summaryrefslogtreecommitdiffstats
path: root/cpukit/zlib/crc32.c
blob: 1acc7ed8e49ffd63105310d723c7886e7626e284 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/* crc32.c -- compute the CRC-32 of a data stream
 * Copyright (C) 1995-2006 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h
 *
 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
 * tables for updating the shift register in one step with three exclusive-ors
 * instead of four steps with four exclusive-ors.  This results in about a
 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
 */

/* @(#) $Id$ */

/*
  Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
  protection on the static variables used to control the first-use generation
  of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
  first call get_crc_table() to initialize the tables before allowing more than
  one thread to use crc32().
 */

#ifdef MAKECRCH
#  include <stdio.h>
#  ifndef DYNAMIC_CRC_TABLE
#    define DYNAMIC_CRC_TABLE
#  endif /* !DYNAMIC_CRC_TABLE */
#endif /* MAKECRCH */

#include "zutil.h"      /* for STDC and FAR definitions */

#define local static

/* Find a four-byte integer type for crc32_little() and crc32_big(). */
#ifndef NOBYFOUR
#  ifdef STDC           /* need ANSI C limits.h to determine sizes */
#    include <limits.h>
#    define BYFOUR
#    if (UINT_MAX == 0xffffffffUL)
       typedef unsigned int u4;
#    else
#      if (ULONG_MAX == 0xffffffffUL)
         typedef unsigned long u4;
#      else
#        if (USHRT_MAX == 0xffffffffUL)
           typedef unsigned short u4;
#        else
#          undef BYFOUR     /* can't find a four-byte integer type! */
#        endif
#      endif
#    endif
#  endif /* STDC */
#endif /* !NOBYFOUR */

/* Definitions for doing the crc four data bytes at a time. */
#ifdef BYFOUR
#  define REV(w) ((((w)>>24)&0xff)+(((w)>>8)&0xff00)+ \
                (((w)&0xff00)<<8)+(((w)&0xff)<<24))
   local unsigned long crc32_little OF((unsigned long,
                        const unsigned char FAR *, unsigned));
   local unsigned long crc32_big OF((unsigned long,
                        const unsigned char FAR *, unsigned));
#  define TBLS 8
#else
#  define TBLS 1
#endif /* BYFOUR */

/* Local functions for crc concatenation */
local unsigned long gf2_matrix_times OF((unsigned long *mat,
                                         unsigned long vec));
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
local uLong crc32_combine_(uLong crc1, uLong crc2, z_off64_t len2);


#ifdef DYNAMIC_CRC_TABLE

local volatile int crc_table_empty = 1;
local unsigned long FAR crc_table[TBLS][256];
local void make_crc_table OF((void));
#ifdef MAKECRCH
   local void write_table OF((FILE *, const unsigned long FAR *));
#endif /* MAKECRCH */
/*
  Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.

  Polynomials over GF(2) are represented in binary, one bit per coefficient,
  with the lowest powers in the most significant bit.  Then adding polynomials
  is just exclusive-or, and multiplying a polynomial by x is a right shift by
  one.  If we call the above polynomial p, and represent a byte as the
  polynomial q, also with the lowest power in the most significant bit (so the
  byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
  where a mod b means the remainder after dividing a by b.

  This calculation is done using the shift-register method of multiplying and
  taking the remainder.  The register is initialized to zero, and for each
  incoming bit, x^32 is added mod p to the register if the bit is a one (where
  x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
  x (which is shifting right by one and adding x^32 mod p if the bit shifted
  out is a one).  We start with the highest power (least significant bit) of
  q and repeat for all eight bits of q.

