summaryrefslogtreecommitdiffstats
path: root/cpukit/score/src/threaddispatch.c
blob: 4304821eb9a34131facbc701ec4b8f92ef1c4b3f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*
 *  Thread Handler
 *
 *  COPYRIGHT (c) 1989-2009.
 *  On-Line Applications Research Corporation (OAR).
 *
 *  The license and distribution terms for this file may be
 *  found in the file LICENSE in this distribution or at
 *  http://www.rtems.com/license/LICENSE.
 *
 *  $Id$
 */

#if HAVE_CONFIG_H
#include "config.h"
#endif

#include <rtems/system.h>
#include <rtems/score/apiext.h>
#include <rtems/score/context.h>
#include <rtems/score/interr.h>
#include <rtems/score/isr.h>
#include <rtems/score/object.h>
#include <rtems/score/priority.h>
#include <rtems/score/states.h>
#include <rtems/score/sysstate.h>
#include <rtems/score/thread.h>
#include <rtems/score/threadq.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>

#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
  #include <rtems/score/timestamp.h>
#endif

#if defined(RTEMS_SMP)
  #include <rtems/score/smp.h>
#endif

/**
 *  _Thread_Dispatch
 *
 *  This kernel routine determines if a dispatch is needed, and if so
 *  dispatches to the heir thread.  Once the heir is running an attempt
 *  is made to dispatch any ASRs.
 *
 *  ALTERNATE ENTRY POINTS:
 *    void _Thread_Enable_dispatch();
 *
 *  INTERRUPT LATENCY:
 *    dispatch thread
 *    no dispatch thread
 */
void _Thread_Dispatch( void )
{
  Thread_Control   *executing;
  Thread_Control   *heir;
  ISR_Level         level;

  _Thread_Disable_dispatch();
  #if defined(RTEMS_SMP)
    /*
     *  If necessary, send dispatch request to other cores.
     */
    _SMP_Request_other_cores_to_dispatch();
  #endif

  /*
   *  Now determine if we need to perform a dispatch on the current CPU.
   */
  executing   = _Thread_Executing;
  _ISR_Disable( level );
  while ( _Thread_Dispatch_necessary == true ) {

    heir = _Thread_Heir;
    _Thread_Dispatch_necessary = false;
    _Thread_Executing = heir;

    /*
     *  When the heir and executing are the same, then we are being
     *  requested to do the post switch dispatching.  This is normally
     *  done to dispatch signals.
     */
    if ( heir == executing )
      goto post_switch;

    /*
     *  Since heir and executing are not the same, we need to do a real
     *  context switch.
     */
#if __RTEMS_ADA__
    executing->rtems_ada_self = rtems_ada_self;
    rtems_ada_self = heir->rtems_ada_self;
#endif
    if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
      heir->cpu_time_budget = _Thread_Ticks_per_timeslice;

    _ISR_Enable( level );

    #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
      {
        Timestamp_Control uptime, ran;
        _TOD_Get_uptime( &uptime );
        _Timestamp_Subtract(
          &_Thread_Time_of_last_context_switch,
          &uptime,
          &ran
        );
        _Timestamp_Add_to( &executing->cpu_time_used, &ran );
        _Thread_Time_of_last_context_switch = uptime;
      }
    #else
      {
        TOD_Get_uptime( &_Thread_Time_of_last_context_switch );
        heir->cpu_time_used++;
      }
    #endif

    /*
     * Switch libc's task specific data.
     */
    if ( _Thread_libc_reent ) {
      executing->libc_reent = *_Thread_libc_reent;
      *_Thread_libc_reent = heir->libc_reent;
    }

    _User_extensions_Thread_switch( executing, heir );

    /*
     *  If the CPU has hardware floating point, then we must address saving
     *  and restoring it as part of the context switch.
     *
     *  The second conditional compilation section selects the algorithm used
     *  to context switch between floating point tasks.  The deferred algorithm
     *  can be significantly better in a system with few floating point tasks
     *  because it reduces the total number of save and restore FP context
     *  operations.  However, this algorithm can not be used on all CPUs due
     *  to unpredictable use of FP registers by some compilers for integer
     *  operations.
     */

#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH != TRUE )
    if ( executing->fp_context != NULL )
      _Context_Save_fp( &executing->fp_context );
#endif
#endif

    _Context_Switch( &executing->Registers, &heir->Registers );

#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
    if ( (executing->fp_context != NULL) &&
         !_Thread_Is_allocated_fp( executing ) ) {
      if ( _Thread_Allocated_fp != NULL )
        _Context_Save_fp( &_Thread_Allocated_fp->fp_context );
      _Context_Restore_fp( &executing->fp_context );
      _Thread_Allocated_fp = executing;
    }
#else
    if ( executing->fp_context != NULL )
      _Context_Restore_fp( &executing->fp_context );
#endif
#endif

    executing = _Thread_Executing;

    _ISR_Disable( level );
  }

post_switch:

  _ISR_Enable( level );

  _Thread_Unnest_dispatch();
 
  _API_extensions_Run_postswitch();
}