTART_JADSTART = (ADC_CR_ADSTART | ADC_CR_JADSTART);
+ break;
+ case ADC_INJECTED_GROUP:
+ tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_JADSTART;
+ break;
+ /* Case ADC_REGULAR_GROUP only*/
+ default:
+ tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_ADSTART;
+ break;
+ }
+
+ /* Wait for conversion effectively stopped */
+ tickstart = HAL_GetTick();
+
+ while ((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != 0UL)
+ {
+ if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC peripheral internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+
+ return HAL_ERROR;
+ }
+ }
+
+ }
+
+ /* Return HAL status */
+ return HAL_OK;
+}
+
+
+
+/**
+ * @brief Enable the selected ADC.
+ * @note Prerequisite condition to use this function: ADC must be disabled
+ * and voltage regulator must be enabled (done into HAL_ADC_Init()).
+ * @param hadc ADC handle
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc)
+{
+ uint32_t tickstart;
+
+ /* ADC enable and wait for ADC ready (in case of ADC is disabled or */
+ /* enabling phase not yet completed: flag ADC ready not yet set). */
+ /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */
+ /* causes: ADC clock not running, ...). */
+ if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
+ {
+ /* Check if conditions to enable the ADC are fulfilled */
+ if ((hadc->Instance->CR & (ADC_CR_ADCAL | ADC_CR_JADSTP | ADC_CR_ADSTP | ADC_CR_JADSTART | ADC_CR_ADSTART | ADC_CR_ADDIS | ADC_CR_ADEN)) != 0UL)
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC peripheral internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+
+ return HAL_ERROR;
+ }
+
+ /* Enable the ADC peripheral */
+ LL_ADC_Enable(hadc->Instance);
+
+ /* Wait for ADC effectively enabled */
+ tickstart = HAL_GetTick();
+
+ /* Poll for ADC ready flag raised except case of multimode enabled
+ and ADC slave selected. */
+ uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
+ if ( (__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
+ || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
+ )
+ {
+ while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL)
+ {
+ /* If ADEN bit is set less than 4 ADC clock cycles after the ADCAL bit
+ has been cleared (after a calibration), ADEN bit is reset by the
+ calibration logic.
+ The workaround is to continue setting ADEN until ADRDY is becomes 1.
+ Additionally, ADC_ENABLE_TIMEOUT is defined to encompass this
+ 4 ADC clock cycle duration */
+ /* Note: Test of ADC enabled required due to hardware constraint to */
+ /* not enable ADC if already enabled. */
+ if(LL_ADC_IsEnabled(hadc->Instance) == 0UL)
+ {
+ LL_ADC_Enable(hadc->Instance);
+ }
+
+ if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT)
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC peripheral internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+
+ return HAL_ERROR;
+ }
+ }
+ }
+ }
+
+ /* Return HAL status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Disable the selected ADC.
+ * @note Prerequisite condition to use this function: ADC conversions must be
+ * stopped.
+ * @param hadc ADC handle
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef *hadc)
+{
+ uint32_t tickstart;
+ const uint32_t tmp_adc_is_disable_on_going = LL_ADC_IsDisableOngoing(hadc->Instance);
+
+ /* Verification if ADC is not already disabled: */
+ /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */
+ /* disabled. */
+ if ((LL_ADC_IsEnabled(hadc->Instance) != 0UL)
+ && (tmp_adc_is_disable_on_going == 0UL)
+ )
+ {
+ /* Check if conditions to disable the ADC are fulfilled */
+ if ((hadc->Instance->CR & (ADC_CR_JADSTART | ADC_CR_ADSTART | ADC_CR_ADEN)) == ADC_CR_ADEN)
+ {
+ /* Disable the ADC peripheral */
+ LL_ADC_Disable(hadc->Instance);
+ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOSMP | ADC_FLAG_RDY));
+ }
+ else
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC peripheral internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+
+ return HAL_ERROR;
+ }
+
+ /* Wait for ADC effectively disabled */
+ /* Get tick count */
+ tickstart = HAL_GetTick();
+
+ while ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL)
+ {
+ if ((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT)
+ {
+ /* Update ADC state machine to error */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
+
+ /* Set ADC error code to ADC peripheral internal error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
+
+ return HAL_ERROR;
+ }
+ }
+ }
+
+ /* Return HAL status */
+ return HAL_OK;
+}
+
+/**
+ * @brief DMA transfer complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
+{
+ /* Retrieve ADC handle corresponding to current DMA handle */
+ ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Update state machine on conversion status if not in error state */
+ if ((hadc->State & (HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) == 0UL)
+ {
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
+
+ /* Determine whether any further conversion upcoming on group regular */
+ /* by external trigger, continuous mode or scan sequence on going */
+ /* to disable interruption. */
+ /* Is it the end of the regular sequence ? */