  The first table is simply the CRC of all possible eight bit values.  This is
  all the information needed to generate CRCs on data a byte at a time for all
  combinations of CRC register values and incoming bytes.  The remaining tables
  allow for word-at-a-time CRC calculation for both big-endian and little-
  endian machines, where a word is four bytes.
*/
local void make_crc_table()
{
    unsigned long c;
    int n, k;
    unsigned long poly;                 /* polynomial exclusive-or pattern */
    /* terms of polynomial defining this crc (except x^32): */
    static volatile int first = 1;      /* flag to limit concurrent making */
    static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};

    /* See if another task is already doing this (not thread-safe, but better
       than nothing -- significantly reduces duration of vulnerability in
       case the advice about DYNAMIC_CRC_TABLE is ignored) */
    if (first) {
        first = 0;

        /* make exclusive-or pattern from polynomial (0xedb88320UL) */
        poly = 0UL;
        for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++)
            poly |= 1UL << (31 - p[n]);

        /* generate a crc for every 8-bit value */
        for (n = 0; n < 256; n++) {
            c = (unsigned long)n;
            for (k = 0; k < 8; k++)
                c = c & 1 ? poly ^ (c >> 1) : c >> 1;
            crc_table[0][n] = c;
        }

#ifdef BYFOUR
        /* generate crc for each value followed by one, two, and three zeros,
           and then the byte reversal of those as well as the first table */
        for (n = 0; n < 256; n++) {
            c = crc_table[0][n];
            crc_table[4][n] = REV(c);
            for (k = 1; k < 4; k++) {
                c = crc_table[0][c & 0xff] ^ (c >> 8);
                crc_table[k][n] = c;
                crc_table[k + 4][n] = REV(c);
            }
        }
#endif /* BYFOUR */

        crc_table_empty = 0;
    }
    else {      /* not first */
        /* wait for the other guy to finish (not efficient, but rare) */
        while (crc_table_empty)
            ;
    }

#ifdef MAKECRCH
    /* write out CRC tables to crc32.h */
    {
        FILE *out;

        out = fopen("crc32.h", "w");
        if (out == NULL) return;
        fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
        fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
        fprintf(out, "local const unsigned long FAR ");
        fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
        write_table(out, crc_table[0]);
#  ifdef BYFOUR
        fprintf(out, "#ifdef BYFOUR\n");
        for (k = 1; k < 8; k++) {
            fprintf(out, "  },\n  {\n");
            write_table(out, crc_table[k]);
        }
        fprintf(out, "#endif\n");
#  endif /* BYFOUR */
        fprintf(out, "  }\n};\n");
        fclose(out);
    }
#endif /* MAKECRCH */
}

#ifdef MAKECRCH
local void write_table(out, table)
    FILE *out;
    const unsigned long FAR *table;
{
    int n;

    for (n = 0; n < 256; n++)
        fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ", table[n],
                n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
}
#endif /* MAKECRCH */

#else /* !DYNAMIC_CRC_TABLE */
/* ========================================================================
 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
 */
#include "crc32.h"
#endif /* DYNAMIC_CRC_TABLE */

/* =========================================================================
 * This function can be used by asm versions of crc32()
 */
const unsigned long FAR * ZEXPORT get_crc_table()
{
#ifdef DYNAMIC_CRC_TABLE
    if (crc_table_empty)
        make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */
    return (const unsigned long FAR *)crc_table;
}

/* ========================================================================= */
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1

/* ========================================================================= */
unsigned long ZEXPORT crc32(crc, buf, len)
    unsigned long crc;
    const unsigned char FAR *buf;
    unsigned len;
{
    if (buf == Z_NULL) return 0UL;

#ifdef DYNAMIC_CRC_TABLE
    if (crc_table_empty)
        make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */

#ifdef BYFOUR
    if (sizeof(void *) == sizeof(ptrdiff_t)) {
        u4 endian;

        endian = 1;
        if (*((unsigned char *)(&endian)))
            return crc32_little(crc, buf, len);
        else
            return crc32_big(crc, buf, len);
    }
#endif /* BYFOUR */
    crc = crc ^ 0xffffffffUL;
    while (len >= 8) {
        DO8;
        len -= 8;
    }
    if (len) do {
        DO1;
    } while (--len);
    return crc ^ 0xffffffffUL;
}

#ifdef BYFOUR

/* ========================================================================= */
#define DOLIT4 c ^= *buf4++; \
        c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
            crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4

/* ========================================================================= */
local unsigned long crc32_little(crc, buf, len)
    unsigned long crc;
    const unsigned char FAR *buf;
    unsigned len;
{
    register u4 c;
    register const u4 FAR *buf4;

    c = (u4)crc;
    c = ~c;
    while (len && ((ptrdiff_t)buf & 3)) {
        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
        len--;
    }

    buf4 = (const u4 FAR *)(const void FAR *)buf;
    while (len >= 32) {
        DOLIT32;
        len -= 32;
    }
    while (len >= 4) {
        DOLIT4;
        len -= 4;
    }
    buf = (const unsigned char FAR *)buf4;

    if (len) do {
        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
    } while (--len);
    c = ~c;
    return (unsigned long)c;
}

/* ========================================================================= */
#define DOBIG4 c ^= *++buf4; \
        c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
            crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4

/* ========================================================================= */
local unsigned long crc32_big(crc, buf, len)
    unsigned long crc;
    const unsigned char FAR *buf;
    unsigned len;
{
    register u4 c;
    register const u4 FAR *buf4;

    c = REV((u4)crc);
    c = ~c;
    while (len && ((ptrdiff_t)buf & 3)) {
        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
        len--;
    }

    buf4 = (const u4 FAR *)(const void FAR *)buf;
    buf4--;
    while (len >= 32) {
        DOBIG32;
        len -= 32;
    }
    while (len >= 4) {
        DOBIG4;
        len -= 4;
    }
    buf4++;
    buf = (const unsigned char FAR *)buf4;

    if (len) do {
        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
    } while (--len);
    c = ~c;
    return (unsigned long)(REV(c));
}

#endif /* BYFOUR */

#define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */

/* ========================================================================= */
local unsigned long gf2_matrix_times(mat, vec)
    unsigned long *mat;
    unsigned long vec;
{
    unsigned long sum;

    sum = 0;
    while (vec) {
        if (vec & 1)
            sum ^= *mat;
        vec >>= 1;
        mat++;
    }
    return sum;
}

/* ========================================================================= */
local void gf2_matrix_square(square, mat)
    unsigned long *square;
    unsigned long *mat;
{
    int n;

    for (n = 0; n < GF2_DIM; n++)
        square[n] = gf2_matrix_times(mat, mat[n]);
}

/* ========================================================================= */
local uLong crc32_combine_(crc1, crc2, len2)
    uLong crc1;
    uLong crc2;
    z_off64_t len2;
{
    int n;
    unsigned long row;
    unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
    unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */

    /* degenerate case (also disallow negative lengths) */
    if (len2 <= 0)
        return crc1;

    /* put operator for one zero bit in odd */
    odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
    row = 1;
    for (n = 1; n < GF2_DIM; n++) {
        odd[n] = row;
        row <<= 1;
    }

    /* put operator for two zero bits in even */
    gf2_matrix_square(even, odd);

    /* put operator for four zero bits in odd */
    gf2_matrix_square(odd, even);

    /* apply len2 zeros to crc1 (first square will put the operator for one
       zero byte, eight zero bits, in even) */
    do {
        /* apply zeros operator for this bit of len2 */
        gf2_matrix_square(even, odd);
        if (len2 & 1)
            crc1 = gf2_matrix_times(even, crc1);
        len2 >>= 1;

        /* if no more bits set, then done */
        if (len2 == 0)
            break;

        /* another iteration of the loop with odd and even swapped */
        gf2_matrix_square(odd, even);
        if (len2 & 1)
            crc1 = gf2_matrix_times(odd, crc1);
        len2 >>= 1;

        /* if no more bits set, then done */
    } while (len2 != 0);

    /* return combined crc */
    crc1 ^= crc2;
    return crc1;
}

/* ========================================================================= */
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
    uLong crc1;
    uLong crc2;
    z_off_t len2;
{
    return crc32_combine_(crc1, crc2, len2);
}

uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
    uLong crc1;
    uLong crc2;
    z_off64_t len2;
{
    return crc32_combine_(crc1, crc2, len2);
}