+ if ((hadc->Instance->ISR & ADC_FLAG_EOS) != 0UL)
+ {
+ /* Are conversions software-triggered ? */
+ if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
+ {
+ /* Is CONT bit set ? */
+ if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_CONT) == 0UL)
+ {
+ /* CONT bit is not set, no more conversions expected */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
+ if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
+ {
+ SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+ }
+ }
+ }
+ }
+ else
+ {
+ /* DMA End of Transfer interrupt was triggered but conversions sequence
+ is not over. If DMACFG is set to 0, conversions are stopped. */
+ if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMNGT) == 0UL)
+ {
+ /* DMACFG bit is not set, conversions are stopped. */
+ CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
+ if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
+ {
+ SET_BIT(hadc->State, HAL_ADC_STATE_READY);
+ }
+ }
+ }
+
+ /* Conversion complete callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->ConvCpltCallback(hadc);
+#else
+ HAL_ADC_ConvCpltCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+ }
+ else /* DMA and-or internal error occurred */
+ {
+ if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) != 0UL)
+ {
+ /* Call HAL ADC Error Callback function */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->ErrorCallback(hadc);
+#else
+ HAL_ADC_ErrorCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+ }
+ else
+ {
+ /* Call ADC DMA error callback */
+ hadc->DMA_Handle->XferErrorCallback(hdma);
+ }
+ }
+}
+
+/**
+ * @brief DMA half transfer complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)
+{
+ /* Retrieve ADC handle corresponding to current DMA handle */
+ ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Half conversion callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->ConvHalfCpltCallback(hadc);
+#else
+ HAL_ADC_ConvHalfCpltCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief DMA error callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void ADC_DMAError(DMA_HandleTypeDef *hdma)
+{
+ /* Retrieve ADC handle corresponding to current DMA handle */
+ ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Set ADC state */
+ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
+
+ /* Set ADC error code to DMA error */
+ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA);
+
+ /* Error callback */
+#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
+ hadc->ErrorCallback(hadc);
+#else
+ HAL_ADC_ErrorCallback(hadc);
+#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief Configure boost mode of selected ADC.
+ * @note Prerequisite condition to use this function: ADC conversions must be
+ * stopped.
+ * @param hadc ADC handle
+ * @retval None.
+ */
+void ADC_ConfigureBoostMode(ADC_HandleTypeDef* hadc)
+{
+ uint32_t freq;
+ if(ADC_IS_SYNCHRONOUS_CLOCK_MODE(hadc))
+ {
+ freq = HAL_RCC_GetHCLKFreq();
+ switch(hadc->Init.ClockPrescaler)
+ {
+ case ADC_CLOCK_SYNC_PCLK_DIV1:
+ case ADC_CLOCK_SYNC_PCLK_DIV2:
+ freq /= (hadc->Init.ClockPrescaler >> ADC_CCR_CKMODE_Pos);
+ break;
+ case ADC_CLOCK_SYNC_PCLK_DIV4:
+ freq /= 4UL;
+ break;
+ default:
+ break;
+ }
+ }
+ else
+ {
+ freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC);
+ switch(hadc->Init.ClockPrescaler)
+ {
+ case ADC_CLOCK_ASYNC_DIV2:
+ case ADC_CLOCK_ASYNC_DIV4:
+ case ADC_CLOCK_ASYNC_DIV6:
+ case ADC_CLOCK_ASYNC_DIV8:
+ case ADC_CLOCK_ASYNC_DIV10:
+ case ADC_CLOCK_ASYNC_DIV12:
+ freq /= ((hadc->Init.ClockPrescaler >> ADC_CCR_PRESC_Pos) << 1UL);
+ break;
+ case ADC_CLOCK_ASYNC_DIV16:
+ freq /= 16UL;
+ break;
+ case ADC_CLOCK_ASYNC_DIV32:
+ freq /= 32UL;
+ break;
+ case ADC_CLOCK_ASYNC_DIV64:
+ freq /= 64UL;
+ break;
+ case ADC_CLOCK_ASYNC_DIV128:
+ freq /= 128UL;
+ break;
+ case ADC_CLOCK_ASYNC_DIV256:
+ freq /= 256UL;
+ break;
+ default:
+ break;
+ }
+ }
+
+#if defined(ADC_VER_V5_3)
+ freq /= 2U;
+
+ if (freq <= 6250000UL)
+ {
+ MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, 0UL);
+ }
+ else if(freq <= 12500000UL)
+ {
+ MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_0);
+ }
+ else if(freq <= 25000000UL)
+ {
+ MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1);
+ }
+ else /* if(freq > 25000000UL) */
+ {
+ MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1 | ADC_CR_BOOST_0);
+ }
+#else
+ if(HAL_GetREVID() <= REV_ID_Y) /* STM32H7 silicon Rev.Y */
+ {
+ if(freq > 20000000UL)
+ {
+ SET_BIT(hadc->Instance->CR, ADC_CR_BOOST_0);
+ }
+ else
+ {
+ CLEAR_BIT(hadc->Instance->CR, ADC_CR_BOOST_0);
+ }
+ }
+ else /* STM32H7 silicon Rev.V */
+ {
+ freq /= 2U; /* divider by 2 for Rev.V */
+
+ if (freq <= 6250000UL)
+ {
+ MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, 0UL);
+ }
+ else if(freq <= 12500000UL)
+ {
+ MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_0);
+ }
+ else if(freq <= 25000000UL)
+ {
+ MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1);
+ }
+ else /* if(freq > 25000000UL) */
+ {
+ MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1 | ADC_CR_BOOST_0);
+ }
+ }
+#endif /* ADC_VER_V5_3 */
+}
+
+/**
+ * @}
+ */
+
+#endif /* HAL_ADC_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/